diff --git a/.github/workflows/release.yml b/.github/workflows/release.yml index 6a0c412..0bfa256 100644 --- a/.github/workflows/release.yml +++ b/.github/workflows/release.yml @@ -73,6 +73,9 @@ jobs: pip install torch pip install .[dev] + - name: Remove (old) distribution + run: rm -rf dist + - name: Build distribution run: conda run -n ${{ matrix.python }} python setup.py sdist bdist_wheel diff --git a/README.md b/README.md index 21ef235..74be6be 100644 --- a/README.md +++ b/README.md @@ -69,6 +69,9 @@ adbpyg_adapter = ADBPyG_Adapter(db) ``` ### PyG to ArangoDB + +Note: If the PyG graph contains `_key`, `_v_key`, or `_e_key` properties for any node / edge types, the adapter will assume to persist those values as [ArangoDB document keys](https://www.arangodb.com/docs/stable/data-modeling-naming-conventions-document-keys.html). See the `Full Cycle (ArangoDB -> PyG -> ArangoDB)` section below for an example. + ```py # 1.1: PyG to ArangoDB adb_g = adbpyg_adapter.pyg_to_arangodb("FakeData", data) @@ -93,13 +96,15 @@ def y_tensor_to_2_column_dataframe(pyg_tensor): metagraph = { "nodeTypes": { "v0": { - "x": "features", # 1) you can specify a string value for attribute renaming + "x": "features", # 1) You can specify a string value if you want to rename your PyG data when stored in ArangoDB "y": y_tensor_to_2_column_dataframe, # 2) you can specify a function for user-defined handling, as long as the function returns a Pandas DataFrame }, + # 3) You can specify set of strings if you want to preserve the same PyG attribute names for the node/edge type + "v1": {"x"} # this is equivalent to {"x": "x"} }, "edgeTypes": { ("v0", "e0", "v0"): { - # 3) you can specify a list of strings for tensor dissasembly (if you know the number of node/edge features in advance) + # 4) You can specify a list of strings for tensor dissasembly (if you know the number of node/edge features in advance) "edge_attr": [ "a", "b"] }, }, @@ -110,7 +115,7 @@ adb_g = adbpyg_adapter.pyg_to_arangodb("FakeData", data, metagraph, explicit_met # 1.3: PyG to ArangoDB with the same (optional) metagraph, but with `explicit_metagraph=True` # With `explicit_metagraph=True`, the node & edge types omitted from the metagraph will NOT be converted to ArangoDB. -# Only 'v0' and ('v0', 'e0', 'v0') will be brought over (i.e 'v1', ('v0', 'e0', 'v1'), ... are ignored) +# Only 'v0', 'v1' and ('v0', 'e0', 'v0') will be brought over (i.e 'v2', ('v0', 'e0', 'v1'), ... are ignored) adb_g = adbpyg_adapter.pyg_to_arangodb("FakeData", data, metagraph, explicit_metagraph=True) # 1.4: PyG to ArangoDB with a Custom Controller (more user-defined behavior) @@ -155,12 +160,12 @@ pyg_g = adbpyg_adapter.arangodb_collections_to_pyg("FakeData", v_cols={"v0", "v1 # 2.3: ArangoDB to PyG via Metagraph v1 (transfer attributes "as is", meaning they are already formatted to PyG data standards) metagraph_v1 = { "vertexCollections": { - # we instruct the adapter to create the "x" and "y" tensor data from the "x" and "y" ArangoDB attributes - "v0": { "x": "x", "y": "y"}, - "v1": {"x": "x"}, + # Move the "x" & "y" ArangoDB attributes to PyG as "x" & "y" Tensors + "v0": {"x", "y"}, # equivalent to {"x": "x", "y": "y"} + "v1": {"v1_x": "x"}, # store the 'x' feature matrix as 'v1_x' in PyG }, "edgeCollections": { - "e0": {"edge_attr": "edge_attr"}, + "e0": {"edge_attr"}, }, } pyg_g = adbpyg_adapter.arangodb_to_pyg("FakeData", metagraph_v1) @@ -184,9 +189,7 @@ metagraph_v2 = { }, }, "edgeCollections": { - "Ratings": { - "edge_weight": "Rating" - } + "Ratings": { "edge_weight": "Rating" } # Use the 'Rating' attribute for the PyG 'edge_weight' property }, } pyg_g = adbpyg_adapter.arangodb_to_pyg("IMDB", metagraph_v2) @@ -219,6 +222,27 @@ metagraph_v3 = { pyg_g = adbpyg_adapter.arangodb_to_pyg("FakeData", metagraph_v3) ``` +### Experimental: `preserve_adb_keys` +```py +# With `preserve_adb_keys=True`, the adapter will preserve the ArangoDB vertex & edge _key values into the (newly created) PyG graph. +# Users can then re-import their PyG graph into ArangoDB using the same _key values +pyg_g = adbpyg_adapter.arangodb_graph_to_pyg("imdb", preserve_adb_keys=True) + +# pyg_g["Movies"]["_key"] --> ["1", "2", ..., "1682"] +# pyg_g["Users"]["_key"] --> ["1", "2", ..., "943"] +# pyg_g[("Users", "Ratings", "Movies")]["_key"] --> ["2732620466", ..., "2730643624"] + +# Let's add a new PyG User Node by updating the _key property +pyg_g["Users"]["_key"].append("new-user-here-944") + +# Note: Prior to the re-import, we must manually set the number of nodes in the PyG graph, since the `arangodb_graph_to_pyg` API creates featureless node data +pyg_g["Movies"].num_nodes = len(pyg_g["Movies"]["_key"]) # 1682 +pyg_g["Users"].num_nodes = len(pyg_g["Users"]["_key"]) # 944 (prev. 943) + +# Re-import PyG graph into ArangoDB +adbpyg_adapter.pyg_to_arangodb("imdb", pyg_g, on_duplicate="update") +``` + ## Development & Testing Prerequisite: `arangorestore` diff --git a/adbpyg_adapter/adapter.py b/adbpyg_adapter/adapter.py index 35fc9bc..14c072b 100644 --- a/adbpyg_adapter/adapter.py +++ b/adbpyg_adapter/adapter.py @@ -16,9 +16,11 @@ from .controller import ADBPyG_Controller from .exceptions import ADBMetagraphError, PyGMetagraphError from .typings import ( + ADBMap, ADBMetagraph, ADBMetagraphValues, Json, + PyGMap, PyGMetagraph, PyGMetagraphValues, ) @@ -76,6 +78,7 @@ def arangodb_to_pyg( self, name: str, metagraph: ADBMetagraph, + preserve_adb_keys: bool = False, **query_options: Any, ) -> Union[Data, HeteroData]: """Create a PyG graph from ArangoDB data. DOES carry @@ -86,8 +89,44 @@ def arangodb_to_pyg( :param metagraph: An object defining vertex & edge collections to import to PyG, along with collection-level specifications to indicate which ArangoDB attributes will become PyG features/labels. + + The current supported **metagraph** values are: + 1) Set[str]: The set of PyG-ready ArangoDB attributes to store + in your PyG graph. + + 2) Dict[str, str]: The PyG property name mapped to the ArangoDB + attribute name that stores your PyG ready data. + + 3) Dict[str, Dict[str, None | Callable]]: + The PyG property name mapped to a dictionary, which maps your + ArangoDB attribute names to a callable Python Class + (i.e has a `__call__` function defined), or to None + (if the ArangoDB attribute is already a list of numerics). + NOTE: The `__call__` function must take as input a Pandas DataFrame, + and must return a PyTorch Tensor. + + 4) Dict[str, Callable[[pandas.DataFrame], torch.Tensor]]: + The PyG property name mapped to a user-defined function + for custom behaviour. NOTE: The function must take as input + a Pandas DataFrame, and must return a PyTorch Tensor. + See below for examples of **metagraph**. :type metagraph: adbpyg_adapter.typings.ADBMetagraph + :param preserve_adb_keys: NOTE: EXPERIMENTAL FEATURE. USE AT OWN RISK. + If True, preserves the ArangoDB Vertex & Edge _key values into + the PyG graph. Users can then re-import their PyG graph into + ArangoDB using the same _key values via the following method: + + .. code-block:: python + adbpyg_adapter.pyg_to_arangodb( + graph_name, pyg_graph, ..., on_duplicate="update" + ) + + NOTE: If your ArangoDB graph is Homogeneous, the ArangoDB keys will + be preserved under `_v_key` & `_e_key` in your PyG graph. If your + ArangoDB graph is Heterogeneous, the ArangoDB keys will be preserved + under `_key` in your PyG graph. + :type preserve_adb_keys: bool :param query_options: Keyword arguments to specify AQL query options when fetching documents from the ArangoDB instance. Full parameter list: https://docs.python-arango.com/en/main/specs.html#arango.aql.AQL.execute @@ -96,18 +135,28 @@ def arangodb_to_pyg( :rtype: torch_geometric.data.Data | torch_geometric.data.HeteroData :raise adbpyg_adapter.exceptions.ADBMetagraphError: If invalid metagraph. - The current supported **metagraph** values are: - 1) str: The name of the ArangoDB attribute that stores your PyG-ready data + **metagraph** examples - 2) Dict[str, Callable[[pandas.DataFrame], torch.Tensor] | None]: - A dictionary mapping ArangoDB attributes to a callable Python Class - (i.e has a `__call__` function defined), or to None - (if the ArangoDB attribute is already a list of numerics). + 1) + .. code-block:: python + { + "vertexCollections": { + "v0": {'x', 'y'}, # equivalent to {'x': 'x', 'y': 'y'} + "v1": {'x'}, + "v2": {'x'}, + }, + "edgeCollections": { + "e0": {'edge_attr'}, + "e1": {'edge_weight'}, + }, + } - 3) Callable[[pandas.DataFrame], torch.Tensor]: A user-defined function for - custom behaviour. NOTE: The function return type MUST be a tensor. + The metagraph above specifies that each document + within the "v0" ArangoDB collection has a "pre-built" feature matrix + named "x", and also has a node label named "y". + We map these keys to the "x" and "y" properties of the PyG graph. - 1) + 2) .. code-block:: python { "vertexCollections": { @@ -124,10 +173,9 @@ def arangodb_to_pyg( The metagraph above specifies that each document within the "v0" ArangoDB collection has a "pre-built" feature matrix named "v0_features", and also has a node label named "label". - We map these keys to the "x" and "y" properties of a standard - PyG graph. + We map these keys to the "x" and "y" properties of the PyG graph. - 2) + 3) .. code-block:: python from adbpyg_adapter.encoders import IdentityEncoder, CategoricalEncoder @@ -149,9 +197,7 @@ def arangodb_to_pyg( }, }, "edgeCollections": { - "Ratings": { - "edge_weight": "Rating" - } + "Ratings": { "edge_weight": "Rating" } }, } @@ -161,7 +207,7 @@ def arangodb_to_pyg( NOTE: If the mapped value is `None`, then it assumes that the ArangoDB attribute value is a list containing numerical values only. - 3) + 4) .. code-block:: python def udf_v0_x(v0_df): # process v0_df here to return v0 "x" feature matrix @@ -188,7 +234,7 @@ def udf_v1_x(v1_df): } The metagraph above provides an interface for a user-defined function to - build a PyG-ready Tensor from a Pandas DataFrame equivalent to the + build a PyG-ready Tensor from a DataFrame equivalent to the associated ArangoDB collection. """ logger.debug(f"--arangodb_to_pyg('{name}')--") @@ -200,8 +246,8 @@ def udf_v1_x(v1_df): and len(metagraph["edgeCollections"]) == 1 ) - # Maps ArangoDB vertex IDs to PyG node IDs - adb_map: Dict[str, Json] = dict() + # Maps ArangoDB Vertex _keys to PyG Node ids + adb_map: ADBMap = defaultdict(dict) data = Data() if is_homogeneous else HeteroData() @@ -209,19 +255,25 @@ def udf_v1_x(v1_df): logger.debug(f"Preparing '{v_col}' vertices") df = self.__fetch_adb_docs(v_col, meta == {}, query_options) - adb_map.update({adb_id: pyg_id for pyg_id, adb_id in enumerate(df["_id"])}) + adb_map[v_col] = { + adb_id: pyg_id for pyg_id, adb_id in enumerate(df["_key"]) + } node_data: NodeStorage = data if is_homogeneous else data[v_col] - for k, v in meta.items(): - node_data[k] = self.__build_tensor_from_dataframe(df, k, v) + self.__set_pyg_data(meta, node_data, df) + if preserve_adb_keys: + k = "_v_key" if is_homogeneous else "_key" + node_data[k] = list(adb_map[v_col].keys()) + + et_df: DataFrame v_cols: List[str] = list(metagraph["vertexCollections"].keys()) for e_col, meta in metagraph.get("edgeCollections", {}).items(): logger.debug(f"Preparing '{e_col}' edges") df = self.