apurvakokate
/
GraphNN-For-Learning-Dynamics-and-Generating-Policies-with-Explanations-using-Decision-Trees
Public
forked from josyulakrishna/GraphNN-For-Learning-Dynamics-and-Generating-Policies-with-Explanations-using-Decision-Trees
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormalizer.py
63 lines (57 loc) · 2.51 KB
/
normalizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from torch.utils.data import DataLoader
import numpy as np
import networkx as nx
import torch.optim as optim
import matplotlib.pyplot as plt
from gn_models import init_graph_features, FFGN, Normalizer, subtract
import torch
from tensorboardX import SummaryWriter
from datetime import datetime
import os
from tqdm import tqdm
# from dataset import SwimmerDataset
# from utils import *
from dataset3 import SwimmerDataset
from util2 import *
if __name__ == "__main__":
dset = SwimmerDataset('swimmer3.npy',3)
use_cuda = True
dl = DataLoader(dset, batch_size=200, num_workers=0, drop_last=True)
G1 = nx.path_graph(3).to_directed()
nx.draw(G1)
plt.show()
node_feat_size = 6
edge_feat_size = 3
graph_feat_size = 10
gn = FFGN(graph_feat_size, node_feat_size, edge_feat_size).cuda()
optimizer = optim.Adam(gn.parameters(), lr = 1e-3)
savedir = os.path.join('./logs','runs', datetime.now().strftime('%B%d_%H:%M:%S'))
writer = SummaryWriter(savedir)
step = 0
in_normalizer = Normalizer()
out_normalizer = Normalizer()
for epoch in range(1):
for i,data in tqdm(enumerate(dl)):
action, delta_state, last_state = data
action, delta_state, last_state = action.float(), delta_state.float(), last_state.float()
if use_cuda:
action, delta_state, last_state = action.cuda(), delta_state.cuda(), last_state.cuda()
init_graph_features(G1, graph_feat_size, node_feat_size, edge_feat_size, cuda=True, bs = 200)
load_graph_features(G1, action, last_state, None, noise = 0, bs=200, norm = True)
in_normalizer.input(G1)
load_graph_features(G1, action, delta_state, None, noise = 0, bs=200, norm = False)
out_normalizer.input(G1)
'''
for epoch in range(1):
for i,data in enumerate(dl):
action, delta_state, last_state = data
action, delta_state, last_state = action.float(), delta_state.float(), last_state.float()
if use_cuda:
action, delta_state, last_state = action.cuda(), delta_state.cuda(), last_state.cuda()
init_graph_features(G1, graph_feat_size, node_feat_size, edge_feat_size, cuda=True, bs = 200)
load_graph_features(G1, action, last_state,bs=200)
in_normalizer.normalize(G1)
load_graph_features(G1, action, delta_state, bs=200)
out_normalizer.normalize(G1)
'''
torch.save({"in_normalizer":in_normalizer, "out_normalizer":out_normalizer}, 'normalize3.pth')