diff --git a/changelog.md b/changelog.md index 53640e6..a6a29d8 100644 --- a/changelog.md +++ b/changelog.md @@ -1,3 +1,8 @@ +# v0.3.3 + +- Handle empty inputs (e.g. `as_folded_tensor([[[], []], [[]]])`) by returning an empty tensor +- Correctly bubble errors when converting inputs with varying deepness (e.g. `as_folded_tensor([1, [2, 3]])`) + # v0.3.2 - Allow to use `as_folded_tensor` with no args, as a simple padding function diff --git a/foldedtensor/__init__.py b/foldedtensor/__init__.py index fcb26bc..4486f69 100644 --- a/foldedtensor/__init__.py +++ b/foldedtensor/__init__.py @@ -99,16 +99,20 @@ def backward(ctx, grad_output): def get_metadata(nested_data): item = None + deepness = 0 - def rec(seq): - nonlocal item + def rec(seq, depth=0): + nonlocal item, deepness if isinstance(seq, (list, tuple)): + depth += 1 + deepness = max(deepness, depth) for item in seq: - yield from (1 + res for res in rec(item)) + yield from rec(item, depth) else: - yield 0 + yield - return next(rec(nested_data), 0), type(item) + next(rec(nested_data), 0) + return deepness, type(item) def as_folded_tensor( @@ -139,20 +143,24 @@ def as_folded_tensor( device: Optional[Unit[str, torch.device]] The device of the output tensor """ - if data_dims is not None: - data_dims = tuple( - dim if isinstance(dim, int) else full_names.index(dim) for dim in data_dims - ) - if (data_dims[-1] + 1) != len(full_names): - raise ValueError( - "The last dimension of `data_dims` must be the last variable dimension." + if full_names is not None: + if data_dims is not None: + data_dims = tuple( + dim if isinstance(dim, int) else full_names.index(dim) + for dim in data_dims ) - elif full_names is not None: - data_dims = tuple(range(len(full_names))) + if (data_dims[-1] + 1) != len(full_names): + raise ValueError( + "The last dimension of `data_dims` must be the last variable dimension." + ) + elif full_names is not None: + data_dims = tuple(range(len(full_names))) if isinstance(data, torch.Tensor) and lengths is not None: data_dims = data_dims or tuple(range(len(lengths))) np_indexer, shape = _C.make_refolding_indexer(lengths, data_dims) - assert shape == list(data.shape[: len(data_dims)]) + assert shape == list( + data.shape[: len(data_dims)] + ), f"Shape inferred from lengths is not compatible with data dims: {shape}, {data.shape}, {len(data_dims)}" result = FoldedTensor( data=data, lengths=lengths, @@ -165,6 +173,8 @@ def as_folded_tensor( # raise ValueError("dtype must be provided when `data` is a sequence") if data_dims is None or dtype is None: deepness, inferred_dtype = get_metadata(data) + else: + deepness = len(full_names) if full_names is not None else len(data_dims) if data_dims is None: data_dims = tuple(range(deepness)) if dtype is None: @@ -177,6 +187,8 @@ def as_folded_tensor( ) indexer = torch.from_numpy(indexer) padded = torch.from_numpy(padded) + # In case of empty sequences, lengths are not computed correctly + lengths = (list(lengths) + [[0]] * deepness)[:deepness] result = FoldedTensor( data=padded, lengths=lengths, diff --git a/foldedtensor/functions.cpp b/foldedtensor/functions.cpp index b9e259b..6df110f 100644 --- a/foldedtensor/functions.cpp +++ b/foldedtensor/functions.cpp @@ -212,7 +212,11 @@ nested_py_list_to_padded_np_array( std::vector, int64_t, PyObject *>> operations; // Index from the data dimension to the dim in the theoretically fully padded list - std::vector data_dim_map(*std::max_element(data_dims.begin(), data_dims.end()) + 1, -1); + int64_t max_depth = 0; + if (data_dims.size() > 0) { + max_depth = *std::max_element(data_dims.begin(), data_dims.end()) + 1; + } + std::vector data_dim_map(max_depth, -1); for (unsigned long i = 0; i < data_dims.size(); i++) { data_dim_map[data_dims[i]] = i; } @@ -279,7 +283,9 @@ nested_py_list_to_padded_np_array( // Set the element in the array and move to the next element // Since array elements can be of any size, we use the element size (in // bytes) to move from one element to the next - PyArray_SETITEM(padded_array.ptr(), array_ptr, items[i]); + if (PyArray_SETITEM(padded_array.ptr(), array_ptr, items[i]) < 0) { + throw py::error_already_set(); + } array_ptr += itemsize; // Assign the current index to the indexer and move to the next element diff --git a/tests/test_folded_tensor.py b/tests/test_folded_tensor.py index f149b33..17c9844 100644 --- a/tests/test_folded_tensor.py +++ b/tests/test_folded_tensor.py @@ -367,3 +367,40 @@ def test_share_memory(ft): assert cloned.is_shared() assert cloned.indexer.is_shared() assert cloned.mask.is_shared() + + +def test_empty_sequence(): + ft = as_folded_tensor( + [ + [[], [], []], + [[], []], + ], + dtype=torch.float, + ) + assert ft.shape == (2, 3, 0) + + +def test_imbalanced_sequence_1(): + with pytest.raises(ValueError) as e: + as_folded_tensor( + [ + 3, + [0, 1, 2], + ], + dtype=torch.float, + ) + + assert "setting an array element with a sequence." in str(e.value) + + +def test_imbalanced_sequence_2(): + with pytest.raises(TypeError) as e: + as_folded_tensor( + [ + [0, 1, 2], + 3, + ], + dtype=torch.float, + ) + + assert "'int' object is not iterable" in str(e.value)