__fetch_adb_docs(e_col, meta == {}, query_options) - df["from_col"] = df["_from"].str.split("/").str[0] - df["to_col"] = df["_to"].str.split("/").str[0] + df[["from_col", "from_key"]] = df["_from"].str.split("/", 1, True) + df[["to_col", "to_key"]] = df["_to"].str.split("/", 1, True) for (from_col, to_col), count in ( df[["from_col", "to_col"]].value_counts().items() @@ -235,13 +287,20 @@ def udf_v1_x(v1_df): # Get the edge data corresponding to the current edge type et_df = df[(df["from_col"] == from_col) & (df["to_col"] == to_col)] - from_nodes = [adb_map[_id] for _id in et_df["_from"]] - to_nodes = [adb_map[_id] for _id in et_df["_to"]] + adb_map[edge_type] = { + adb_id: pyg_id for pyg_id, adb_id in enumerate(et_df["_key"]) + } + + from_nodes = et_df["from_key"].map(adb_map[from_col]).tolist() + to_nodes = et_df["to_key"].map(adb_map[to_col]).tolist() edge_data: EdgeStorage = data if is_homogeneous else data[edge_type] edge_data.edge_index = tensor([from_nodes, to_nodes]) - for k, v in meta.items(): - edge_data[k] = self.__build_tensor_from_dataframe(et_df, k, v) + self.__set_pyg_data(meta, edge_data, et_df) + + if preserve_adb_keys: + k = "_e_key" if is_homogeneous else "_key" + edge_data[k] = list(adb_map[edge_type].keys()) logger.info(f"Created PyG '{name}' Graph") return data @@ -251,6 +310,7 @@ def arangodb_collections_to_pyg( name: str, v_cols: Set[str], e_cols: Set[str], + preserve_adb_keys: bool = False, **query_options: Any, ) -> Union[Data, HeteroData]: """Create a PyG graph from ArangoDB collections. Due to risk of @@ -262,6 +322,21 @@ def arangodb_collections_to_pyg( :type v_cols: Set[str] :param e_cols: The set of ArangoDB edge collections to import to PyG. :type e_cols: Set[str] + :param preserve_adb_keys: NOTE: EXPERIMENTAL FEATURE. USE AT OWN RISK. + If True, preserves the ArangoDB Vertex & Edge _key values into + the PyG graph. Users can then re-import their PyG graph into + ArangoDB using the same _key values via the following method: + + .. code-block:: python + adbpyg_adapter.pyg_to_arangodb( + graph_name, pyg_graph, ..., on_duplicate="update" + ) + + NOTE: If your ArangoDB graph is Homogeneous, the ArangoDB keys will + be preserved under `_v_key` & `_e_key` in your PyG graph. If your + ArangoDB graph is Heterogeneous, the ArangoDB keys will be preserved + under `_key` in your PyG graph. + :type preserve_adb_keys: bool :param query_options: Keyword arguments to specify AQL query options when fetching documents from the ArangoDB instance. Full parameter list: https://docs.python-arango.com/en/main/specs.html#arango.aql.AQL.execute @@ -275,16 +350,31 @@ def arangodb_collections_to_pyg( "edgeCollections": {col: dict() for col in e_cols}, } - return self.arangodb_to_pyg(name, metagraph, **query_options) + return self.arangodb_to_pyg(name, metagraph, preserve_adb_keys, **query_options) def arangodb_graph_to_pyg( - self, name: str, **query_options: Any + self, name: str, preserve_adb_keys: bool = False, **query_options: Any ) -> Union[Data, HeteroData]: """Create a PyG graph from an ArangoDB graph. Due to risk of ambiguity, this method DOES NOT transfer ArangoDB attributes to PyG. :param name: The ArangoDB graph name. :type name: str + :param preserve_adb_keys: NOTE: EXPERIMENTAL FEATURE. USE AT OWN RISK. + If True, preserves the ArangoDB Vertex & Edge _key values into + the PyG graph. Users can then re-import their PyG graph into + ArangoDB using the same _key values via the following method: + + .. code-block:: python + adbpyg_adapter.pyg_to_arangodb( + graph_name, pyg_graph, ..., on_duplicate="update" + ) + + NOTE: If your ArangoDB graph is Homogeneous, the ArangoDB keys will + be preserved under `_v_key` & `_e_key` in your PyG graph. If your + ArangoDB graph is Heterogeneous, the ArangoDB keys will be preserved + under `_key` in your PyG graph. + :type preserve_adb_keys: bool :param query_options: Keyword arguments to specify AQL query options when fetching documents from the ArangoDB instance. Full parameter list: https://docs.python-arango.com/en/main/specs.html#arango.aql.AQL.execute @@ -297,7 +387,9 @@ def arangodb_graph_to_pyg( v_cols = graph.vertex_collections() e_cols = {col["edge_collection"] for col in graph.edge_definitions()} - return self.arangodb_collections_to_pyg(name, v_cols, e_cols, **query_options) + return self.arangodb_collections_to_pyg( + name, v_cols, e_cols, preserve_adb_keys, **query_options + ) def pyg_to_arangodb( self, @@ -317,11 +409,31 @@ def pyg_to_arangodb( :param metagraph: An optional object mapping the PyG keys of the node & edge data to strings, list of strings, or user-defined functions. NOTE: Unlike the metagraph for ArangoDB to PyG, this - one is optional. See below for an example of **metagraph**. + one is optional. + + The current supported **metagraph** values are: + 1) Set[str]: The set of PyG data properties to store + in your ArangoDB database. + + 2) Dict[str, str]: The PyG property name mapped to the ArangoDB + attribute name that will be used to store your PyG data in ArangoDB. + + 3) List[str]: A list of ArangoDB attribute names that will break down + your tensor data, resulting in one ArangoDB attribute per feature. + Must know the number of node/edge features in advance to take + advantage of this metagraph value type. + + 4) Dict[str, Callable[[pandas.DataFrame], torch.Tensor]]: + The PyG property name mapped to a user-defined function + for custom behaviour. NOTE: The function must take as input + a PyTorch Tensor, and must return a Pandas DataFrame. + + See below for an example of **metagraph**. :type metagraph: adbpyg_adapter.typings.PyGMetagraph :param explicit_metagraph: Whether to take the metagraph at face value or not. If False, node & edge types OMITTED from the metagraph will be - brought over into ArangoDB. Defaults to True. + brought over into ArangoDB. Also applies to node & edge attributes. + Defaults to True. :type explicit_metagraph: bool :param overwrite_graph: Overwrites the graph if it already exists. Does not drop associated collections. Defaults to False. @@ -334,55 +446,64 @@ def pyg_to_arangodb( :rtype: arango.graph.Graph :raise adbpyg_adapter.exceptions.PyGMetagraphError: If invalid metagraph. - The current supported **metagraph** values are: - 1) str: The name of the ArangoDB attribute that will store your PyG data - - 2) List[str]: A list of ArangoDB attribute names that will break down - your tensor data to have one ArangoDB attribute per tensor value. + **metagraph** example - 3) Callable[[torch.Tensor], pandas.DataFrame]: A user-defined function for - custom behaviour. NOTE: The function return type MUST be a DataFrame. - - 1) Here is an example entry for parameter **metagraph**: .. code-block:: python + def y_tensor_to_2_column_dataframe(pyg_tensor): + # A user-defined function to create two ArangoDB attributes + # out of the 'y' label tensor + label_map = {0: "Kiwi", 1: "Blueberry", 2: "Avocado"} - def v2_x_to_pandas_dataframe(t: Tensor): - # The parameter **t** is the tensor representing - # the feature matrix 'x' of the 'v2' node type. + df = pandas.DataFrame(columns=["label_num", "label_str"]) + df["label_num"] = pyg_tensor.tolist() + df["label_str"] = df["label_num"].map(label_map) - df = pandas.DataFrame(columns=["v2_features"]) - df["v2_features"] = t.tolist() - # do more things with df["v2_features"] here ... return df - { + metagraph = { "nodeTypes": { - "v0": {'x': 'v0_features', 'y': 'label'}, # supports str as value - "v1": {'x': ['x_0', 'x_1', ..., 'x_77']}, # supports list as value - "v2": {'x': v2_x_to_pandas_dataframe}, # supports function as value + "v0": { + "x": "features", # 1) + "y": y_tensor_to_2_column_dataframe, # 2) + }, + "v1": {"x"} # 3) }, "edgeTypes": { - ('v0', 'e0', 'v0'): {'edge_weight': 'v0_e0_v0_weight'}: - ('v0', 'e0', 'v1'): {'edge_weight': 'v0_e0_v1_weight'}, - # etc... + ("v0", "e0", "v0"): {"edge_attr": [ "a", "b"]}, # 4) }, } - Using the metagraph above will store the v0 "x" feature matrix as - "v0_features" in ArangoDB, and store the v0 "y" label tensor as - "label". Furthemore, the v1 "x" feature matrix is broken down in order to - associate one ArangoDB attribute per feature. Lastly, the v2 feature matrix - is converted into a DataFrame via a user-defined function. + The metagraph above accomplishes the following: + 1) Renames the PyG 'v0' 'x' feature matrix to 'features' + when stored in ArangoDB. + 2) Builds a 2-column Pandas DataFrame from the 'v0' 'y' labels + through a user-defined function for custom behaviour handling. + 3) Transfers the PyG 'v1' 'x' feature matrix under the same name. + 4) Dissasembles the 2-feature Tensor into two ArangoDB attributes, + where each attribute holds one feature value. """ logger.debug(f"--pyg_to_arangodb('{name}')--") validate_pyg_metagraph(metagraph) is_homogeneous = type(pyg_g) is Data + if is_homogeneous and pyg_g.num_nodes == pyg_g.num_edges and not metagraph: + msg = f""" + Ambiguity Error: can't convert to ArangoDB, + as the PyG graph has the same number + of nodes & edges {pyg_g.num_nodes}. + Please supply a PyG-ArangoDB metagraph to + categorize your node & edge attributes. + """ + raise ValueError(msg) + + # Maps PyG Node ids to ArangoDB Vertex _keys + pyg_map: PyGMap = defaultdict(dict) node_types: List[str] edge_types: List[EdgeType] - if metagraph and explicit_metagraph: + explicit_metagraph = metagraph != {} and explicit_metagraph + if explicit_metagraph: node_types = metagraph.get("nodeTypes", {}).keys() # type: ignore edge_types = metagraph.get("edgeTypes", {}).keys() # type: ignore @@ -415,44 +536,52 @@ def v2_x_to_pandas_dataframe(t: Tensor): n_meta = metagraph.get("nodeTypes", {}) for n_type in node_types: node_data = pyg_g if is_homogeneous else pyg_g[n_type] - df = DataFrame([{"_key": str(i)} for i in range(node_data.num_nodes)]) meta = n_meta.get(n_type, {}) - for k, t in node_data.items(): - if type(t) is Tensor and len(t) == node_data.num_nodes: - v = meta.get(k, k) - df = df.join(self.__build_dataframe_from_tensor(t, k, v)) + empty_df = DataFrame(index=range(node_data.num_nodes)) + df = self.__set_adb_data(empty_df, meta, node_data, explicit_metagraph) + + if "_id" in df: + pyg_map[n_type] = df["_id"].to_dict() + else: + if "_key" not in df: + df["_key"] = df.index.astype(str) + + pyg_map[n_type] = (n_type + "/" + df["_key"]).to_dict() if type(self.__cntrl) is not ADBPyG_Controller: f = lambda n: self.__cntrl._prepare_pyg_node(n, n_type) df = df.apply(f, axis=1) - self.__insert_adb_docs(n_type, df.to_dict("records"), import_options) + self.__insert_adb_docs(n_type, df, import_options) e_meta = metagraph.get("edgeTypes", {}) for e_type in edge_types: edge_data = pyg_g if is_homogeneous else pyg_g[e_type] - from_col, _, to_col = e_type + src_n_type, _, dst_n_type = e_type columns = ["_from", "_to"] + meta = e_meta.get(e_type, {}) df = DataFrame(zip(*(edge_data.edge_index.tolist())), columns=columns) - df["_from"] = from_col + "/" + df["_from"].astype(str) - df["_to"] = to_col + "/" + df["_to"].astype(str) + df = self.__set_adb_data(df, meta, edge_data, explicit_metagraph) - meta = e_meta.get(e_type, {}) - for k, t in edge_data.items(): - if k == "edge_index": - continue + df["_from"] = ( + df["_from"].map(pyg_map[src_n_type]) + if pyg_map[src_n_type] + else src_n_type + "/" + df["_from"].astype(str) + ) - if type(t) is Tensor and len(t) == edge_data.num_edges: - v = meta.get(k, k) - df = df.join(self.__build_dataframe_from_tensor(t, k, v)) + df["_to"] = ( + df["_to"].map(pyg_map[dst_n_type]) + if pyg_map[dst_n_type] + else dst_n_type + "/" + df["_to"].astype(str) + ) if type(self.