This page briefly discusses how to test a Flink application in your IDE or a local environment.
Usually, one can assume that Flink produces correct results outside of a user-defined Function
. Therefore, it is recommended to test Function
classes that contain the main business logic with unit tests as much as possible.
For example if one implements the following ReduceFunction
:
public class SumReduce implements ReduceFunction<Long> {
@Override
public Long reduce(Long value1, Long value2) throws Exception {
return value1 + value2;
}
}
class SumReduce extends ReduceFunction[Long] {
override def reduce(value1: java.lang.Long, value2: java.lang.Long): java.lang.Long = {
value1 + value2
}
}
It is very easy to unit test it with your favorite framework by passing suitable arguments and verify the output:
public class SumReduceTest {
@Test
public void testSum() throws Exception {
// instantiate your function
SumReduce sumReduce = new SumReduce();
// call the methods that you have implemented
assertEquals(42L, sumReduce.reduce(40L, 2L));
}
}
class SumReduceTest extends FlatSpec with Matchers {
"SumReduce" should "add values" in {
// instantiate your function
val sumReduce: SumReduce = new SumReduce()
// call the methods that you have implemented
sumReduce.reduce(40L, 2L) should be (42L)
}
}
In order to end-to-end test Flink streaming pipelines, you can also write integration tests that are executed against a local Flink mini cluster.
In order to do so add the test dependency flink-test-utils
:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-test-utils_2.11</artifactId>
<version>1.7.1</version>
</dependency>
For example, if you want to test the following MapFunction
:
public class MultiplyByTwo implements MapFunction<Long, Long> {
@Override
public Long map(Long value) throws Exception {
return value * 2;
}
}
class MultiplyByTwo extends MapFunction[Long, Long] {
override def map(value: Long): Long = {
value * 2
}
}
You could write the following integration test:
public class ExampleIntegrationTest extends AbstractTestBase {
@Test
public void testMultiply() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// configure your test environment
env.setParallelism(1);
// values are collected in a static variable
CollectSink.values.clear();
// create a stream of custom elements and apply transformations
env.fromElements(1L, 21L, 22L)
.map(new MultiplyByTwo())
.addSink(new CollectSink());
// execute
env.execute();
// verify your results
assertEquals(Lists.newArrayList(2L, 42L, 44L), CollectSink.values);
}
// create a testing sink
private static class CollectSink implements SinkFunction<Long> {
// must be static
public static final List<Long> values = new ArrayList<>();
@Override
public synchronized void invoke(Long value) throws Exception {
values.add(value);
}
}
}
class ExampleIntegrationTest extends AbstractTestBase {
@Test
def testMultiply(): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
// configure your test environment
env.setParallelism(1)
// values are collected in a static variable
CollectSink.values.clear()
// create a stream of custom elements and apply transformations
env
.fromElements(1L, 21L, 22L)
.map(new MultiplyByTwo())
.addSink(new CollectSink())
// execute
env.execute()
// verify your results
assertEquals(Lists.newArrayList(2L, 42L, 44L), CollectSink.values)
}
}
// create a testing sink class CollectSink extends SinkFunction[Long] {
override def invoke(value: java.lang.Long): Unit = {
synchronized {
values.add(value)
}
}
}
object CollectSink {
// must be static
val values: List[Long] = new ArrayList()
}
The static variable in CollectSink
is used here because Flink serializes all operators before distributing them across a cluster. Communicating with operators instantiated by a local Flink mini cluster via static variables is one way around this issue. Alternatively, you could for example write the data to files in a temporary directory with your test sink. You can also implement your own custom sources for emitting watermarks.
One way to test state handling is to enable checkpointing in integration tests.
You can do that by configuring your StreamExecutionEnvironment
in the test:
env.enableCheckpointing(500);
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 100));
env.enableCheckpointing(500)
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 100))
And for example adding to your Flink application an identity mapper operator that will throw an exception once every 1000ms
. However writing such test could be tricky because of time dependencies between the actions.
Another approach is to write a unit test using the Flink internal testing utility AbstractStreamOperatorTestHarness
from the flink-streaming-java
module.
For an example of how to do that please have a look at the org.apache.flink.streaming.runtime.operators.windowing.WindowOperatorTest
also in the flink-streaming-java
module.
Be aware that AbstractStreamOperatorTestHarness
is currently not a part of public API and can be subject to change.