diff --git a/hudi-spark-datasource/hudi-spark/src/test/scala/org/apache/hudi/TestAutoKeyGenForSQL.scala b/hudi-spark-datasource/hudi-spark/src/test/scala/org/apache/hudi/TestAutoKeyGenForSQL.scala new file mode 100644 index 000000000000..e3ed56a3e410 --- /dev/null +++ b/hudi-spark-datasource/hudi-spark/src/test/scala/org/apache/hudi/TestAutoKeyGenForSQL.scala @@ -0,0 +1,99 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +package org.apache.hudi + +import org.apache.hudi.common.table.HoodieTableMetaClient +import org.apache.hudi.storage.hadoop.HadoopStorageConfiguration +import org.apache.hudi.testutils.SparkClientFunctionalTestHarness +import org.apache.hudi.testutils.SparkClientFunctionalTestHarness.getSparkSqlConf +import org.apache.spark.SparkConf +import org.junit.jupiter.api.Assertions.assertTrue +import org.junit.jupiter.params.ParameterizedTest +import org.junit.jupiter.params.provider.CsvSource + +class TestAutoKeyGenForSQL extends SparkClientFunctionalTestHarness { + override def conf: SparkConf = conf(getSparkSqlConf) + + @ParameterizedTest + @CsvSource(value = Array("MERGE_ON_READ", "COPY_ON_WRITE")) + def testAutoKeyGen(tableType: String): Unit = { + // No record key is set, which should trigger auto key gen. + // MOR table is used to generate log files. + val tableName = "hoodie_test_" + tableType + spark.sql( + s""" + |create table $tableName ( + | ts BIGINT, + | uuid STRING, + | rider STRING, + | driver STRING, + | fare DOUBLE, + | city STRING + |) using hudi + | options ( + | hoodie.metadata.enable = 'true', + | hoodie.enable.data.skipping = 'true', + | hoodie.datasource.write.payload.class = 'org.apache.hudi.common.model.OverwriteWithLatestAvroPayload' + | ) + | partitioned by(city) + | location '$basePath' + | TBLPROPERTIES (hoodie.datasource.write.table.type='$tableType') + """.stripMargin) + // Initial data. + spark.sql( + s""" + |INSERT INTO $tableName VALUES + | (1695159649087,'334e26e9-8355-45cc-97c6-c31daf0df330','rider-A','driver-K',19.10,'san_francisco'), + | (1695091554788,'e96c4396-3fad-413a-a942-4cb36106d721','rider-C','driver-M',27.70 ,'san_francisco'), + | (1695046462179,'9909a8b1-2d15-4d3d-8ec9-efc48c536a00','rider-D','driver-L',33.90 ,'san_francisco'), + | (1695332066204,'1dced545-862b-4ceb-8b43-d2a568f6616b','rider-E','driver-O',93.50,'san_francisco'), + | (1695516137016,'e3cf430c-889d-4015-bc98-59bdce1e530c','rider-F','driver-P',34.15,'sao_paulo'), + | (1695376420876,'7a84095f-737f-40bc-b62f-6b69664712d2','rider-G','driver-Q',43.40 ,'sao_paulo'), + | (1695173887231,'3eeb61f7-c2b0-4636-99bd-5d7a5a1d2c04','rider-I','driver-S',41.06 ,'chennai'), + | (1695115999911,'c8abbe79-8d89-47ea-b4ce-4d224bae5bfa','rider-J','driver-T',17.85,'chennai'); + """.stripMargin) + // Create the first log file by update. + spark.sql(s"UPDATE $tableName SET fare = 25.0 WHERE rider = 'rider-D';") + // Create the second log file by delete. + spark.sql(s"DELETE FROM $tableName WHERE uuid = '334e26e9-8355-45cc-97c6-c31daf0df330';") + // Create the third log file by delete. + spark.sql(s"DELETE FROM $tableName WHERE uuid = '9909a8b1-2d15-4d3d-8ec9-efc48c536a00';") + + // Validate: data integrity. + val columns = Seq("ts","uuid","rider","driver","fare","city") + val actualDf = spark.sql(s"SELECT * FROM $tableName WHERE city = 'san_francisco';") + .select("ts","uuid","rider","driver","fare","city").sort("uuid") + val expected = Seq( + (1695091554788L,"e96c4396-3fad-413a-a942-4cb36106d721","rider-C","driver-M",27.70,"san_francisco"), + (1695332066204L,"1dced545-862b-4ceb-8b43-d2a568f6616b","rider-E","driver-O",93.50,"san_francisco")) + val expectedDf = spark.createDataFrame(expected).toDF(columns: _*) + val expectedMinusActual = expectedDf.except(actualDf) + val actualMinusExpected = actualDf.except(expectedDf) + assertTrue(expectedMinusActual.isEmpty && actualMinusExpected.isEmpty) + // Validate: table property. + val metaClient: HoodieTableMetaClient = HoodieTableMetaClient + .builder() + .setBasePath(basePath) + .setConf(new HadoopStorageConfiguration(spark.sparkContext.hadoopConfiguration)) + .build() + // Record key fields should be empty. + assertTrue(metaClient.getTableConfig.getRecordKeyFields.isEmpty) + } +}