__cntrl) is not ADBPyG_Controller: f = lambda e: self.__cntrl._prepare_pyg_edge(e, e_type) df = df.apply(f, axis=1) - self.__insert_adb_docs(e_type, df.to_dict("records"), import_options) + self.__insert_adb_docs(e_type, df, import_options) logger.info(f"Created ArangoDB '{name}' Graph") return adb_graph @@ -527,7 +656,7 @@ def __fetch_adb_docs( self, col: str, empty_meta: bool, query_options: Any ) -> DataFrame: """Fetches ArangoDB documents within a collection. Returns the - documents in a Pandas DataFrame. + documents in a DataFrame. :param col: The ArangoDB collection. :type col: str @@ -537,20 +666,23 @@ def __fetch_adb_docs( :param query_options: Keyword arguments to specify AQL query options when fetching documents from the ArangoDB instance. :type query_options: Any - :return: A Pandas DataFrame representing the ArangoDB documents. + :return: A DataFrame representing the ArangoDB documents. :rtype: pandas.DataFrame """ # Only return the entire document if **empty_meta** is False - data = "{_id: doc._id, _from: doc._from, _to: doc._to}" if empty_meta else "doc" aql = f""" FOR doc IN @@col - RETURN {data} + RETURN { + "{ _key: doc._key, _from: doc._from, _to: doc._to }" + if empty_meta + else "doc" + } """ with progress( - f"Export: {col}", - text_style="#97C423", - spinner_style="#7D3B04", + f"(ADB → PyG): {col}", + text_style="#8929C2", + spinner_style="#40A6F5", ) as p: p.add_task("__fetch_adb_docs") @@ -561,14 +693,14 @@ def __fetch_adb_docs( ) def __insert_adb_docs( - self, doc_type: Union[str, EdgeType], docs: List[Json], kwargs: Any + self, doc_type: Union[str, EdgeType], df: DataFrame, kwargs: Any ) -> None: """Insert ArangoDB documents into their ArangoDB collection. :param doc_type: The node or edge type of the soon-to-be ArangoDB documents :type doc_type: str | tuple[str, str, str] - :param docs: To-be-inserted ArangoDB documents - :type docs: List[Json] + :param df: To-be-inserted ArangoDB documents, formatted as a DataFrame + :type df: pandas.DataFrame :param kwargs: Keyword arguments to specify additional parameters for ArangoDB document insertion. Full parameter list: https://docs.python-arango.com/en/main/specs.html#arango.collection.Collection.import_bulk @@ -576,25 +708,112 @@ def __insert_adb_docs( col = doc_type if type(doc_type) is str else doc_type[1] with progress( - f"Import: {doc_type} ({len(docs)})", - text_style="#825FE1", - spinner_style="#3AA7F4", + f"(PyG → ADB): {doc_type} ({len(df)})", + text_style="#97C423", + spinner_style="#994602", ) as p: p.add_task("__insert_adb_docs") + docs = df.to_dict("records") result = self.__db.collection(col).import_bulk(docs, **kwargs) logger.debug(result) + def __set_pyg_data( + self, + meta: Union[Set[str], Dict[str, ADBMetagraphValues]], + pyg_data: Union[Data, NodeStorage, EdgeStorage], + df: DataFrame, + ) -> None: + """A helper method to build the PyG NodeStorage or EdgeStorage object + for the PyG graph. Is responsible for preparing the input **meta** such + that it becomes a dictionary, and building PyG-ready tensors from the + ArangoDB DataFrame **df**. + + :param meta: The metagraph associated to the current ArangoDB vertex or + edge collection. e.g metagraph['vertexCollections']['Users'] + :type meta: Set[str] | Dict[str, adbpyg_adapter.typings.ADBMetagraphValues] + :param pyg_data: The NodeStorage or EdgeStorage of the current + PyG node or edge type. + :type pyg_data: torch_geometric.data.storage.(NodeStorage | EdgeStorage) + :param df: The DataFrame representing the ArangoDB collection data + :type df: pandas.DataFrame + """ + valid_meta: Dict[str, ADBMetagraphValues] + valid_meta = meta if type(meta) is dict else {m: m for m in meta} + + for k, v in valid_meta.items(): + pyg_data[k] = self.__build_tensor_from_dataframe(df, k, v) + + def __set_adb_data( + self, + df: DataFrame, + meta: Union[Set[str], Dict[Any, PyGMetagraphValues]], + pyg_data: Union[Data, NodeStorage, EdgeStorage], + explicit_metagraph: bool, + ) -> DataFrame: + """A helper method to build the ArangoDB Dataframe for the given + collection. Is responsible for creating "sub-DataFrames" from PyG tensors + or lists, and appending them to the main dataframe **df**. If the data + does not adhere to the supported types, or is not of specific length, + then it is silently skipped. + + :param df: The main ArangoDB DataFrame containing (at minimum) + the vertex/edge _id or _key attribute. + :type df: pandas.DataFrame + :param meta: The metagraph associated to the + current PyG node or edge type. e.g metagraph['nodeTypes']['v0'] + :type meta: Set[str] | Dict[Any, adbpyg_adapter.typings.PyGMetagraphValues] + :param pyg_data: The NodeStorage or EdgeStorage of the current + PyG node or edge type. + :type pyg_data: torch_geometric.data.storage.(NodeStorage | EdgeStorage) + :param explicit_metagraph: The value of **explicit_metagraph** + in **pyg_to_arangodb**. + :type explicit_metagraph: bool + :return: The completed DataFrame for the (soon-to-be) ArangoDB collection. + :rtype: pandas.DataFrame + :raise ValueError: If an unsupported PyG data value is found. + """ + logger.debug( + f"__set_adb_data(df, {meta}, {type(pyg_data)}, {explicit_metagraph}" + ) + + valid_meta: Dict[Any, PyGMetagraphValues] + valid_meta = meta if type(meta) is dict else {m: m for m in meta} + + if explicit_metagraph: + pyg_keys = set(valid_meta.keys()) + else: + # can't do keys() (not compatible with Homogeneous graphs) + pyg_keys = set(k for k, _ in pyg_data.items()) + + for k in pyg_keys: + if k == "edge_index": + continue + + data = pyg_data[k] + meta_val = valid_meta.get(k, str(k)) + + if type(meta_val) is str and type(data) is list and len(data) == len(df): + if meta_val in ["_v_key", "_e_key"]: # Homogeneous situation + meta_val = "_key" + + df = df.join(DataFrame(data, columns=[meta_val])) + + if type(data) is Tensor and len(data) == len(df): + df = df.join(self.__build_dataframe_from_tensor(data, k, meta_val)) + + return df + def __build_tensor_from_dataframe( self, adb_df: DataFrame, meta_key: str, meta_val: ADBMetagraphValues, ) -> Tensor: - """Constructs a PyG-ready Tensor from a Pandas Dataframe, based on + """Constructs a PyG-ready Tensor from a DataFrame, based on the nature of the user-defined metagraph. - :param adb_df: The Pandas Dataframe representing ArangoDB data. + :param adb_df: The DataFrame representing ArangoDB data. :type adb_df: pandas.DataFrame :param meta_key: The current ArangoDB-PyG metagraph key :type meta_key: str @@ -606,7 +825,9 @@ def __build_tensor_from_dataframe( :rtype: torch.Tensor :raise adbpyg_adapter.exceptions.ADBMetagraphError: If invalid **meta_val**. """ - logger.debug(f"__build_tensor_from_dataframe(df, '{meta_key}', {meta_val})") + logger.debug( + f"__build_tensor_from_dataframe(df, '{meta_key}', {type(meta_val)})" + ) if type(meta_val) is str: return tensor(adb_df[meta_val].to_list()) @@ -639,30 +860,44 @@ def __build_tensor_from_dataframe( def __build_dataframe_from_tensor( self, pyg_tensor: Tensor, - meta_key: str, + meta_key: Any, meta_val: PyGMetagraphValues, ) -> DataFrame: - """Builds a Pandas DataFrame from PyG Tensor, based on + """Builds a DataFrame from PyG Tensor, based on the nature of the user-defined metagraph. :param pyg_tensor: The Tensor representing PyG data. :type pyg_tensor: torch.Tensor :param meta_key: The current PyG-ArangoDB metagraph key - :type meta_key + :type meta_key: Any :param meta_val: The value mapped to the PyG-ArangoDB metagraph key to - help convert **tensor** into a Pandas Dataframe. + help convert **tensor** into a DataFrame. e.g the value of `metagraph['nodeTypes']['users']['x']`. :type meta_val: adbpyg_adapter.typings.PyGMetagraphValues - :return: A Pandas DataFrame equivalent to the Tensor + :return: A DataFrame equivalent to the Tensor :rtype: pandas.DataFrame :raise adbpyg_adapter.exceptions.PyGMetagraphError: If invalid **meta_val**. """ - logger.debug(f"__build_dataframe_from_tensor(df, '{meta_key}', {meta_val})") + logger.debug( + f"__build_dataframe_from_tensor(df, '{meta_key}', {type(meta_val)})" + ) - if type(meta_val) in [str, list]: - columns = [meta_val] if type(meta_val) is str else meta_val + if type(meta_val) is str: + df = DataFrame(columns=[meta_val]) + df[meta_val] = pyg_tensor.tolist() + return df + + if type(meta_val) is list: + num_features = pyg_tensor.size()[1] + if len(meta_val) != num_features: # pragma: no cover + msg = f""" + Invalid list length for **meta_val** ('{meta_key}'): + List length must match the number of + features found in the tensor ({num_features}). + """ + raise PyGMetagraphError(msg) - df = DataFrame(columns=columns) + df = DataFrame(columns=meta_val) df[meta_val] = pyg_tensor.tolist() return df diff --git a/adbpyg_adapter/typings.py b/adbpyg_adapter/typings.py index fca2c18..5bb9305 100644 --- a/adbpyg_adapter/typings.py +++ b/adbpyg_adapter/typings.py @@ -4,9 +4,11 @@ "ADBMetagraphValues", "PyGMetagraph", "PyGMetagraphValues", + "ADBMap", + "PyGMap", ] -from typing import Any, Callable, Dict, List, Tuple, Union +from typing import Any, Callable, DefaultDict, Dict, List, Tuple, Union from pandas import DataFrame from torch import Tensor @@ -23,3 +25,6 @@ PyGDataTypes = Union[str, Tuple[str, str, str]] PyGMetagraphValues = Union[str, List[str], TensorToDataFrame] PyGMetagraph = Dict[str, Dict[PyGDataTypes, Dict[Any, PyGMetagraphValues]]] + +ADBMap = DefaultDict[PyGDataTypes, Dict[str, int]] +PyGMap = DefaultDict[PyGDataTypes, Dict[int, str]] diff --git a/adbpyg_adapter/utils.py b/adbpyg_adapter/utils.py index ac9f798..fc8932a 100644 --- a/adbpyg_adapter/utils.py +++ b/adbpyg_adapter/utils.py @@ -1,6 +1,6 @@ import logging import os -from typing import Any, Dict +from typing import Any, Dict, Set, Union from rich.progress import Progress, SpinnerColumn, TextColumn, TimeElapsedColumn @@ -32,7 +32,7 @@ def progress( def validate_adb_metagraph(metagraph: Dict[Any, Dict[Any, Any]]) -> None: - meta: Dict[Any, Any] + meta: Union[Set[Any], Dict[Any, Any]] if "edgeCollections" in metagraph and "vertexCollections" not in metagraph: msg = """ @@ -61,48 +61,58 @@ def validate_adb_metagraph(metagraph: Dict[Any, Dict[Any, Any]]) -> None: """ raise ADBMetagraphError(msg) - if type(meta) != dict: + if type(meta) == set: + for m in meta: + if type(m) != str: + msg = f""" + Invalid set value type for {meta}: + {m} must be str + """ + raise ADBMetagraphError(msg) + + elif type(meta) == dict: + for meta_key, meta_val in meta.items(): + if type(meta_key) != str: + msg = f""" + Invalid key type in {meta}: + {meta_key} must be str + """ + raise ADBMetagraphError(msg) + + if type(meta_val) not in [str, dict] and not callable(meta_val): + msg = f""" + Invalid mapped value type in {meta}: + {meta_val} must be + str | Dict[str, None | Callable] | Callable + """ + + raise ADBMetagraphError(msg) + + if type(meta_val) == dict: + for k, v in meta_val.items(): + if type(k) != str: + msg = f""" + Invalid ArangoDB attribute key type: + {v} must be str + """ + raise ADBMetagraphError(msg) + + if v is not None and not callable(v): + msg = f""" + Invalid PyG Encoder type: + {v} must be None | Callable + """ + raise ADBMetagraphError(msg) + else: msg = f""" Invalid mapped value type for {col}: - {meta} must be dict + {meta} must be dict | set """ raise ADBMetagraphError(msg) - for meta_key, meta_val in meta.items(): - if type(meta_key) != str: - msg = f""" - Invalid key type in {meta}: - {meta_key} must be str - """ - raise ADBMetagraphError(msg) - - if type(meta_val) not in [str, dict] and not callable(meta_val): - msg = f""" - Invalid mapped value type in {meta}: - {meta_val} must be str | Dict[str, None | Callable] | Callable - """ - - raise ADBMetagraphError(msg) - - if type(meta_val) == dict: - for k, v in meta_val.items(): - if type(k) != str: - msg = f""" - Invalid ArangoDB attribute key type: - {v} must be str - """ - raise ADBMetagraphError(msg) - - if v is not None and not callable(v): - msg = f""" - Invalid PyG Encoder type: - {v} must be None | Callable - """ - raise ADBMetagraphError(msg) - def validate_pyg_metagraph(metagraph: Dict[Any, Dict[Any, Any]]) -> None: - meta: Dict[Any, Any] + meta: Union[Set[Any], Dict[Any, Any]] for node_type in metagraph.get("nodeTypes", {}).keys(): if type(node_type) != str: @@ -121,23 +131,36 @@ def validate_pyg_metagraph(metagraph: Dict[Any, Dict[Any, Any]]) -> None: for parent_key in ["nodeTypes", "edgeTypes"]: for k, meta in metagraph.get(parent_key, {}).items(): - if type(meta) != dict: - msg = f"Invalid mapped value type for {k}: {meta} must be dict" - raise PyGMetagraphError(msg) - - for meta_val in meta.values(): - if type(meta_val) not in [str, list] and not callable(meta_val): - msg = f""" - Invalid mapped value type in {meta}: - {meta_val} must be str | List[str] | Callable - """ - raise PyGMetagraphError(msg) - if type(meta_val) == list: - for v in meta_val: - if type(v) != str: - msg = f""" - Invalid ArangoDB attribute key type: - {v} must be str - """ - raise PyGMetagraphError(msg) + if type(meta) == set: + for m in meta: + if type(m) != str: + msg = f""" + Invalid set value type for {meta}: + {m} must be str + """ + raise PyGMetagraphError(msg) + + elif type(meta) == dict: + for meta_val in meta.values(): + if type(meta_val) not in [str, list] and not callable(meta_val): + msg = f""" + Invalid mapped value type in {meta}: + {meta_val} must be str | List[str] | Callable + """ + raise PyGMetagraphError(msg) + + if type(meta_val) == list: + for v in meta_val: + if type(v) != str: + msg = f""" + Invalid ArangoDB attribute key type: + {v} must be str + """ + raise PyGMetagraphError(msg) + else: + msg = f""" + Invalid mapped value type for {k}: + {meta} must be dict | set + """ + raise PyGMetagraphError(msg) diff --git a/examples/ArangoDB_PyG_Adapter.ipynb b/examples/ArangoDB_PyG_Adapter.ipynb index add88b1..1e44561 100644 --- a/examples/ArangoDB_PyG_Adapter.ipynb +++ b/examples/ArangoDB_PyG_Adapter.ipynb @@ -15,7 +15,7 @@ "id": "U1d45V4OeG89" }, "source": [ - "" + "" ] }, { @@ -34,7 +34,7 @@ "id": "bpvZS-1aeG89" }, "source": [ - "Version: 1.0.0\n", + "Version: 1.1.0\n", "\n", "Objective: Export Graphs from [ArangoDB](https://www.arangodb.com/), the multi-model database for graph & beyond, to [PyTorch Geometric](https://www.pyg.org/) (PyG), a python package for graph neural networks, and vice-versa." ] @@ -58,9 +58,9 @@ "source": [ "%%capture\n", "!pip install torch\n", - "!pip install adbpyg-adapter==1.0.0\n", + "!pip install adbpyg-adapter==1.1.0\n", "!pip install adb-cloud-connector\n", - "!git clone -b 1.0.0 --single-branch https://github.com/arangoml/pyg-adapter.git\n", + "!git clone -b 1.1.0 --single-branch https://github.com/arangoml/pyg-adapter.git\n", "\n", "## For drawing purposes \n", "!pip install matplotlib\n", @@ -144,7 +144,7 @@ "base_uri": "https://localhost:8080/" }, "id": "vf0350qvj8up", - "outputId": "fab6a9e6-8d4a-402d-e60f-0a28f98a4e34" + "outputId": "184d6202-02ab-4c5a-cf2d-971671d89f3c" }, "outputs": [], "source": [ @@ -172,7 +172,7 @@ "base_uri": "https://localhost:8080/" }, "id": "oOS3AVAnkQEV", - "outputId": "03fc6ca1-cbae-47e4-9998-b6a9d9eb823b" + "outputId": "72763efc-2d35-430b-c4bd-de5b8676ce4f" }, "outputs": [], "source": [ @@ -214,7 +214,7 @@ "base_uri": "https://localhost:8080/" }, "id": "oKicsyNlvJR7", - "outputId": "07be0616-5f5e-4698-b332-9454bfad5d1a" + "outputId": "c128cd12-42fc-44e5-afa2-8b070039aae8" }, "outputs": [], "source": [ @@ -257,7 +257,7 @@ "base_uri": "https://localhost:8080/" }, "id": "2ekGwnJDeG8-", - "outputId": "ae66c4d1-bc37-42d3-dfaf-9f9205a24f53" + "outputId": "31633395-7849-48dc-c1d9-1cff955bcf5c" }, "outputs": [], "source": [ @@ -304,7 +304,7 @@ "base_uri": "https://localhost:8080/" }, "id": "7bgGJ3QkeG8_", - "outputId": "48372184-1727-4920-cc46-18f7a6bafa20" + "outputId": "d3f71ef0-9760-4c4a-9e3b-433523700fad" }, "outputs": [], "source": [ @@ -315,10 +315,17 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "PWHZngKeVxFn", + "outputId": "de7620e6-1e54-423b-9576-f43470c8f89a" + }, "outputs": [], "source": [ "# Create the IMDB graph\n", + "db.delete_graph(\"imdb\", ignore_missing=True)\n", "db.create_graph(\n", " \"imdb\",\n", " edge_definitions=[\n", @@ -357,7 +364,7 @@ "base_uri": "https://localhost:8080/" }, "id": "oG496kBeeG9A", - "outputId": "8ef9803b-58d9-4d64-a708-ce99fe657f68" + "outputId": "73382206-123f-4047-9247-75738d62d26c" }, "outputs": [], "source": [ @@ -406,14 +413,14 @@ "base_uri": "https://localhost:8080/", "height": 611, "referenced_widgets": [ - "0a7784d145354a86a7c5b2923f14d562", - "381fea41c85a4fc1abc678508e999a74", - "9fc74511681e4039854e37b19fcb0f02", - "2586b41f1e0b41089679f768e9802537" + "aa48d029238341fda8bcfda98ffd3683", + "78af5b54d2c84c7cbc7511bdf5863a81", + "ec417f11b0444c2087413b9a55d7d038", + "cb289edd484f4d37bf6db9dce95955ac" ] }, "id": "eRVbiBy4ZdE4", - "outputId": "d13356d9-b555-40a0-bfb4-80a22d9cfe4c" + "outputId": "eeaf853a-6249-44c0-8ca2-ec5f10443ad3" }, "outputs": [], "source": [ @@ -476,20 +483,16 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 1000, + "height": 611, "referenced_widgets": [ - "56d885e442364caf9173416736795971", - "7bab067965284d4daa3c42843879473e", - "11051099effe4a3d8ae1e1812082db7d", - "186e866d15fc4002bd8a5dcf94784931", - "5536468f30474f35bb6cd2eb609f63c0", - "19daead8ce8c45cc941b1f7c6a10eb5e", - "69acafeac8ba4a56abf0ecf2f4e8ddb4", - "9affc6f372dc4a93b9210a2f93098c88" + "f4669da9970a44589d8f34a0e1be7c15", + "079deaf48c2b4267b76253a5afdf0a3c", + "fc225fa2ba384a7db96c932e82dc2c37", + "4075443ec65b49f5a68e8be8c9cc9e1f" ] }, "id": "dADiexlAioGH", - "outputId": "1bed352a-9342-4ae3-da42-a56295c38cad" + "outputId": "88695203-3325-4c2e-f858-f24977799192" }, "outputs": [], "source": [ @@ -548,30 +551,30 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 1000, + "height": 404, "referenced_widgets": [ - "b4653922d6ae4cdf8e48c10aecb1e53e", - "7775e9539dde456db16d1ec26e3c26d3", - "4a79b7a5c6f342d19d2831bf873d2df1", - "870ab8d73fea4e3a88979e9273311508", - "3d3e49be95f646af8904e52efea8f5e2", - "f47a352455a34c948da5580c39d722d6", - "a5929f1fa9124e6699ee57bff9ca6b0c", - "061e570d948a4303b98417ebdcdaeab0", - "44d5312720334b36bb1fa524e7c14c06", - "5cc759115d9b4e90badc0d7dfc2bf5de", - "dd161e97b4704be482f31466bd55d106", - "657439581684448aa2d40dab0c1de0d6", - "6b9a39eb959d4b1bb860a0c2524905d2", - "29cd6a631baa455791d1527c2b2c443a", - "5cece8f97f0e48949bf0c63ffe0d57e8", - "a69ab1bb7a384eeba4344a1f6768b158", - "117ff47209774a3a910a0000d5d9ad42", - "6b1c4a34a61d46fe8446e4d319919a8c" + "d413bef3d7ce4888a16fa40e9004e1d8", + "23dcbc3c91b64341b6235b53e443a2f6", + "36b4969466d844a287cf8fe9a6e818f6", + "37b428230b98466d9860db2871df7db0", + "65387ad7c6bb4ea0bba17d1db6cfb639", + "b7bb76a1decd4c28a2061e3c28389d74", + "42c6c27008fc45938abd5b1eb50033c3", + "6e3a335a09a44d0e8069dca6b3a6fcd6", + "fd323544a93b49598d7ef56664919851", + "4764cef3b0244f28920184293728b499", + "d502014b8b134699ad4e49001e9b798f", + "4f8a2406746d40a2a053c221fbce853c", + "7e657dd75c7a44a4ae63f312b4c94bc0", + "efa80a6ac8154ff3868799c3e34c8871", + "41b1733c5cd34b07a958853202e5b505", + "988f7e7f6eaf495a860e2780d1ce5bbd", + "3235bb3793ee4862991144f6e7af4443", + "8b39d2d7d9ec404a897b8f65b0576dd0" ] }, "id": "jbJsvMMaoJoT", - "outputId": "a3f7bee9-0236-436d-ece2-f9fe78b3c29a" + "outputId": "30ed761f-69ff-4e07-b99e-63d6e03e9c8d" }, "outputs": [], "source": [ @@ -629,26 +632,22 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 1000, + "height": 972, "referenced_widgets": [ - "7b2d5599f50146298ef757494b0ae953", - "d78b50c2860d495c882d7d82b54eb155", - "8179620a5ddc49c08a04980e5b6a1f39", - "46fe63a0fede41e2ac67e3b737d85194", - "e338de0f00ca4dd2a079d127b7b3dd17", - "c9ecba928e6345bd96deea6484a70f0f", - "a96bc51257b34fb18e6bd50e4af59396", - "07119a4a999e4cfb82ad8dc55aaec985", - "beac8c4d8d0543caad15c929950ebe02", - "f175f0dd8f234c4097fb38e110230d59", - "1e495353e0d64e5bb60532c6b5d4d4d7", - "e5016cd52ddd4a1aafc3bab063de0ab1", - "d84aa1e7f46b44798b42a7f12fcf2c72", - "5e4fc5129c9c4b4bbe2bfab12a8511a0" + "d812c78fcae64de0abe8fa36507dd81f", + "66c211c6ed25446e82ffd1a2e5401c38", + "4f4e514ec3c847598861db242e5dc8ad", + "9c684b67144b499ca31b2165f70a9159", + "2c37125bace641218e05160454b69e58", + "a764fe3269e6456ea021b0b364b89693", + "4e7d280a5bf247efaab57ca1c76a1b54", + "a1c6f40d4e044d79a625ee1dbdc9d628", + "7e86374039094b3d8402e4d04358808a", + "cce68379958f44fc997685dae6f257f2" ] }, "id": "_y6x5ajX0Wz9", - "outputId": "bb4d86bc-d6f5-4827-d7dd-14e313505c36" + "outputId": "5a5b4383-7260-4dd2-90d9-4c54040a89e8" }, "outputs": [], "source": [ @@ -677,13 +676,15 @@ "metagraph = {\n", " \"nodeTypes\": {\n", " \"v0\": {\n", - " \"x\": \"features\", # 1) you can specify a string value for attribute renaming\n", + " \"x\": \"features\", # 1) You can specify a string value if you want to rename your PyG data when stored in ArangoDB\n", " \"y\": y_tensor_to_2_column_dataframe, # 2) you can specify a function for user-defined handling, as long as the function returns a Pandas DataFrame\n", " },\n", + " # 3) You can specify set of strings if you want to preserve the same PyG attribute names for the node/edge type\n", + " \"v1\": {\"x\"} # this is equivalent to {\"x\": \"x\"}\n", " },\n", " \"edgeTypes\": {\n", " (\"v0\", \"e0\", \"v0\"): {\n", - " # 3) you can specify a list of strings for tensor dissasembly (if you know the number of node/edge features in advance)\n", + " # 4) You can specify a list of strings for tensor dissasembly (if you know the number of node/edge features in advance)\n", " \"edge_attr\": [ \"a\", \"b\"] \n", " },\n", " },\n", @@ -744,22 +745,30 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 340, + "height": 404, "referenced_widgets": [ - "2099dc7599e14400801c5edfc32a2c2b", - "08230e82800b45aca8b8b3b57499d10a", - "1e00f8a4b5474864aa5e963aa75f4a2a", - "f8ada4dadb5f4fd3bc509b81c55f16d4", - "beea89e8e2db42fe9a4ca46cc8300c32", - "c25f103b77d54d41adc32bd128b92f81", - "e36169da47944d78b7684b022ca1b44b", - "1799870cdf1740e9b225a59737cbedd5", - "af3ea8d239604a1da31970c39c4a75f8", - "7002d5847ed34f6baaf2c6987355371c" + "534b0b256a2647c58974975c495294ed", + "330ea8937e98456bb1f8fc68c35c04dc", + "a184c502469d4832ae0524cf7044eabd", + "cc2d49d1e08842048d0cc85edaff2d63", + "33f70bf2aa42468b9172d323b78d1447", + "4912141050154eb4ae09633ff86cdc76", + "67588bfeb83d44be828d6d18244c2dfe", + "00213fa861af42a6983fb7f88a31b5a9", + "ddd70657b2c34989801a720436f473d5", + "481410c7bc56407e9da585fbc8872528", + "454c2026e43a4aa98162901c6076e5e9", + "b1db35bb2eb8498ba67c7b590bb286c6", + "36c607d511b44ba2b0f7cd98d526eb25", + "c807a5074b7a4877a1d80d9c38eda101", + "684994db781649ebbe54d55f75d5e899", + "3c8dca08241345eeb43a7f71f8ad1ba1", + "cc717019f3cc438b9fe454d4a4ec1e86", + "082dec29c78947fd8806848875f6c2fa" ] }, "id": "sIivCVx98P5l", - "outputId": "ed9fdf43-9f9b-4b20-d773-1857dd51d2e0" + "outputId": "3ef80850-3ffa-42cc-e649-ba38c0391443" }, "outputs": [], "source": [ @@ -831,20 +840,20 @@ "base_uri": "https://localhost:8080/", "height": 149, "referenced_widgets": [ - "b7af561644f740649b2a901daa01b37a", - "a5a4964c61534d98a0255652711ed99c", - "1f65188d7ca740a59f34d9597bca55ff", - "afd86d85b5b14834826d67e885bb71ef", - "54a510cdc201455e854dee1a708aac6e", - "81c2edca0f464e27a5058ab0b67a3b7e", - "e9b540b46f6a4c91b2bf3d70d86cd81f", - "d351eeca29314be59f4583be2361b3cc", - "e4f596ea035345988ad3d142d7f37109", - "838d65f71b5c4bb9891905afb7207fc6" + "72084f39acd549488f0009ea26a605e5", + "b66c12bc50064dc58151436fda41b936", + "0962f4ef27564dcbb72e6063f80432c4", + "e17cccd532ba49a3bbe903b563d4424b", + "863180b9b1004156a9fb595e67ca9ad3", + "7434d15a04d84cd183935caf93a5a9c7", + "ef61f384a99b45e6af3fffbd1a29d642", + "4885161441174c04a52bc6e307832062", + "4007fbe206dd46ad8d35d6bfd3b9aef9", + "850c14aac8614875b694ae4ecb36f26f" ] }, "id": "rnMe3iMz2K7j", - "outputId": "73eb4a42-6c4a-4978-b1da-868de7b672c1" + "outputId": "d005e236-8c82-417b-bfd2-5b02663ffb90" }, "outputs": [], "source": [ @@ -858,7 +867,8 @@ " num_classes=3, # number of unique label values\n", ")[0]\n", "\n", - "adbpyg_adapter.pyg_to_arangodb(\"FakeHetero\", data, overwrite_graph=True, overwrite=True)" + "db.delete_graph(\"FakeHetero\", drop_collections=True, ignore_missing=True)\n", + "adbpyg_adapter.pyg_to_arangodb(\"FakeHetero\", data)" ] }, { @@ -893,18 +903,18 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 273, + "height": 256, "referenced_widgets": [ - "92604c4090924fca948cedf8e2e75722", - "b23d8a7bc7d24f5aad4e4cb5cccfd0c6", - "69a967fa68fe4f6eb114c142817ec617", - "c1586aaf362c4ed1b5794f064579b2d5", - "95b093b6712c49178f544b6e9e4449e1", - "1e7400c357b443f2820322a9399b6079" + "07345396a8624c6d840bfdcacf05a175", + "d2eab26e684f4937b6b6874f52d9b2dc", + "34c0c2b8b2544efe84cf160e7ca3eff4", + "266d1563d9f847f6a71143fad4c3d9b4", + "8f76f58d9ca342e9b312733174e60710", + "e392b5e493e94fd2a849f5c2e636e9f4" ] }, "id": "zZ-Hu3lLVHgd", - "outputId": "2c42dedc-e1d1-4a38-c556-7e43b6a13861" + "outputId": "66c357cd-b2eb-4f64-cd47-8563b565ae32" }, "outputs": [], "source": [ @@ -942,7 +952,7 @@ "* [PyG FakeHeteroDataset](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.FakeHeteroDataset)\n", "\n", "API\n", - "* `adbdpyg_adapter.adapter.arangodb_collections_to_pyg()`\n", + "* `adbpyg_adapter.adapter.arangodb_collections_to_pyg()`\n", "\n", "Notes\n", "* The `name` parameter is purely for documentation purposes in this case.\n", @@ -956,18 +966,18 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 273, + "height": 256, "referenced_widgets": [ - "6aadd1793451448aa51098a0bcb7ecb1", - "83cb6fd4089f4b509c11d0c2ff7eb075", - "a456b930cca64c49a6fe187230836b57", - "47f7beaf6dbc4f7085c273aa96e399c5", - "8724e13bb31346cf9364b3f54f3e3299", - "b87b229a407a48338c4a37d36d3049b1" + "6e5074bb4e97479eab670bc5c61fd2a8", + "f7eb769aa206467e927e14faa79a13b8", + "a8dd80a8d9ae4fdca1a0f7868a9e7968", + "4576975cda7c4389b229e1b19839a79c", + "c24c5b2de4974ade9b03180050020a3d", + "64c02801ae264fd2b55c7f9c6dc4872b" ] }, "id": "i4XOpdRLUNlJ", - "outputId": "55c2d7b8-6436-4424-b15d-b8d981d3aa42" + "outputId": "cbdbf7be-ac8e-452d-abe9-0537cb88b8a6" }, "outputs": [], "source": [ @@ -1002,7 +1012,7 @@ "* [PyG FakeHeteroDataset](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.FakeHeteroDataset)\n", "\n", "API\n", - "* `adbdpyg_adapter.adapter.arangodb_to_pyg()`\n", + "* `adbpyg_adapter.adapter.arangodb_to_pyg()`\n", "\n", "Notes\n", "* The `name` parameter is purely for documentation purposes in this case.\n", @@ -1015,18 +1025,18 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 534, + "height": 464, "referenced_widgets": [ - "7a0106ebef89484ea6e2ecbda5667ec4", - "43b825e5f5a648f4bf376a539f26b31c", - "890ac5ba37bf415b84913b14ae4247ec", - "e950042f31744e8b81f6538e253dcefc", - "5c8244c9d1e14e8d89b8d73c4407eb9b", - "fca9799d960d4df58c10035298245e39" + "f8e16550b3b34592b6670c4340b606f0", + "49ddf95421d34d998db9aee93d3b89ec", + "6f58ee4a7a3847b094e77c2f49ef719e", + "5508176e4f45494fbf8cd1af6e429d36", + "c4016be03b8d455ea3f82231a0d94fbb", + "a7c053a447df4fbbbf1b948e409d8fad" ] }, "id": "7Kz8lXXq23Yk", - "outputId": "16ebaf20-802f-4987-d7cd-c476760de660" + "outputId": "16b25b2d-e4c0-40a4-cff8-9a6718cc9272" }, "outputs": [], "source": [ @@ -1034,12 +1044,12 @@ "# meaning the data is already formatted to PyG data standards\n", "metagraph_v1 = {\n", " \"vertexCollections\": {\n", - " # we instruct the adapter to create the \"x\" and \"y\" tensor data from the \"x\" and \"y\" ArangoDB attributes\n", - " \"v0\": { \"x\": \"x\", \"y\": \"y\"}, \n", - " \"v1\": {\"x\": \"x\"},\n", + " # Move the \"x\" & \"y\" ArangoDB attributes to PyG as \"x\" & \"y\" Tensors\n", + " \"v0\": {\"x\", \"y\"}, # equivalent to {\"x\": \"x\", \"y\": \"y\"}\n", + " \"v1\": {\"v1_x\": \"x\"},\n", " },\n", " \"edgeCollections\": {\n", - " \"e0\": {\"edge_attr\": \"edge_attr\"},\n", + " \"e0\": {\"edge_attr\"},\n", " },\n", "}\n", "\n", @@ -1069,10 +1079,10 @@ "Data\n", "* [ArangoDB IMDB Movie Dataset](https://www.arangodb.com/docs/stable/arangosearch-example-datasets.html#imdb-movie-dataset)\n", "\n", - "Package methods used\n", - "* `adbdpyg_adapter.adapter.arangodb_to_pyg()`\n", + "API\n", + "* `adbpyg_adapter.adapter.arangodb_to_pyg()`\n", "\n", - "Important notes\n", + "Notes\n", "* The `name` parameter is purely for documentation purposes in this case.\n", "* The `metagraph` parameter is an object defining vertex & edge collections to import to PyG, along with collection-level specifications to indicate which ArangoDB attributes will become PyG features/labels. In this example, we rely on user-defined encoders to build PyG-ready tensors (i.e feature matrices) from ArangoDB attributes. See https://pytorch-geometric.readthedocs.io/en/latest/notes/load_csv.html for an example on using encoders with PyG." ] @@ -1085,16 +1095,16 @@ "base_uri": "https://localhost:8080/", "height": 325, "referenced_widgets": [ - "db2eee0eb8954cbcae8e11d4c9dbe142", - "69eefd9580d74e6cad9d2646cb484d2b", - "3a642a79f80241f1bd6a557f8a516c89", - "2984e89bde554ba2b2118e9a2d89a90f", - "d1869b44d6774a4c934587790e7b3b3d", - "fb2e8d24a82f4a509fa55d67a39be9da" + "41de76b1057343e9ab59cab36912c7ea", + "e9d17b0c53bd4ba98b692300e29a3cd6", + "7bbd370440a146cbb91f64cb860d19cd", + "eb356e9d21404e3dad9a0bd8d15b063e", + "abe1c2c87fff4c78816ee1d8ffc40466", + "f683b6928cb64c5799604949f25ab1a9" ] }, "id": "cKqLoawE3WR7", - "outputId": "72be8a9b-7830-42b2-830c-7d336f51ce65" + "outputId": "97fad208-ccca-4a8f-ebcb-40d1a69b666e" }, "outputs": [], "source": [ @@ -1149,7 +1159,7 @@ "* [PyG FakeHeteroDataset](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.FakeHeteroDataset)\n", "\n", "API\n", - "* `adbdpyg_adapter.adapter.arangodb_to_pyg()`\n", + "* `adbpyg_adapter.adapter.arangodb_to_pyg()`\n", "\n", "Notes\n", "* The `name` parameter is purely for documentation purposes in this case.\n", @@ -1162,18 +1172,18 @@ "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 534, + "height": 464, "referenced_widgets": [ - "22517081ea8a466085c03bf57512e776", - "3576bb0c007e4b70be7c46d0874620c4", - "9b405422c9dd4ee6bbc60f877cf68713", - "e43ecc69032945a789eaf7b33319d945", - "9a072c19a629435b96a3b438d3262783", - "eed677f448fb4cee98d85ed20b56b7bc" + "c7f6639f2c9f4f8da99eddd9d4c2d0a2", + "e9ac7382d55d4b5db76abde55b6aed83", + "603c77fbb46d462098b94d05d24ebef1", + "c6556ac4ddbc4865b1eda09ba431523f", + "16db564236ac4fa880cbd4062c703f16", + "6f74a712b1f243aab17da8c15ab63a07" ] }, "id": "t-lNli3d4bY0", - "outputId": "8784c341-ad9b-45b8-c7ef-e93aec3deaeb" + "outputId": "a747ecc6-aace-45dd-c963-0ef43bbaac96" }, "outputs": [], "source": [ @@ -1214,8 +1224,25 @@ ], "metadata": { "colab": { - "collapsed_sections": [], - "name": "ArangoDB_PyG_Adapter.ipynb", + "collapsed_sections": [ + "KS9c-vE5eG89", + "ot1oJqn7m78n", + "Oc__NAd1eG8-", + "7y81WHO8eG8_", + "QfE_tKxneG9A", + "UafSB_3JZNwK", + "gshTlSX_ZZsS", + "CNj1xKhwoJoL", + "5xZBKcKv0Wz0", + "4PzAnhQC8P5c", + "uByvwf9feG9A", + "ZrEDmtqCVD0W", + "RQ4CknYfUEuz", + "qEH6OdSB23Ya", + "0806IB4o3WRz", + "d5ijSCcY4bYs" + ], + "name": "ArangoDB_PyG_Adapter_v1.ipynb", "provenance": [] }, "kernelspec": { diff --git a/examples/outputs/ArangoDB_PyG_Adapter_output.ipynb b/examples/outputs/ArangoDB_PyG_Adapter_output.ipynb index 961cdd2..6ce8b6b 100644 --- a/examples/outputs/ArangoDB_PyG_Adapter_output.ipynb +++ b/examples/outputs/ArangoDB_PyG_Adapter_output.ipynb @@ -15,7 +15,7 @@ "id": "U1d45V4OeG89" }, "source": [ - "" + "" ] }, { @@ -34,7 +34,7 @@ "id": "bpvZS-1aeG89" }, "source": [ - "Version: 1.0.0\n", + "Version: 1.1.0\n", "\n", "Objective: Export Graphs from [ArangoDB](https://www.arangodb.com/), the multi-model database for graph & beyond, to [PyTorch Geometric](https://www.pyg.org/) (PyG), a python package for graph neural networks, and vice-versa." ] @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 55, "metadata": { "id": "fUnFAFAheG89" }, @@ -58,9 +58,9 @@ "source": [ "%%capture\n", "!pip install torch\n", - "!pip install adbpyg-adapter==1.0.0\n", + "!pip install adbpyg-adapter==1.1.0\n", "!pip install adb-cloud-connector\n", - "!git clone -b 1.0.0 --single-branch https://github.com/arangoml/pyg-adapter.git\n", + "!git clone -b 1.1.0 --single-branch https://github.com/arangoml/pyg-adapter.git\n", "\n", "## For drawing purposes \n", "!pip install matplotlib\n", @@ -69,7 +69,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 56, "metadata": { "id": "niijQHqBM6zp" }, @@ -138,13 +138,13 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 57, "metadata": { + "id": "vf0350qvj8up", "colab": { "base_uri": "https://localhost:8080/" }, - "id": "vf0350qvj8up", - "outputId": "39383301-6a7f-4537-ebe1-76d2a9eb44d4" + "outputId": "7ddfb51b-fec6-44c2-a356-9207f0762a68" }, "outputs": [ { @@ -174,13 +174,13 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 58, "metadata": { + "id": "oOS3AVAnkQEV", "colab": { "base_uri": "https://localhost:8080/" }, - "id": "oOS3AVAnkQEV", - "outputId": "fe660900-141c-4a20-c02a-25094cc796dc" + "outputId": "34806a7f-4dd3-4d30-cab2-8219ac62de75" }, "outputs": [ { @@ -236,13 +236,13 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 59, "metadata": { + "id": "oKicsyNlvJR7", "colab": { "base_uri": "https://localhost:8080/" }, - "id": "oKicsyNlvJR7", - "outputId": "0b5c88eb-e70c-4179-db52-72aa8a45c76e" + "outputId": "bff048fe-c54e-4847-c9ad-5226cc7ea0b8" }, "outputs": [ { @@ -297,25 +297,24 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 60, "metadata": { + "id": "2ekGwnJDeG8-", "colab": { "base_uri": "https://localhost:8080/" }, - "id": "2ekGwnJDeG8-", - "outputId": "35a015b4-fbe7-49a2-d5e0-e5d37acfa7c7" + "outputId": "da3d0c2e-aa1e-4f5d-8ec4-ee0c39fc8010" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Log: requesting new credentials...