apurvakokate
/
GraphNN-For-Learning-Dynamics-and-Generating-Policies-with-Explanations-using-Decision-Trees
Public
forked from josyulakrishna/GraphNN-For-Learning-Dynamics-and-Generating-Policies-with-Explanations-using-Decision-Trees
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_gn_rollout.py
164 lines (134 loc) · 4.94 KB
/
evaluate_gn_rollout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch.utils.data as data
from torch.utils.data import DataLoader
import numpy as np
import networkx as nx
import torch.optim as optim
import matplotlib.pyplot as plt
from gn_models import init_graph_features, FFGN
import torch
from tensorboardX import SummaryWriter
from datetime import datetime
import os
import sys
from scipy.stats import pearsonr
from train_gn import SwimmerDataset
from PIL import Image
import imageio
from utils import *
import argparse
def fig2data(fig):
"""
@brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it
@param fig a matplotlib figure
@return a numpy 3D array of RGBA values
"""
# draw the renderer
fig.canvas.draw()
# Get the RGBA buffer from the figure
w, h = fig.canvas.get_width_height()
buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
buf.shape = (w, h, 4)
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll(buf, 3, axis=2)
return buf
def fig2img ( fig ):
"""
@brief Convert a Matplotlib figure to a PIL Image in RGBA format and return it
@param fig a matplotlib figure
@return a Python Imaging Library ( PIL ) image
"""
# put the figure pixmap into a numpy array
buf = fig2data ( fig )
w, h, d = buf.shape
plt.close()
return np.array(Image.frombytes( "RGBA", ( w ,h ), buf.tostring( ) ) )
def draw_snake(state):
fig = plt.figure()
for i in range(6):
pos = state[i, :3]
angle = pos[2]
x = pos[0]
y = pos[1]
r = 0.05
dy = np.cos(angle) * r
dx = - np.sin(angle) * r
# plt.figure()
plt.plot([x - dx, x + dx], [y - dy, y + dy], 'g', alpha = 0.5)
plt.axis('equal')
return fig
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=str, default = '', help='model path')
opt = parser.parse_args()
print(opt)
dset = SwimmerDataset('swimmer_test.npy')
use_cuda = True
dl = DataLoader(dset, batch_size=200, num_workers=0, drop_last=True)
#nx.draw(G1)
#plt.show()
node_feat_size = 6
edge_feat_size = 3
graph_feat_size = 10
gn = FFGN(graph_feat_size, node_feat_size, edge_feat_size).cuda()
gn.load_state_dict(torch.load(opt.model))
action, state = dset.get_episode(10)
position = state[:, 5:5 + 18].reshape(-1, 6, 3)
normalizers = torch.load('normalize.pth')
in_normalizer = normalizers['in_normalizer']
out_normalizer = normalizers['out_normalizer']
"""
writer = imageio.get_writer('test_plt.mp4', fps=30)
for frame in range(100):
fig = draw_snake(position[frame])
img = fig2img(fig)
writer.append_data(img)
print(frame)
writer.close()
"""
start = 10
state_tensor = torch.from_numpy(state[start, :].astype(np.float32)).unsqueeze(0).cuda()
writer = imageio.get_writer('test_pred.mp4', fps=10)
for frame in range(start + 1,100):
action_tensor = torch.from_numpy(action[frame, :].astype(np.float32)).unsqueeze(0).cuda()
#action_tensor.fill_(0)
#print(state_tensor.size(), action_tensor.size())
G1 = nx.path_graph(6).to_directed()
init_graph_features(G1, graph_feat_size, node_feat_size, edge_feat_size, cuda=True, bs=1)
load_graph_features(G1, action_tensor, state_tensor, bs=1)
G_out = gn(in_normalizer.normalize(G1))
G_out = out_normalizer.inormalize(G_out)
delta_tensor = torch.zeros(state_tensor.size()).cuda()
for i in range(6):
delta_tensor[0, 5 + 6 * i:11 + 6 * i] = G_out.nodes[i]['feat']
state_tensor += delta_tensor
true_state_tensor = torch.from_numpy(state[frame, :].astype(np.float32)).unsqueeze(0).cuda()
#state_tensor[0,:5] = true_state_tensor[0,:5]
if frame % 2 == 0:
state_tensor = true_state_tensor
s = state_tensor.cpu().data.numpy()
position = s[0, 5:5 + 18].reshape(6, 3)
fig = draw_snake(position)
img = fig2img(fig)
writer.append_data(img)
writer.close()
"""
step = 0
for i,data in enumerate(dl):
action, delta_state, last_state = data
action, delta_state, last_state = action.float(), delta_state.float(), last_state.float()
if use_cuda:
action, delta_state, last_state = action.cuda(), delta_state.cuda(), last_state.cuda()
init_graph_features(G1, graph_feat_size, node_feat_size, edge_feat_size, cuda=True, bs = 200)
load_graph_features(G1, action, last_state,bs=200)
G_out = gn(G1)
loss, true, pred = evaluate_graph_loss(G_out, delta_state, last_state)
true = true.data.cpu().numpy()
pred = pred.data.cpu().numpy()
plt.scatter(true, pred, s = 2, alpha = 0.7)
plt.show()
r = pearsonr(true, pred)[0][0]
print(loss, r)
step += 1
if i > 50:
break
"""