-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_tld.py
76 lines (55 loc) · 2.37 KB
/
model_tld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import pickle
from sklearn import metrics
import time
i = 2600
while i < 8300:
start = time.time()
#print('started')
badQueries = open('badQueries_tld.txt', 'r', encoding='utf-8')
validQueries = open('goodQueries_tld.txt', 'r', encoding='utf-8')
badQueries = list(set(badQueries))
validQueries = list(set(validQueries))
num_samples = i
badQueries = badQueries[:2400]
validQueries = validQueries[:num_samples]
#print(len(badQueries))
#print(len(validQueries))
allQueries = badQueries + validQueries
yBad = [1 for i in range(0, len(badQueries))]
yGood = [0 for i in range(0, len(validQueries))]
y = yBad + yGood
queries = allQueries
#print('vectorizing')
vectorizer = TfidfVectorizer(min_df=0.0, analyzer="char", sublinear_tf=True, ngram_range=(1, 3))
X = vectorizer.fit_transform(queries)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
badCount = len(badQueries)
validCount = len(validQueries)
# print('training')
lgs = LogisticRegression(class_weight={1: 2 * validCount / badCount, 0: 1.0}, solver='lbfgs') # class_weight='balanced')
lgs.fit(X_train, y_train)
predicted = lgs.predict(X_test)
fpr, tpr, _ = metrics.roc_curve(y_test, (lgs.predict_proba(X_test)[:, 1]))
auc = metrics.auc(fpr, tpr)
# print('saving')
with open('model_tld.pkl', 'wb') as model_file:
pickle.dump(lgs, model_file)
with open('vectorizer_tld.pkl', 'wb') as vectorizer_file:
pickle.dump(vectorizer, vectorizer_file)
end = time.time()
predicted = lgs.predict(X_test)
fpr, tpr, _ = metrics.roc_curve(y_test, (lgs.predict_proba(X_test)[:, 1]))
auc = metrics.auc(fpr, tpr)
print("%d" % badCount, end=',')
print("%d" % validCount, end=',')
print("%.6f" % (validCount / (validCount + badCount)), end=',')
print("%f" % lgs.score(X_test, y_test), end=',') #checking the accuracy
print("%f" % metrics.precision_score(y_test, predicted), end=',')
print("%f" % metrics.recall_score(y_test, predicted), end=',')
print("%f" % metrics.f1_score(y_test, predicted), end=',')
print("%f" % auc, end=',')
print("{0}".format(end-start))
i += 200