\n", - "Succcess: new credentials acquired\n", + "Success: reusing cached credentials\n", "{\n", - " \"dbName\": \"TUTc7mc78w0qlchle9za0opmc\",\n", - " \"username\": \"TUTy0d4nq3jcidztw4rf5nyy\",\n", - " \"password\": \"TUTg7njua0hhwpfr1u2m2b2zc\",\n", + " \"dbName\": \"TUT6uidw6608c3fel9fgotpk5\",\n", + " \"username\": \"TUTctbabijgogsqfi4r0hj59\",\n", + " \"password\": \"TUTkpfg3sjmx88qu3aoi90ucs\",\n", " \"hostname\": \"tutorials.arangodb.cloud\",\n", " \"port\": 8529,\n", " \"url\": \"https://tutorials.arangodb.cloud:8529\"\n", @@ -361,34 +360,34 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 61, "metadata": { + "id": "7bgGJ3QkeG8_", "colab": { "base_uri": "https://localhost:8080/" }, - "id": "7bgGJ3QkeG8_", - "outputId": "48e27100-a887-4ff8-f371-07333ed7cd8b" + "outputId": "bd0ff797-6b5f-4d50-da18-592719427448" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "\u001b[0m2022-07-29T22:41:50Z [437] INFO [05c30] {restore} Connected to ArangoDB 'http+ssl://tutorials.arangodb.cloud:8529'\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:50Z [437] INFO [abeb4] {restore} Database name in source dump is 'TUTdit9ohpgz1ntnbetsjstwi'\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:50Z [437] INFO [9b414] {restore} # Re-creating document collection 'Movies'...\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:50Z [437] INFO [9b414] {restore} # Re-creating document collection 'Users'...\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:51Z [437] INFO [9b414] {restore} # Re-creating edge collection 'Ratings'...\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:51Z [437] INFO [6d69f] {restore} # Dispatched 3 job(s), using 2 worker(s)\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:51Z [437] INFO [94913] {restore} # Loading data into document collection 'Movies', data size: 68107 byte(s)\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:51Z [437] INFO [94913] {restore} # Loading data into document collection 'Users', data size: 16717 byte(s)\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:51Z [437] INFO [6ae09] {restore} # Successfully restored document collection 'Users'\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:51Z [437] INFO [94913] {restore} # Loading data into edge collection 'Ratings', data size: 1407601 byte(s)\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:51Z [437] INFO [6ae09] {restore} # Successfully restored document collection 'Movies'\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:56Z [437] INFO [75e65] {restore} # Current restore progress: restored 2 of 3 collection(s), read 9270558 byte(s) from datafiles, sent 3 data batch(es) of 881948 byte(s) total size, queued jobs: 0, workers: 2\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:58Z [437] INFO [69a73] {restore} # Still loading data into edge collection 'Ratings', 10660073 byte(s) restored\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:58Z [437] INFO [6ae09] {restore} # Successfully restored edge collection 'Ratings'\n", - "\u001b[0m\u001b[0m2022-07-29T22:41:58Z [437] INFO [a66e1] {restore} Processed 3 collection(s) in 7.461191 s, read 11542023 byte(s) from datafiles, sent 4 data batch(es) of 11542020 byte(s) total size\n", + "\u001b[0m2022-08-05T20:42:33Z [1529] INFO [05c30] {restore} Connected to ArangoDB 'http+ssl://tutorials.arangodb.cloud:8529'\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:34Z [1529] INFO [abeb4] {restore} Database name in source dump is 'TUTdit9ohpgz1ntnbetsjstwi'\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:34Z [1529] INFO [9b414] {restore} # Re-creating document collection 'Movies'...\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:39Z [1529] INFO [9b414] {restore} # Re-creating document collection 'Users'...\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:40Z [1529] INFO [9b414] {restore} # Re-creating edge collection 'Ratings'...\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:40Z [1529] INFO [6d69f] {restore} # Dispatched 3 job(s), using 2 worker(s)\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:40Z [1529] INFO [94913] {restore} # Loading data into document collection 'Movies', data size: 68107 byte(s)\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:40Z [1529] INFO [94913] {restore} # Loading data into document collection 'Users', data size: 16717 byte(s)\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:40Z [1529] INFO [6ae09] {restore} # Successfully restored document collection 'Users'\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:40Z [1529] INFO [94913] {restore} # Loading data into edge collection 'Ratings', data size: 1407601 byte(s)\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:41Z [1529] INFO [6ae09] {restore} # Successfully restored document collection 'Movies'\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:45Z [1529] INFO [75e65] {restore} # Current restore progress: restored 2 of 3 collection(s), read 9270558 byte(s) from datafiles, sent 3 data batch(es) of 881948 byte(s) total size, queued jobs: 0, workers: 2\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:49Z [1529] INFO [69a73] {restore} # Still loading data into edge collection 'Ratings', 10660073 byte(s) restored\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:49Z [1529] INFO [6ae09] {restore} # Successfully restored edge collection 'Ratings'\n", + "\u001b[0m\u001b[0m2022-08-05T20:42:49Z [1529] INFO [a66e1] {restore} Processed 3 collection(s) in 16.505161 s, read 11542023 byte(s) from datafiles, sent 4 data batch(es) of 11542020 byte(s) total size\n", "\u001b[0m" ] } @@ -400,13 +399,13 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 62, "metadata": { - "id": "ibZaEByHEPDM", - "outputId": "cbaf9745-7d4a-42b3-9269-4141e21fa896", + "id": "PWHZngKeVxFn", "colab": { "base_uri": "https://localhost:8080/" - } + }, + "outputId": "10de69bc-878d-4ffe-fbc1-e54514baa85b" }, "outputs": [ { @@ -417,11 +416,12 @@ ] }, "metadata": {}, - "execution_count": 8 + "execution_count": 62 } ], "source": [ "# Create the IMDB graph\n", + "db.delete_graph(\"imdb\", ignore_missing=True)\n", "db.create_graph(\n", " \"imdb\",\n", " edge_definitions=[\n", @@ -454,20 +454,21 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 63, "metadata": { + "id": "oG496kBeeG9A", "colab": { "base_uri": "https://localhost:8080/" }, - "id": "oG496kBeeG9A", - "outputId": "43b80701-eb99-4a74-81ff-509387f07f83" + "outputId": "67a2a9d1-0923-4b3b-804c-f1a237f64348" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:41:58 +0000] [58] [INFO] - adbpyg_adapter: Instantiated ADBPyG_Adapter with database 'TUTc7mc78w0qlchle9za0opmc'\n" + "[2022/08/05 20:42:49 +0000] [58] [INFO] - adbpyg_adapter: Instantiated ADBPyG_Adapter with database 'TUT6uidw6608c3fel9fgotpk5'\n", + "INFO:adbpyg_adapter:Instantiated ADBPyG_Adapter with database 'TUT6uidw6608c3fel9fgotpk5'\n" ] } ], @@ -511,20 +512,20 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 64, "metadata": { + "id": "eRVbiBy4ZdE4", "colab": { "base_uri": "https://localhost:8080/", - "height": 594, + "height": 0, "referenced_widgets": [ - "da972de6ab734efd87a013778dd78a36", - "b37ebfd5fb8d42fa8d7ce3278d09aae3", - "1fe86f25b74b4a91a4b6f054c1c7bf43", - "cd8afa76ccbe421888c92f1dd6da7dac" + "ef395ffbd3144330b7555ecafa2e3f6c", + "34eb428169264094b747be928b79399e", + "b207c2aea59849e6bd973a4c7543e50d", + "a81e4e96acbb4d70ac4b9049c834cb0e" ] }, - "id": "eRVbiBy4ZdE4", - "outputId": "5ea4484e-649b-4e3f-e0b2-8764f54bc42f" + "outputId": "fcfc97f1-a5f3-4111-a854-dbe788b5cbd4" }, "outputs": [ { @@ -543,7 +544,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "da972de6ab734efd87a013778dd78a36" + "model_id": "ef395ffbd3144330b7555ecafa2e3f6c" } }, "metadata": {} @@ -582,7 +583,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "1fe86f25b74b4a91a4b6f054c1c7bf43" + "model_id": "b207c2aea59849e6bd973a4c7543e50d" } }, "metadata": {} @@ -616,7 +617,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:41:58 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'Karate' Graph\n" + "[2022/08/05 20:42:51 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'Karate' Graph\n", + "INFO:adbpyg_adapter:Created ArangoDB 'Karate' Graph\n" ] }, { @@ -626,12 +628,12 @@ "\n", "--------------------\n", "URL: https://tutorials.arangodb.cloud:8529\n", - "Username: TUTy0d4nq3jcidztw4rf5nyy\n", - "Password: TUTg7njua0hhwpfr1u2m2b2zc\n", - "Database: TUTc7mc78w0qlchle9za0opmc\n", + "Username: TUTctbabijgogsqfi4r0hj59\n", + "Password: TUTkpfg3sjmx88qu3aoi90ucs\n", + "Database: TUT6uidw6608c3fel9fgotpk5\n", "--------------------\n", "\n", - "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUTc7mc78w0qlchle9za0opmc/_admin/aardvark/index.html#graph/Karate\n", + "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUT6uidw6608c3fel9fgotpk5/_admin/aardvark/index.html#graph/Karate\n", "\n", "View the original graph below:\n", "\n" @@ -643,7 +645,7 @@ "text/plain": [ "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3hU1dbA4d+0ZGbSe0iB0EMLoQmC0hRCFQUEkdAUQVBEbKiIehVERQWUXgSkiYJUaaFLk95JIBBSCOkkIWX6fH/ky8CYQgIJBLLf5+G5ZM4+Z/YJ11lzdllLYjabzQiCIAhCJSF91B0QBEEQhIdJBD5BEAShUhGBTxAEQahUROATBEEQKhUR+ARBEIRKRQQ+QRAEoVIRgU8QBEGoVETgEwRBECoVEfgEQRCESkUEPkEQBKFSEYFPEARBqFRE4BMEQRAqFRH4BEEQhEpFBD5BEAShUhGBTxAEQahUROATBEEQKhUR+ARBEIRKRQQ+QRAEoVIRgU8QBEGoVETgEwRBECoVEfgEQRCESkUEPkEQBKFSkT/qDgiCINxLSpaWNSfiCE/IJFNjwFEpJ9DbkZeb+eFmb/uouyc8ZiRms9n8qDshCIJQmDOx6czaG8m+y8kAaA0myzGlXIoZaF/Xg9HtatHY3/kR9VJ43IjAJwhChbT8yHUmbwlHYzBS3KeURAJKuYwJ3QIJbRXw0PonPL7EUKcgCBVOXtC7RK7edM+2ZjPk6o1M3nIJQAQ/4Z7EE58gCBXKmdh0QkZ8yq3TYeiSr2NXrx3uPcZZjpv0Gm7t/pWc8AOYTQZsPKrjHfodACqFjNUjWhHkJ4Y9haKJJz5BECqUWXsjMaldcGrdn9yok5j1OqvjadtmYjYZ8XljDlKlPbqkKMsxjcHI7L2RzA1t/rC7LTxGxHYGQRAqjJQsLfsuJ6Ou0xp1naeRqhytjutTY8m58i9uXcYgUzshkcqw9a5lOW42w56IZFKztA+768JjRAQ+QRAqjDUn4oo9ro2/jNzJk/R/VhA741XiF71FdvhBqzYSYM3J4q8jVG4i8AmCUGGEJ2RabVn4L+PtVPTJ0Uht1fi9vRTXTm+S+vc09CmxljYag4nwm7cfRneFx5QIfIIgVBiZGkOxxyVyG5DKcWrzChKZAmXVRiirNiI36uR/rqMvz24KjzkR+ARBqDAclcWvt1N4BhR8USIp5DqKMuqR8CQSgU8QhAoj0NsRW7kUs8mI2aADkxHMJswGHWaTEaV/Q+SOHmQc/gOzyYgm7iKamHOoajS1XEMplxJYxeER3oVQ0Yl9fIIgVBgpWVrafLebxD3LyDi4yuqYU5sBOD87EF1yNKlbf0affB25oyfObQehrtva0s5WLuXQ+I4ih6dQJBH4BEGoUEYsO07YpcRi05QVRSKBkPpeYh+fUCwx1CkIQoXyVvtaKOWy+zpXKZcxun2tezcUKjUR+ARBqFAa+zszoVsgNqX8dFIppEzoFijSlQn3JAKfIAgVTvz+P0jduQBbuaSwRZtWJJK8HJ0TutUTCaqFEhFzfIIgVBjXrl1j5MiR7Ny5k6pVq7Lp4Blm741kT0QyEvI2p+cz67UobGx4vr43o9vXEk96QomJJNWCIDxyRqOR8ePHM3v2bHJzcwEYPHgwQX7OzA1tTmqWljUn4wi/eZtMjR5HpYLffvmWrLNhfHjqKDVF0BNKQTzxCYLwyGVkZNCgQQOSkpLQ6/UolUrmzp3LkCFDijzHzs6OnJwcXFxcOHz4MHXr1n2IPRYeZ2KOTxCER87JyYnz588DIJVKMZvNVKtWrcj2Op0OjUYDwK1bt2jZsiUREREPpa/C408EPkEQKoTBgwejVqvZvXs3TZo0oX79+kW2jYmJQaHIS0smlUpRq9XEx8c/rK4KjzkxxycIwiO3fft2Nm/ezM6dO2nXrh2HDx8utr1Wq8Xd3Z3g4GC2bt1KVFQUtrYiU4tQMmKOTxCER0qn0+Hu7k7nzp1Zs2ZNqc9XqVRMmTKFd999txx6JzyJROATBOGReumll9i9ezepqanI5aUfhOrWrRtRUVFcunSpHHonPInEHJ8gCI9MWFgYGzZsYO3atfcV9AAmTpxIREQEWVlZZdw74UklAp8gCI+EwWCgb9++9OrVi+eff/6+r/P000/j4ODA999/X4a9E55kIvAJgvBI9O/fH7PZzOrVqx/4Wl27duW3334rg14JlYGY4xME4aHbtWsXnTp1YuvWrYSEhDzw9S5dukT9+vVJTEzE09OzDHooPMlE4BME4aEyGAy4u7vTrl07NmzYUGbX9fDwYMCAAfz8889ldk3hySSGOgVBeKgGDBiA0Wjkzz//LNPrvvTSS2V+TeHJJJ74BEF4aPbu3UvHjh35+++/6dq1a5leOy4uDn9/f8LCwjh58iRDhw4Vw55CocQTnyAI5SotLY2GDRuyfv16XnrpJbp161bmQS89PZ1Vq1Yhk8no0qULn376KdeuXSvT9xCeHOKJTxCEcnXkyBE6dOiAXq8H4MaNG3h5eZXpe+QH1Xy2trZER0eX+fsITwbxxCcIQrmKjo5GKpViNBoBLKsvy9KLL77I1KlTUalUQF59PzHMKRRFJKkWBKFcXbt2jZycHABsbGx48803cXd3L/P3+eCDD7C1teWdd95BLpcjkUjK/D2EJ4MY6hQE4YGkZGlZcyKO8IRMMjUGHJVyAr0debmZH272ttSqVYurV6/So0cPZs+ejb+/f7n2p1+/fmzZskWkMBOKJAKfIAj35UxsOrP2RrLvcjIAWoPJckwpl2IGWlVzZP3kUfxv7GsPrXqCwWCgXUgPBn72C5eTsgoNxkLlJgKfIAiltvzIdSZvCUdjMFLcJ4gEUEjh854NCG0VUO79Kkkwbl/Xg9HtatHY37nc+yNUTCLwCYJQKnlB7xK5etO9G/8/lULKhG71yjX4lTgYS0AplzGhW+BDCcZCxSMCnyAIJXYmNp1XFhwhV28s9Hj2xX2kH1yFMTMZmZ0Lbt3fRenfEACVQsbqEa0I8iv7J62KGoyFikms6hQEocRm7Y1EYyg86OVGneLW3iV49BqPjU8djFlpVsc1BiOz90YyN7R5mfbpTGw6k7eEFxr0ElZ8jDY+AolUBoDMwQ3fEfPy+qs3MXlLOEF+zuUSjIWKSwQ+QRBKJCVLy77LyUUOI2YcWIFTmwHY+gYCIHew3rJgNsOeiGRSs7RWC0yMRiNZWVk4OTkV+/5ms7