Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GH-39914: [pyarrow] Reorder to_pandas extension dtype mapping #44720

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 20 additions & 20 deletions python/pyarrow/pandas_compat.py
Original file line number Diff line number Diff line change
Expand Up @@ -848,6 +848,25 @@ def _get_extension_dtypes(table, columns_metadata, types_mapper=None):
if _pandas_api.extension_dtype is None:
return ext_columns

# use the specified mapping of built-in arrow types to pandas dtypes
if types_mapper:
for field in table.schema:
typ = field.type
pandas_dtype = types_mapper(typ)
if pandas_dtype is not None:
ext_columns[field.name] = pandas_dtype

# infer from extension type in the schema
for field in table.schema:
typ = field.type
if field.name not in ext_columns and isinstance(typ, pa.BaseExtensionType):
try:
pandas_dtype = typ.to_pandas_dtype()
except NotImplementedError:
pass
else:
ext_columns[field.name] = pandas_dtype

# infer the extension columns from the pandas metadata
for col_meta in columns_metadata:
try:
Expand All @@ -856,33 +875,14 @@ def _get_extension_dtypes(table, columns_metadata, types_mapper=None):
name = col_meta['name']
dtype = col_meta['numpy_type']

if dtype not in _pandas_supported_numpy_types:
if name not in ext_columns and dtype not in _pandas_supported_numpy_types:
# pandas_dtype is expensive, so avoid doing this for types
# that are certainly numpy dtypes
pandas_dtype = _pandas_api.pandas_dtype(dtype)
if isinstance(pandas_dtype, _pandas_api.extension_dtype):
if hasattr(pandas_dtype, "__from_arrow__"):
ext_columns[name] = pandas_dtype

# infer from extension type in the schema
for field in table.schema:
typ = field.type
if isinstance(typ, pa.BaseExtensionType):
try:
pandas_dtype = typ.to_pandas_dtype()
except NotImplementedError:
pass
else:
ext_columns[field.name] = pandas_dtype

# use the specified mapping of built-in arrow types to pandas dtypes
if types_mapper:
for field in table.schema:
typ = field.type
pandas_dtype = types_mapper(typ)
if pandas_dtype is not None:
ext_columns[field.name] = pandas_dtype

return ext_columns


Expand Down
23 changes: 23 additions & 0 deletions python/pyarrow/tests/test_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -4411,6 +4411,29 @@ def test_to_pandas_extension_dtypes_mapping():
assert isinstance(result['a'].dtype, pd.PeriodDtype)



def test_to_pandas_extension_dtypes_mapping_complex_type():
bretttully marked this conversation as resolved.
Show resolved Hide resolved
pa_type = pa.struct(
[
pa.field("bar", pa.bool_(), nullable=False),
pa.field("baz", pa.float32(), nullable=True),
],
)
pd_type = pd.ArrowDtype(pa_type)
schema = pa.schema([pa.field("foo", pa_type)])
df0 = pd.DataFrame(
[
{"foo": {"bar": True, "baz": np.float32(1)}},
{"foo": {"bar": True, "baz": None}},
],
).astype({"foo": pd_type})

# Round trip df0 into df1
table = pa.Table.from_pandas(df0, schema=schema)
df1 = table.to_pandas(types_mapper=pd.ArrowDtype)
pd.testing.assert_frame_equal(df0, df1)


def test_array_to_pandas():
if Version(pd.__version__) < Version("1.1"):
pytest.skip("ExtensionDtype to_pandas method missing")
Expand Down
Loading