nQLQrFBWMA185v4tC48AoQ5RWMhYpNbGAXBKFE1pyIK/KY2WREezMSU04GN+a+QdysIaTtmINJr7VqJwHWnMy7jl6vZ+HChfj7+9OjR497vn/z5s3p0KEDp06dsrx2r2B8L3cHY6HyEE98giCUSHhCptUqybsZs9PBZCAn4iBeod8hkcpIXjuJjEOrcWk32NJOYzCx70wk++d9zsaNG9Hr9Wi1WlQqFZs3b0ahUKBQKLCxsSnw9/j4eE6ePEnr1q155plnmDp1Kkcy7O/Z7/S9S0nfuxSFqy/ObQehrBZkdTw/GI9sW/OBfj/C40MEPkEQSiRTYyjymESRN3Tp0KwncnvXvL+3eLFA4AM4euocV1eutHotKiqKPn36YDabrf4ABf5Xo9Gwc+dOmjRpgscLH6Cu377Ifrl0GIbCzR+JTEH2pf0krf2aKsN+RuFSxdJGYzARfvN2CX8LwpNADHUKglAijsqivyfLlPbI/jOnV1TKsJ4hz5Oens6ECRNQq9XI5XJatWqFVqtFp9Oh1+sxGAwYjUaMRiMmkwmTyYSnpydyuRylUkloaCiRkZH0eKlfsX229amL1FaNRK7AvtFz2PrWI/fq8QLtMjX6EvwGhCeFCHyCIJRIoLcjtvKiPzLsGz3P7RObMWanY9RkkXlsPepaLazaKOVSAqs44OTkxKRJk4iJiWHMmDF07Njxnu9fv359hg4dSkREBMuWLaNmzZo4qko5aCWRAAUnBB2VitJdR3isiaFOQRBKpG8zP6btvFzkcac2r2DMzeTG/JFI5ArsAp/FqXV/qzZmoG9TP8vPbm5u/PTTTyV6/z179hR4LS8YJxQ692jSZKGNj0BZtRFIZWRf2o829jyuz4+wapcfjIXKQwQ+QRBKxN3elnZ1PAi7lFjoKkqJTI5byGjcQkYXer5EAh3qepRprszigrHZZCR9/3L0aXEgkaJw88Oj92coXH2t22EdjIUnnwh8giCU2Fvta/HPlZQiM7cURymXMbp9rTLtT3HBWKZ2osrQacWeL5FA21puInF1JSPm+ARBKLHG/s5M6BaISlG6j4689GCB5ZIh5a32tVDKZfd1rtRkYNtP4xCZGysXEfgEQSiV0FYBTOhWD5VCxr1qvUokeTk6yzMn5v0GY5NeQ/KO+aReOUVERES59E2omESSakEQ7svZuHRm741kT0QyEvL2w+WTS0zIZHI61PVgdPtaDyUXpqU6g95YyLrNOyQSMBt03Nq1kMyTWwCoU6cO06dPp3Pnzshk9/f0KDw+ROATBOGBXEm8zeStl9hz/CISuS2O9ipSr55nz7Qx1PEuPv9mWTsUHkefifNQ1WyBjUJhFYzz6/G1reVGzLaF7P1rKTqdznJcKpUyYcIEvvrqq3tWlRcebyLwCYJwX6yLvprRGu58lJj0WhQKBc83qPLQir7GxsbSsmVLbt68yfS5i1DWa0f4zdtkavQ4KhUEVnGgb9M7gSs1NZU6deqQlpZXRaJp06bMXLmJxUfjRSHbJ5wIfIIglFppKrArFeVf9PXcuXN06NCB1NRUJBIJM2fOZPTowrdV3O3dd9/ll19+oVatWgQ8P4gYt+aikG0lILYzCIJQKqUp+moGcvVGJm+5BFAugcJgMNC2bVvS09Pz3tNsJjk5uUTnjhgxAg8PD/w7vso3W/PmB+/FbC7/exLKlwh8giCUWHFFX/VpN4hf9DZ2gW1w7/mB1bHyLPoql8vZuXMnoaGhhIeHI5fLiYsruoTS3erXr4/ewYdXFhwh6cgGss/tQpd8Hbt67XDvMe5O/6+fJm3HXIyZydj41MG9+zhynTxFIdvHlNjOIAhCiRVX9DVtx1xsq9Qu8tz8oq/loVmzZiQlJfH6668zbdq0EtX3y5d/T3J7N5xa98c+qJPVcWNOBsnrvsG5bSj+767C1rs2yRu+A8r3noTyIwKfIAglUlzR1+yL+5Aq7VBWa1zk+YUVfb158yb79u174L7t3r2bW7du8cMPP/D222/Tq1cvq+NZWVksXLiQ7Oxsq9fvvid13dao6zyNVOVo1Sbn8mFs3KtiF/gMErkNTs+8ij4pCn1qrChk+5gSgU8QhBIpqgK7SZtD+j8rcOk4/J7XyC/6mpCQwOjRo6lWrRqDBg164L598sknNG3aFGfnwoccz507x5tvvkmVKlX45ptvyMrKAoqvKp9PnxyNwrO65WepjRK5sze65BirexIeH2KOTxCEEimqAnv6/mXYN+6M3NG9kLOsaQwmvpu3nLdWf43ZbMZkMpGcnEzfvn2LLEJrMpmsfv7vH71ez9GjR2nSpAnPP/98odfIyMgA4Pbt23z22WdMnDiR4OBgfPp8gtagKrbPJr0Gmdp6P6LU1g6zLtdyT6KQ7eNFBD5BEEqksArsusRraKLPUGXYjBJfJ9eAVTAzGAxcvpxXYUEikVj+FPfz3X+Pjo5GJpOhUqnIzc0t9pz8n6VSKSqVCn0JPgKlCiUmbY7VayZdDhKbOwFTFLJ9vIjAJwhCiRRWgV0Tcw5DRiJxs4cBYNZpwGziZsrYIoPhK7178fLYTnz44YccP34cd3d3zp49e9/9cnFx4Z133im2rt+///5L69atcXJy4rPPPuOtt95CpVLx7upThJ+OL/b6Co9qZJ/bZfnZpNNguJWAjUdVy2uikO3jRQQ+QRBKpLCir/bBIdjVa2v5OfPoXxgyEnENeavQa+QXfW3dOpiDBw9y+PBhLly4cN992rJlC5mZmXz11VfFtmvYsCELFy6kf//+qNXqQu/JbDJC/h+zCbNBB1IZ6jpPc2vPr2SHH0RdqwUZB1eh8AxA4eZvdU/C40NkbhEEoURSsrS0+W53ofN8+dL/WYEh/WaBfXz5bOVSDo3vWGb5Lps1a4atrS2HDh26r/Pvvqf0f1aQcXCV1XGnNgNwfnbgXfv4krCpkrePT+7sBZT9PQnlTwQ+QRBKbMSy40VWYL8XiQRC6nsxN7R5mfQlLS0Nd3d39u7dS9u2be99QhEq0j0JD4fYziAIQok9SNHXsq7A/umnn+Lm5vZAQQ/y7slWfn8fheVRVV4ofyLwCYJQYhWpAvvKlSsZPvzeewfvpYazDMfIMGTmgqtWi1OeVeUflBjIK54IfIIglEppKrCDGbNeU+YV2NeuXUt2djZffPHFfZ1vNps5cuQIoaGhODk5cWzVND7uElhhqso/KMm9/2EqNTHHJwjCfSmuArsME3K5nKerObJq4lBuXT1jtZryQQUFBeHi4nJf6c5u3bpF8+bNSUxMtKQw69y5M9u3by/2nvLr8T3MqvJC+RCBTxCEB5KapWXNyThL0dfoyHCO79zA0d9/pk41H2xsbFi1ahV9+vQpk/dLSkrC29ubw4cP07Jly1KfbzQa6d+/Pxs2bMBgMKBSqViyZAn9+vUr8p4KK2Rb2T3OVepF4BMEoUxNnTqVjz76iBo1anD69GkaNmxISEgI8+fPL5PrDx06lG3btpGQkHDf1/j+++8ZP348NjY2QF6ybFdX1zLp35PuTGw6s/ZGPtZV6sUGdkEQytSpU6cAuH79Op06dSIwMJDjx4+X2fX//PNPPvroo/s+f/ny5Xz88cdMnz6drKws9u3bJ4JeCeUVIQ4vskp9/tDwjouJ7L+cUmGr1IsnPkEQylSdOnW4cuUKADKZjMaNG3P16lVLhfQHsWLFCoYMGUJOTo7laa00wsLC6NKlCx999BFTpkx54P5UJnlB71KhRYiLkrfyteItAhKBTxCEMmMymVAqlQDo9XqGDx9O586d6devH0ajEan0wRaS16tXDz8/P8LCwkp97smTJ2nZsiWvvvoqS5cufaB+VDZnYtMJGfEpt06HFahQbzbqSdk4Fe3NSIyZSXgN+AZltSDLuSqFjNUjWlWoxUBiO4MgCGVGKpWyatUqLly4gK2tLU899RQvv/wyUqmUAwcOPNC14+LiiIiIYOrUqaU+Nzo6mjZt2tChQwcR9O7DrL2RmNQuhVaoB7D1a4B7z/eR2bkUOFYRq9SLwCcIQpnq06cPtWvXJjg4mGXLlgHg7u7O5s2bH+i6H374IT4+PgQHB5fqvLS0NIKCgggMDGTbtm0P1IfKKL9KvbpO4RXqJTIFji16ofRvAIU80VfEKvUi8AmCUC4GDBjAiRMngLx5v8OHD9/3tUwmE+vXr+edd94p1XkajYYGDRrg4uLCsWPHHniotTIqSZX6e6loVerF/wsEQSgXb7zxBrm5uZw7d47WrVtbis3ej8WLF2MwGHjvvfdKfI7JZCIoKAi9Xs/58+eRy8Ui9vsRnpBZbEWOkqhoVepF4BMEoVyo1Wp8fHz4+eef6dGjBykpKfd9rW+//ZbOnTuXKni1adOG+Ph4zp8/j729/X2/d2WxceNGpk6dypEjR9DpdJbXMzWly2FalIpUpV58BRIEodx06tSJ7du3M2/ePMxmMxcuXKBBgwalukZUVBSRkZFs3LixxOe8+OKLnDx5krNnz+Lt7V3abpfa45zFJN++ffuYMWMGKpUKjUaDnZ0d3t7eeL00HvB84OtXpCr1IvAJglBuxowZw9KlS9HpdDg5ObFhw4ZSB74PPviAatWqUa9evRK1HzVqFJs3b2b//v3UrVv3frpdYsVnMUlg2s7LFT6LSWZmJsuXL2fPnj2YTCaysrIAyMjIICQkhGatg1l0NAGNTl9ohXqJVIbZoAfydsaZTYa8YzKFJVl2RatSLwKfIAjlpmnTpiiVShYuXEiNGjX4559/SnW+yWRi8+bNJd7C8PXXXzNv3jzWrVtH69at76fLJfa4ZjGJiYlhyZIlbNu2jQsXLpCZmYlaraZmzZpIJBIkEgnOzs5s376d5s2bk5KlZdHRBDIO/m5VoT77wh5Lhfob80dizEwCIGn15wD4vrnIUqXeDPRt6vfQ77UoYgO7IAjlqk2bNpjNZoKCgtiyZQsxMTElPnfmzJm8//775Obm3nNF5sKFCxkxYgRz5sxh5MiRD9rtYj1OWUxOnz7N0qVL2b17N1euXCE3NxdnZ2caNWpEt27dGDx4MD4+PgDUrl0bmUzGrl278PX1tVzjSatSLwKfIAjlas6cObz33nusXLmS/v37Wy2cuJfq1asTHBzMunXrim23efNmevXqxcSJE/nyyy8fsMfFKy6LifZGOOn/LEeXEAkSKcqqjXDpNBK5fV4u0PLOYmIymdi5cyerVq3iwIEDXL9+HaPRiKenJ82aNePFF19kwIABRS72iYqKwsvLq0AJqTOx6byy4Ai5emOp+1QRM7eIwCcIQrnSaDSo1Wr++ecfnnnmGW7evFmiBScRERHUq1ePyMhIatSoUWS7f//9lzZt2vDaa6+VWQWI4oxYdpz169cBEnKjTmLW6yyBL/fqcUx6DarqTUEqJW3HXIxZaXj1/woo+6cfnU7Hn3/+ydq1azl69Cg3b95EIpHg5+fH008/Tb9+/ejZs2eZbOV4nJ5y70XM8QmCUK6USiX+/v4sWLAAtVrNunXrGDVq1D3P++CDD6hRo0axQe/KlSu0bduWrl27PpSgd3cWEwBtQiRG/Z1tGqqa1gHNoVkPEld+Yvn57iwm97PaMy0tjWXLlrFp0yZOnz5NamoqNjY21KhRg549exIaGkqbNm3u8+6Klx+8ipvXzCeRgFIuqzDzmv8lAp8gCOUuJCSEv//+m6pVq7J79+57Bj6j0cj27duZOXNmkW2SkpJo0qQJjRs3ZtOmTWXd5UKVNouJNvYCCveqVq/lZzEZ2bbmPc+Piopi8eLF7Nixg4sXL3L79m3s7OwIDAxkxIgRDBkypNxXrt4ttFUAQX7Oj32VehH4BEEod2PHjmXBggU8/fTTnD179p7tp02bhkwmY/jw4YUez8nJoWHDhnh7e3PkyJGy7m6RSpPFRJcURcbBVXj0+czq9eKymBw7doxly5axZ88eIiMj0Wg0uLi4EBQUxOeff87gwYPx9HzwPXUPIsjPmbmhzR/rKvUi8AmCUO4aNGiAWq1GJpMRGxt7z/YzZsygV69eha7kNBgMNGzYEIlEwrlz5x5q/s2SZjHR34on6Y8vcHl+BEr/hoVcR4/JZGLbtm38/vvvHDx4kJiYGIxGI15eXjRv3pz33nuP/v37F1hoUlG42duW6Km1IhKBTxCEh6J58+aW5fTZ2dnY2dkV2u7cuXPcuHGj0L17JpOJli1bkpKSwrVr11CpVOXdbSuOynt/ZBoykkhc9RlObV7BvmHHQtvs+HsD8mEtkUqlVK1aldatWzNjxgy6desmEmk/BCLwCYLwULzyyiuMGTMGiURC7dq18fPz448//iAgIADIS5nl5+fHBx98QJ06dfD39y9wje7du3PhwgUuXbqEu7t7ufX1tddeY+3atZbySm5ubuj1erJ8n8JW7lRkFhNj9i0SV32KQ7MeODTpVvjFDToa+rmw5vBhWrZsWW73IBRNBD5BEMrdV199xZQpUzAa8/aB3bx5k8TERFxc7hQuffPNN7ly5QpGo5ExY8ag1+tRKO7kdxw2bBg7d+7k8OHDVK9evVz7q1AoyMzM5MSJE5bSSnK5nHpNnoKQz4rMYoJEgiE9gYwDK8k4sNJyvOr7ayx/t1UqWT7+7Qo/D/YkE4FPEIRyZzAYMJmsF4U0atQIJycny88uLi6WwDhv3jyOHz/O1KlTadOmDRMmTOC3335j8+bNNG9ePhlADAYDv/76K4sWLeLkyZMFjtvZ2bFu1W98d+gWYcaBOD87sNDrOD/zapHvIZHkrXgUQe/REoPJgiCUu//973+EhoZazV+9/PLLVm28vPLyOkokEuzs7GjcuDHPPvssr7zyClOmTOHXX3+la9euZdqvzMxMvvrqK+rVq4etrS3vvPMOOp2O2rVrW7WrUaMGc+fOZeLEieyY9h5Gnea+3k8plzG6fa2y6LrwAETgEwSh3EkkEhYsWED79u0tr4WEhFi1yc8u4uPjw8mTJzl06BBms5nVq1fToUMHBg8eXCZ9iYmJYcyYMVStWhUnJyd+/PFHatasyRtvvIG7uztnzpzBZDJZ9sdJJBKioqIYNGgQR48epX1QDQbWV6FSlO7jMy+LSWCF3dtWmYiUZYIgPDQ6nQ5XV1cMBgNnz56lTp06lmNNmjQhIiKCuLg4ZDIZ7u7uGAx52wckEgnTpk1j7Nix9/W+x48f58cffyQsLIzU1FQ8PT3p2rUr/fv3Z/78+fz999+YTCZcXV3RarVkZmaiVCqRSqX07t2bcePG0bRpU6tr3qs6Q76KnsWkMhJzfIIgPDQ2NjZMm7OQvy+mMu1IGtrDxyxFW9Uunhw5shRXV1emT5+OwWBALpejVqsZNmwYvXv3LvH7mEwmtmzZwi+//MLBgwfJyckhICCAYcOG8f777/Prr7/yww8/sHTpUiQSCWazGXt7e2rWrEmXLl0YOnQo1apVK/Y9npQsJpWReOITBOGhKL5oa16QaF/Xg2EtfenxdCOMRiOLFy+me/fuVqs7i3L34pRTp05hMpmoX78+oaGhNG7cmBUrVrBhwwYyMzOBvJWbzZs359VXXyU0NBRn5/sPTI9zFpPKSAQ+QRDKXWmGBW1kElrIYlj2xUhLBW8ArVZLv3796Nu3L4MGDQLyFqdMnz6dVatWcfnyZUswa9KkCQkJCRw9epTY2FjyP+ZsbW3p0aMHS5YsKbI0j/DkE4FPECqwlCwta07EEZ6QSabGYBkWfLnZ4/MkUVg5G2PubVK3zEBz/RRSlSMu7YZg16C95fh/y9nk5OTQuXNnDh8+jI2NDcOHD2fDhg3Exsbi4OBAQEAAtra2xMTEkJycjEwmw97enpycHPR6Pa1atbJsjRAEEfgEoQIq6bDg6Ha1aOxfceeOiipgmrzhezCbcev2DpCihR8AACAASURBVLrEaySt+R/eoVOx8bgzr5ZfwLS6k4ynnnqK8PDwO8dUKktgy87ORqVSUbduXerVq0d4eDhnzpzBwcGBIUOGMHnyZPF0J1gRgU8QKpgnabXgiGXHCbuUaHUfJp2G2Omv4DN8FgpXXwBSNv2IzMENl/ZDLe0kEqir1rDn61cLVG23sbGhRYsWdO3alYEDB7J8+XJmzZpFYmIiDRs25Ouvv6ZXr14P4xYfqSdhROBREKs6BaECKU2Va7MZcvVGJm+5BFDhgl9+0db/Bm9D2g0kUpkl6AEoPKujjTln1c5shojbcgwyJaCzrL4EaNGiBYsWLeK9997jyy+/RKFQ0LdvX77//vsSVXd/3BU/IpDAtJ2XH4sRgUdFBD5BqCDOxKYzeUu4VdCL+bGvVRuzQYdDk264dn7T8lqu3sTkLeEE+Tk/kiXzZrMZLy8vnnnmGT766CNatmyJRCIpsmirSZ+LxNa6qoLUVo1Jl1ugra2NDbO2nmBoSz+OHz/OkiVLWLVqFf/++y+BgYHUrFmTuXPnMmzYsEpT1eBeIwL5Wyp2XExk/+WUCj0i8KiIwCcIFcSsvZFoDNZzYXcnNzbpcon7ZRDqwGcKnKsxGJm9N5K5oXfyWBqNRvbv30/79u2tVkeWNYlEQmZmJuvXr2fLli04Ozvz3HPPkdukP1qDrEB7qUKFWWsd5MzaHKQ2BUsMaQwmdh6/xM5fPmbz5s1otVoA3NzcOHLkCLVqVa70X0/SiMCjJAKfIFQARQ0L3i0n4hAytRO2/g0KHDObYU9EMqlZWtzsbTl48CCvvfYaly9f5urVq9SoUaPY99fpdNy4cYPo6Ghu3LhBQkICiYmJJCUlkZqaSnp6OhkZGdy+fZucnBxyc3PR6XTo9Xqr5NNarZbExER+//13Gro9A3ZVC7yX3NUXs8mIPu2GZbhTlxSFwqPwDeMH/j1B4tq1Vq+lpqZSv359bGxsUKlU2NnZ4ejoiIuLC25ubnh6euLp6Ymvry/+/v5Uq1aN6tWrV9iiriWRPyKQeGQD2ed2oUu+jl29drj3GAdA1oU9pG2bdecEsxmzQYv30OlM3iJ5ZCMCFZEIfIJQARQ1LHi3rHO7sGvYscinNwnw/Zr97Jk9gdOnT1vK+gwfPhyz2WwJXFlZWeTm5qLVatHr9ZaKCBKJBJlMhkKhwNbW1rJy0tHREScnJ+rUqYO7uzuenp54e3tTpUoV/Pz8cPDwIeTNz8m1cUWmdqBR3Zr0ateC8zcz2Xo+sUA/pTZK1HWfJv2fFbh1fQdd0jVyIv/FO7Rg4VkAqVFLtWrVSExMRKPJSw4dEBDA7NmziY2NJT4+noSEBJKSkkhLS+Pq1aucOnWK7OxscnJy0Ol0GAwGy/ygTCbDxsYGpVKJWq3GwcEBZ2dnXF1dcXd3x8vLCx8fH/z8/CwB09XV9aENpep0OmxsbAq8nj8iILd3w6l1f3KjTmLW31n0Y9+gA/YNOlh+zjq7k4xDv2PjVbPQEYHKTAQ+QagAwhMyrRYo/JchIwlt7Hncur1TZBuNwcTiv7aTfOzYnfMMBq5fv46fnx/+/v64ubnh4eFh9eHu7++Pr6+vJUl0SVkWWGw8i6RRD9TyvA/ryzr4YfslzBJp3tJMCgZq186jSd0yg7hfBiJVOeLWebTVVoZ8NjJwkGo4Hx1t9bqbmxtt2rTB0dGxxP01GAzEx8dz/fp1YmJiiIuLIzExkcTERFJSUkhMTOTKlSuWp9r8Lwb5T7RSqdTypUCtVmNvb4+TkxPOzs6WLwRVqlTB19eXqlWrEhAQgJ+fX6l+r0ePHqV9+/ZMnDiR999/3xIA7x4RUNdtDYA2IRKjPqXIa2Wdv/NF6b8jApWdCHyCUAFkagzFHs86vxtbv/oonItfsdijdz86vNyYSZMmceXKFcxmMy+++CI//fRTWXa34AILufUTiln6/x8tZnNhcQ+ZygHPPp/d830kEil7F3/Lnv5tGDx4MLm5uUgkEi5evIiTkxOurq489dRTvPLKKwwYMKDQJ6V8crmcqlWrUrVqweHXe0lLS+PatWtER0cTHx9vecpMTk4mLS2Ns2fPWg0D6/V6qwTbcrm8wLCss7Oz5YuIt7c3vr6+xMTEYDab+frrr5k9ezYLFy4kJCSkRCMCd8v7onQBt253knpLgDUn4xjZtmap7/9JIwKfIFQAjsri/1PMPr8bp1Z9i20DsGntahZvvhPkZDKZVQWEslCaBRY8wKKau4u29u3bFz8/Pzp37oyTkxOxsbFER0czb948/v77b0aOHMmwYcPw8vKiTZu8INmjR48yG550dXXF1dW11EVwc3JyiI6OJiYmhtjYWMv8af7caVRUFGfOnLEMP+fm5lqGnuPi4ujSpQvOzs60eGcmWkPJ5+eyzu8q8EVJYzARfvN2qfr/pBIb2AWhApi77yrTdl4udLhTE3eJpNWf4ff2MqS2RS/OUMqldHDPYeXnr5GVlWW16EQmk+Hi4kJAQIClwGvXrl3x9PQscB2tVkvHjh2ZNGkSHTp0sDpWVCaWlE0/oLl+BpNeg8zOBcdWfXBobF1vr7TyM7fcvSDj2rVrXL9+nY4dOxZof/bsWRYsWMCOHTu4du0aJpMJf39/2rdvz/Dhw3nmmYKrYSuaH374gfHjx6NWq1EoFPTp04fevXuzLNqeQ9GZVm1v7V+GMTPFsrjlbjfmvYHT0/2wD+pk9fpzgZ4sGtKiXO/hcSCe+AShAujbzI9pOy8Xeiz7/C7UdVoXG/QAcjUaVk5+BycnJ3Q6HRqNBplMhkaj4cCBA+zatYujR4+ya9cuVqxYgUajQS6X4+bmRvXq1QkODqZ9+/b4+Phw4sQJunfvzjvvvMOkSZOQy+WkpqbyxvR15Mi9kPznScqx1cu4dR2LRK5AnxpLwspPsPGqia33/W03KKpoa40aNYpcoRoUFMQvv/xi+Xn//v0sWrSIvXv3smzZMqRSKTVr1qRTp06MHDmShg0b3lffypNGo8HX15ehQ4cyatQoqlSpAsD21afgP4GvyGvEXcSYlYa6bsG8pI7Ke1e5qAzEE58gVBCFpfcqKYkE6jvo2DqhD3f/Jx0UFMSZM2cKPUej0bBv3z52797N8ePHuXLlCklJSZa9cnnXlWBnZ4eTkxMJ6dn4jvoVibzoeTQAfWociSs/weX5EdjVe9b6oNlc7PBneaVhM5lMbNq0id9++41Dhw6RmJiIjY0NgYGBdO/enZEjR97X3F9Z+/PPP3n11VdRqVSW+Uy1Wk3VkNfQ1umE1mDCbDKCyUj6gZUYb6fi1nUMSGVIpHl7JlO3/oLZoMO95/tW11bKpYzrVEfM8SECnyBUGEUNI5ZE/rBgyuWTdO/e3bLs38bGhv79+/PTTz/h7u5eomuNGzeO6dOnW70mk8noMHoyMU5BRa4+Td0+m+xzuzAbtNh41cRr4LcFNqVLMCOVSFDIpI+0aKtGo2H16tWsWrWKY8eOkZaWhp2dHY0aNeKll15i+PDhuLq6lmsf7mYymdizZw9z5sxh7X/2LHbt2pWf5y2m+/yTaA0m0v9ZQcbBVVZtnNoMwPnZgZgNOmJ/GYTHS5+gCgi2amMrl3JofEexqhMR+AShQinVwpH/998SPgsXLuTNN9+kSZMm9O3bl+nTp5OYmEizZs2YOnUq7du3L/Q6Go2GyZMn88MPP6DRaHBwcCA0NJSffvoJpVLJyCWH2R6RVmxfzCYj2hvhaGLO4dSqLxJZwdmUbg29aezvTPjN22zcFkbWrST+N+7NR5pYOTMzk8WLF7N27VpOnz7N7du3cXZ2plmzZrz88ssMGjSozDe/nz17lnnz5hEWFsa1a9cwm80EBASQnJzM7du3UavVrFixghdffBF48BGBkPpeYh/f/6scye0E4TER2iqArlW0YNTdc0GkRJL3pHd30AMYPnw4U6ZMYfr06YwfP56bN2+yd+9eJBIJHTt2xNvbmylTpliW22/evJmnnnoKOzs7ZsyYQb9+/YiLiyMzM5PZs2ej0+no06cP6/7ees/+S6QylP4NMN5O4fapLYW20RpMjGxbk+9eqk/cys9I2vADDnFHHumTiKOjI2PHjmX//v1kZmZy48YN3n33XdLT0xk3bhx2dnZ4enrSq1cvVq9ebfndlUZMTAwTJkwgODgYpVJJcHAw69atIzg4mI0bN6LX67l69SqvvfYaDg4O7N692xL0AN5qXwulvGAKuJJQymWMbl+50rsVRzzxCUIFYTAY+Pbbb5k4cSIvDX8Xz3YD2RORjATKbFgwJSWFDz74gN9//x2dTodUKsVsNtOiRQs+//xzunXrZmmr0+l46623WLx4MWq1GlXHN1HVa1ei90nd8jMShS2unUYWOPZSsC/T+gfz+++/M2TIEHQ6HS4uLkRHR+Pg4FDie3mYIiIimD9/Ptu3b+fy5csYDAZ8fX159tlnGTZsGM8991yBrRPp6eksWrSIv/76i7Nnz5KVlYWrqystWrRgwIABRe47zMjIQKPR4OXlVeBYWYwICGJVpyBUCP/++y+hoaFcu3YNgHcG9qJ9++akZmlZczKO8Ju3ydTocVQqCKziQN+mpR8WNBgMLF++nH/++QetVouTkxNms5nMzExycnIs7UwmE5988gkzZsxALpfj7u5OcnIyzX2duSGXFpjjM2ano4k+g6rWU0jkNmiunyb70j7cX/ioQB9sZBICqziQnZ3NqFGjLHX2bt26RXBwMFevXi3tr+6hqFu3Lj/++CM//vgjAMeOHWPBggXs2rWL1atXI5FIqFatGv7+/mi1Wi5fvmyZN2zcuDFffvklr7/+Os7O9/6S4uTkhJOTU6HH8oPXk1Kv8VERT3yC8Iht27aNrl27Wn5WqVScOnWKunXrlsn1//33XyZMmMC+ffuQyWR06dKFyZMn06BBXrLr48eP895773Hw4EFsbW0tWUecnZ1JT0/H09MTHx8fkm9rsH15Ksb/pGIx5mSQvG4KuqQoMJuQO3ni0KwnDsFdCvQlf4GFjVlnCbz5WrVqxeHDh8vknh8Gk8nE1q1bWbx4Mbt37+bWrVuWY1KplFq1atGzZ09GjhxJ7dq1y/S9z8alM3tvZKEjAtL//+ep5WHPxB71eba2R5m+95NABD5BeMRycnIYP348M2fOBPJWYiYlJRX5rb8k0tPT+eKLL1ixYgVpaWnUr1+fDz/8kEGDBhWazWTp0qW8++67ZGRkIJFIrDa/53NwcOCF7zdxMCbr/hZYACEN7iyw2LFjBy+++CK5ubnY2toSFRVl2bdWUR07doz58+eze/durl+/jkQioUaNGnTq1IkRI0bQuHFjDAYDa9euZfny5fz7778kJyejUqmoX78+L7zwAiNGjCizYrn7Lycx6e9LRCZnAWC6698lf0hcFKQtSCxuEYRHTK1WY2Njg0KhsDyFlSb58t1WrVpFUFAQrq6uLF++nP79+5OSksL58+cZMmRIgaC3adMmfH19ee2112jRogXe3t5IJJICc08qlYrk5GQ+7N74vhdYyDBZLbDo3Lkzzz6bt8/vmWeeqZBB7+rVq3z44Yc0bNgQGxsbWrZsybZt22jVqhU7duxAp9Nx+fJlZs2aRePGjYG8nKD9+/dn06ZNJCUlkZ2dzbRp03BycuKnn36iSpUqODo60rZtW2bMmEFmZuEb081mM1FRUUX2bfmR64xcfpIryVmYzNZBD/KeArUGEzsuJvLKgiMsP3K9rH4tjz0R+AThEYuLi2P69OlMnz6ds2fPcv78+VIVjr1y5Qp9+vRBpVIxaNAg3Nzc2L9/P6mpqcyaNavQ/WgHDx6kdu3a9OrVi/r16/PUU0+xc+dOcnJyMBqNlrk3yNvErtVq8fT0ZPGPX/Lh8zVQKUr30WHSaXC6trPAQpz58+cD0K9fv1Jdr7ykpKQwZcoUWrZsiZ2dHbVq1WLJkiUEBATw22+/odPpiI2NZcWKFYUuaCmMWq1m5MiR7Nq1i/T0dJKTk5kwYQJ6vZ4JEybg5OSEm5sbXbp0YenSpZbf/a5du6hVqxZz584tcM07i1yKn+cD64K0IvjlEUOdgvCINWnShJycHCIiIkp8jk6n49tvv2XBggXExcUREBDA22+/zdixY4stg3PhwgUGDhzI2bNnefrppwkMDGTJkiVIpVIMBgMSiQRbW1u++uor9uzZw9atW1m0aBGvvvoqEydOZOHChWRmZhLcdwxZtTujM5mL/eA1m0yYjTpu7VpE1umtzJ8/n4EDB6JWq0nJ0rLmRBxT56+gaas2+Hq6Eujt+FD38+Xm5rJs2TJWr17NiRMnyMjIwNHR0bIHcujQodjb25drH/KTbW/ZsoXw8HB0Oh1eXl44ODhw5coVVCoVb731Ft9//z0SiYQzsen0m7OfG3/PRHP9NCZNFnJnb1zaDUFVszlmo56UjVPR3ozEmJmE14BvUFYLAgrPf1oZicAnCI/QihUrGDx4MOHh4SVaALFz506++OILjhw5gkql4oUXXmDKlClUq1Z49fJ8MTExDBw4kIMHDxIUFMSgQYP44osvyM7OBrAMb3788cd8/vnnSKVSNBoNmzdvpm9f66oQa9euZeLEiVxLN+DdcQiyqo1RyGRWCyxMei1KlYpABwM3dy3h+I6/gLz5S6VPXYJf/YgEqRuA1SrR8p6XMplMrFu3juXLl3Po0CGSkpJQKpU0aNCAnj17MmLEiEc+5JqfbHvevHno9Xog79/H39+fsLAwfvg3k+1nosk4shb7Rs8jc/Ig9+pxUjZOxee1mcgcXLl9cgs23rVIWf8t7i98aAl8YiN7HhH4BOERyd+/NmDAABYuXFhku4SEBD777DP+/PNPbt++TdOmTZkwYQIvvfTSPd8jLS2NwYMHs2XLFmrUqMHXX3/NRx99RFxcXn03qVSKXC7n3XffZcqUKaUq4xMVFcW4cePYuvsf7IM6IXPzx8OnGsnx0WgSrvHzuwMYOiAvaDZp0oTTp09jH9wV1+deR6KwpdBCff/vv0vxzWZzqYZ/73bgwAEWLFjA3r17iY2NRSaTUatWLbp06cKIESOoV6/efV23PKWnp+Pi4oKdnR1GoxG9Xo9CocDDrwbK/lPRGQt+bMcvehunNgOwC7yTnDpu1hDce7xvCXwgUpeBmOMThEcmNDQUhUJhmee6m8lkYs6cOdStWxcfHx82b97MqFGjyMzM5Pjx4/cMejk5OYSGhuLh4cHJkydZvXo1Dg4OvPrqq8TFxSGTyVAoFIwaNYrbt2/z3Xfflbp2XfXq1Vm/fj3ZaYkE5F4heeMPXJw7huSNP3D76F+8NXwIx/6/Gvwrr7yCY9NuuDz3OhKFkuKCHhScl/pv0Lt+/XqRWx8uXbrE2LFjqVevHgqFgrZt27Jv3z46dOjA/v370ev1XLp0iWnTplXIoAdw+fJl5HI5zZs3Z926deh0OnJzc/l04cZCvwAYs2+hT7uBjce9E23nF6StzMQGdkF4BE6dOsWaNWtYv369VcA5efIkEyZMYNeuXUgkEp577jlWr15NcHBwMVe7w2AwMHLkSJYtW4a9vT1z587ljz/+sCwekcvlmM1mhgwZwqxZs1AqlQ98L1evXuXUqVMsXLiQESNGWLZC5OTk0K5dOy5evEjtVs/jnFz7/5/07sg8sYnsc7vQJV/Hrl67ArXlcvUmJm8JJ8jP2TIvdfToUZ5//nk8PT2JjIzk5s2bzJs3j02bNnHx4kU0Gg2enp60adOGb775hl69epVZQdqHJf9J/J9//uHQoUP4+fnxwgsvcDOgM1qD9dOe2WggZeMP2Dd6DoWb/z2vLQrSiqFOQXgkqlWrhp+fHwcPHiQrK4uvvvqKpUuXkpycTJ06dXjvvfcYPnw4aTl61pyIIzwhk0yNAUelvNAFICaTiUmTJvHNN9+g1Wp56qmn8Pb2ZuPGjUBewDOZTPTv35/58+eX6YKNmjVr4uzsTPXq1dm6dSs6nQ6lUolWq0Wv1yOTyQiZtJaLmfICC2FyIg6BREJu1EnMel2hRVXvnpfasGEDAwYMsCrZk52dbUko3a9fPwYPHlwmAf1+5eTkWKqt37x5k8TERJKTk0lNTSUtLY309HQyMjLIysoiOzubnJwctFotOp0Og8FQ6B5KAHt7exqM+oUE2Z0N6WaziZSNUzFpc/DsM7FAUvDChjpBFKQVT3yC8JB98803xMfH8+WXX9K0aVNOnz6No6Mj/fr1Y9KkSXh6enImNp03V5xk3+Vk4L8LQBKYtvOyZQHIoc2r+Pjjj9FoNDg6OqLVajl69CiQV07IbDbTs2dPfv311xKlzCqNqVOnEh0dzV9//UXTpk2ZMmUKrq6uODs74+zsjKOjI6cuRfJ9uIzCvmGr67bOu7+ESIz6lELfw2yG3eFJPPNcFw7u3n7X62aCg4NZv359iUsu3UtmZiaxsbHEx8dbBa2UlBRu3bpFeno6mZmZlqCVm5trCfB3By2JRIJMJkMul2Nra4tSqUStVmNvb4+DgwMeHh7UqVMHV1dXPDw88PT0xMvLCx8fH3x9fVGr1Xh6emJra4uLiwtz586le/fujPvjNOtPx1vuP3XLzxiz0/F8+ctCK2EUpbIXpBWBTxAeolOnTvHZZ58hl8t54403aNWqFWFhYTz33HOWNnl7tIrOxZi/enLHhQS2nYkhffdmQkJCOHXqFJGRkVZtO3fuzJIlS/D09Czze0lLS2PChAl8+umnjBs3jqpVq/LRRwXzc57MdUMeeRljEXX8SsJoNJLpVp8aNa6QkJBgyS2anp6Ou7s7JpOJtLQ0bty4QXx8PAkJCVZPWoUFLY1GYxW08ge/8oOWQqGwBC07OztL0PLx8cHFxQU3Nzfc3d3x8vLC29ubKlWq4Ofnh4eHxwMPrZpMJurUqcOwYcMYO3asJaFAoLcjtvIEtAYTadtnoU+NxeuVSUj/M4RsNujh/79qmE0GzAYdyBRIJBKUcimBVSpmMvCHRQx1CkI5MxgM/PTTT8yePZvo6GhkMhn/+9//+PDDDwtkSLmf7PsYdaSGLSDrdMGyQVeuXKFWrfIpR/PMM89w/fp1wsLCaNCgAWFhYYwZM4aQkBDefvttatbMq/T97upTlqeUotzavwxjZkqhQ535nNMvc27+BwWGAiUSiVXQksvllqClUqksT1qOjo44OztbgpaHh4claPn6+uLn54ezs3OFng9MydLS5rvdZKcmcGPOa3nBTHonk45rl7ewb9CBuNmvYcxMsjrX981FyJ29xKpOxBOfIJSb/fv3M3HiRA4cOIBCoaBFixZER0dz5MgRmjcvuI/qTGw6H/zve26dDiuw2EOXEkPq5p8w3LoJgI13LVw6jcTGvSrIbHB57nV0CVfQJURanlikUinh4eHlEvg2bNjAoUOHOH78OAMHDqRhw4a0a9eO8PBwIiIimD17NtWrV6dTp05E+Ydwr1WcJaF2diMgIIDo6GgkEgkGg4EWLVqwePFi/P397zvN2+PE3d6WdnU8CLtkotrHm4ts5zf610Jfl0jyyllV5qAHYjuDIJSplJQURo8ejaurK+3btycjIwN/f38MBgNHjx6lZ8+ehQY9gFl7IzGpXXBq3R/7oE5Wx+T2rni8+Al+7/6O39iVqGq3JGXD95bjUoUtr05aitlsxmQyodfr2bNnT6mywRQlMzOTY8eO8fvvv/Ptt98yatQo+vbti5ubG7179+bUqVNcu3YNOzs7y/vrdDoiIiKYOXMmF04df+A+ALQMDuLq1askJCTw5Zdf4ubmhqurKw0aNKgUQS+fKEj74MQTnyA8IJPJxNKlS5k6dSrh4eG4ubkxdOhQvvzySxwdHfHz88NoNGI0Gjl06BC7d++mY8eOVtdIydKy73Iy6jqFL/aQKu2RKvNWYprNIJFILU9/eSQcup5BapYWU24mY8eO5a+//kKpVPL+++9b9TUuLo7IyEiuXbtGdHQ0N27cICEhgeTkZG7dusXt27fJzs5Gq9VaKo1LpVJsbGxQqVRotVpMJhMNGjTg+PHjluCTkpLCpUuXrO5LKpXSqKobEXJJgWX4AGaTEfL/mE15c1FSmdXwHWA1L+Xu7s6ECRMYP348ubm5pfzXevw19ndmQrfA+yxIG1jp05WBCHyCcN/Onz/PJ598QlhYGEajkQ4dOrB06VJatLBeJp6WlgbkzT9lZWURERFRIPCtOVGyDcUx0/pj1uWC2YzTswOtjplNJrqP+ZoTy7/DaDRiNpvRarW4urqSm5uLTqezzI/lrzZUq9U4Ojri4uKCh4cHDRs2xM/Pj6pVq1KjRg1q166Nn58fBoOBPXv2sHLlSn777Tfc3Nw4ePAgBoMBrVbLtWvXqFmzJpcvX8ZoNCKRSKhSpQoBAQHE7PsDffsPQVLwKSXj4O9kHFxl+Tn7wh6c2gzA+b/3BvRt6mf1mlwur7AV28ubKEj7YETgE4RSyM3NZfLkyfz666/cvHmTmjVrMnXqVN56661CF0Xo9XrLnrPmzZvz22+/ERgYWKBdeEJmgcrmhak6bjUmnYbs87uQOVqv1NSZ4PotvSXZNOQF2zFjxhAYGEitWrWoXbt2sVsaDAYDR44cYceOHfz1119ERESQkJBAbm6uZS+gvb09/fr1Y+XKlbRu3ZotW7ZYzu/duzfr1q3DbDYTHx9PfHw8zZs3p21td/ZdvVXgA9r52YEFgtx/iXmpwoW2CiDIz7nIgrT5eU871PVgdPta4knvLiLwCUIJbN68ma+++ooTJ05gZ2dH7969+eabb/Dx8SElS8v8f6IK3WR+/OBeAH744QfGjRtnCUjR0dGEhISwdu1a6tWrx9HT5wC3EvVFaqPEvklX4mYMxPaNOcjs7nygdX+pL5/PGM2cOXOYN28e6enpDBkyhBo1alhdw2Qycfr0abZv386RI0e4dOkS8fHxZGdnI5PJcHZ2JiAggI4dO/Lss88SEhLCvHnz4oGCTQAAIABJREFUmDRpEtHR0fz+++9kZWWxcuVKADQaDd9++y0HDhywvIeNjQ3Dhg1jzpw5LN64m/1XDJglpf/IEfNSRQvyc2ZuaHNSs7SsORlH+M3bZGr0OCoVBFZxoG/Th1fp4nEitjMIj7X80jb3ymxyP+Li4vj0009Zt24dOTk5tGjRgi+++IKuXbsCeaswZ+2NLGKTed63bW9TKr0D7Rk76EXLMaPRSFBQEBcvXkStVmM2m7F7fjR2DTpY2txreb/ZZCT2p5fxDp2KjXdNy+svBfsyrX9eejO9Xs+hQ4dwd3cnLCyMgwcPcvHiReLi4rh9Oy9llZOTE1WrVqVRo0a0adOGbt26FVrpISkpCR8fHyZPnsyHH36Ii4sLL7/8MqGhoXz22WccPnwYlUpF7969SUlJYfv27dSoUQM3NzdOnDiBwWDg3Zlr2Zaouo95qXpiiE4oUyLwCY+lkgSd+yltYzAYmDlzJr/88gvXrl3Dx8eH119/nU8//dQqDda9Npnn++/8SlZWFqGhoWzYsMGqne/zQ1C26IveaAKTkfQDKzHeTsWt6xiQytBEn0WmckThGYBZryV9/zJyIg7i++ZCJPK8vYA2Mgmt7dMwnN/GuXPniImJISMjAwAHBwd8fX1p0KABbdq0ISQkpFQJmps3b05qaipRUVF89NFH/Pjjjzg6OpKRkUHjxo2ZOHEi/8feecfXdP5x/H1nbvaeNiGIxCbEqFWqRRF7terHrzXatGit8qO0pTGKoi1FjSL2aO0gdokRJFYSSZC9k5s7zv39keZwZYjRVtr7fr3uK8k5z5nc8z3P83y/n0+vXr0A2LJlSxFj2Y4dO3Lw4MHnvm8mTLxMTIGvHPNn9nZeZV7Gw3PevHlcvXqVtWvXAnD27FmmTJnCsWPHkMlkdOnShdmzZ+Pt7V3C8Z8no64ON3b/wJw5c4qsb9HudZJbfkhiyDqjZA8AW/8BKJyrkH58HfqsZCRyJWYetbBrOwylSzWxnaDTkPbTB7g7WFOnTh38/Pzo1KkTjRo1eqGi7I0bNzJo0CCxKDwrKwuVSsWoUaOYOXNmsaUE/fv3Z9OmTQCYmZkRERFB1apVAbgSl26alzLxt2IKfOWQP6u3Ux54kaBTGPxWrVrFmDFj0Ov1DBs2jG3btpGamkrdunWZOHEigwcPLjFQXI5Np/8PZ8jT6sVlBp2WlAPfFeuG/ThyBGJXf4zm4e0nd0vbtm1JqdubbLvqpQbzkpAAneq68P2Qlys8fPfuXWrVqgUUDNEWMnToUL755hucnZ2LbPP++++zfPlyXF1dSUpKol+/fuJc4OOY5qVM/F2YAl854988VFRc0AHQpSeQcuA7NPERIFdg6eWPfceRRrVg5goZm0b6cff3EPr27Ss6W5ubm/Puu+8ya9YsHBwcnnoOI3/+nYM3EozuvaBRk3m2eDdsuZ2r2E4C5N46TdK2OTz5tZNKpfQe+THnrf0xyJ5dQLjw+l5GD0kQBJYvX86CBQu4fbtACWby5MnMnj3bqN3atWsZMmSI+Hd6ejotW7bk9u3bbNy4kbZt29K1a1c2btwoypeZMPEqYFJuKUc86u2UHvSgqJHnP4GlIbdR6/RFlqcc+A6ZhR0Vx/6Mx7uLUceGk3Vxr1EbtVbPfxYE07NnTzHoAbi4uLBkyZIiQe/cuXNGPRx4VGT+5L2XKlXYtR6E3M4ViUSKhWcz5Lau5D/RszMAtrVb8t7oj4pcg8FgIHTnemzvHkZmKHqNpfGyCpPDw8N56623MDc3JzAwEFdXVyQSCXv37mXChAliRqqtrS27d++me/fueHt7c+XKFUJCQvDw8CArK4u7d+/Su3dvnJycOHfunCnomXjlMJUzlBMux6Yze19EkSE+bXIsKQeWoUm4jczcFvt274pWL1C8kWd5pKSgA6DLSMCm8VtI5EpkVkrMqzVGm3zPqI0BSJQ707P/ELw9qxAdHU14eDjR0dHEx8dTseKj4ujY2FiaN2+OmZkZgYGBfP7555ibm5e5yLw0N2y9Xs+Oyw+KLP/kk0+YN28e8Nf26jUaDV999RUrVqzg/v371PBuQP//rcSuSl227fmNOrW7E2NRC5fYhxgMBurWrcvRo0dxcXFhxowZ3Lx5E39/f3JycujZsydbtmx5pUWeTZgA01BnuaG4ITaDoOf+D+9j3fANrJt0R30vnKStM3F/91sUDhXEdo8beRai1+tJT0/H0bFstWN/N8uP3WHBoZvFFnlnhf1Kftx1HLqMRlBnk7jpc+xaDzZ6AYCC+c8xbavR1DqDzz77jNOnT6PX65k9ezYeHh5kZ2eTlZVFbGwsixcvNtrWycmJWsNmE6+oQGkY9DoSN09Hbu+OY5cxxbbJjzjO0iHNmTVrFhEREXh5edGhQweCgoLENn92Asjx48eZOnUqp06dQqVS0aHvcGz9+nA2NrvgHJ84nlanQ54Uyabp79Ggkj1ZWVm4u7uTk5MDgI+PD5cvXxZ7hSZMvMqYAl85oNCK5MmHviYpmodrx1Pp4y3iAyfhl2kFGX9thhi1LbQicbBUsnfvXsaOHYutrS2XLl36S65Br9eTmZlJRkYGWVlZ4s/CYJOTk2PkSF34ycvLQ61WE+XWlmyn4tPvtcmxJO/+Bk1iFBgELOt1wPHNj4p9CGdfPULK3vnPdQ3V352L3rVuieuf5oZdSDsvZ356p5noGVe/fv0S9/kyE0AyMzOZNm0a69atIy0tDV9fX6ZOnYq6YpOy9TABlaKgh3lq7VyWLVtmtH7r1q1iSYMJE68ypqHOckBZh9gKMKBJiil2zeerf+XQ4k+JiYkhPz8fR0dHVqxYIQacwqCTl5dnFHQKDTsLPxqNBo1Gg1arFU089Xq9+FMQBPFT3HuVVCpFIpEglUpF+xy5XC5+FAoFCoUCpVKJUqnEzMwMnXvx/1UNBoGEzZ9j3aALbkO+QdDmkbJ3EekhP2HfbniR9pU9vZA4OZGeno5Op8PMzIzx48fTrVs30VTUyspKDJpyuZzp06czefJkPt5yuURfuWdxw7YzL6i7c3Nzw83NrcR2AI5WZoxq82JzZFu3buWLL77g8uXL2NnZMXjwYGbOnImdnd0zZckaKJg3nrn7Gg9ORyOXy2nevDmtW7emadOmdO7c+YXO04SJvwpT4CsHlKTjqHCoiMzClsyzW7Fp+jbqe1dQ3wtHVcWnSNt8ncCm306QcvOmuCwlJYXx48cXCTqFAacw6JiZmWFlZYWTkxMqlQoLCwvR4NPS0lL8FDpUF/60sbHBxsYGW1tbrKyskMmez0oFSjYzFfKy0GcmYd3oLSRyBTK5AivfjqQf/7nYwNe2RTMWLEzi4sWLzJ49mx07dlC/fn2aN29u1M7Dw4NOnTrx3XffYWFhARi7Xz9JaW7Yj/NXuV/fv3+fzz77jG3btpGXl0eLFi04cuQIr732mtimcN444cxOcq4eLuIBCJB1eT+Zp4PR56RhVrEujl0/BGtH3LuOJnj3hnI9b2zi34sp8JUDMtW6YpdLZHKce08l9eAKMs9sRenuiWWdVlBCOnyXHj2p4C1n6dKl6PV6LCwsSElJ+TNP/aVRUtCRWdgit3UlK2wfNs17YdDkkX31MIrHCrsLeTzoNGrUiK1bt5KSklKswn98fHyRZY0dtGg0GpAaf210GYlkX/oNZAriFj8aYi50w36c4lwGXhaCIPDDDz8QFBTE7du3cXNzY/z48Xz22WdGqjOFFGbJyq0csW3Zj7yoixi0GnG9OuYK6cfW4jpgDgoHD1IPfU/yrnm4DfoKrQG+C7ltNG9swkR5wRT4ygE2qpL/mZQu1XAb9JX498Ofx2NZr0OxbZ1trPj666+ZNm0aK1as4PffX45B6F9BQOOKLDh0s9h1zr2mkHroezLPBINUhqqKLw4dRhRpV1zQKSm55/Dhw7z++uuijU8hlQbOQla5IY8P4MptXUp1wy7kz3IZuH79Op9++ikHDhzAYDDQsWNHgoOD8fX1LXGbx7NkC5OAnvQAzLtzHovarVA6F2h32rbsT/zSYWjTHqCwd+doZBIp2fmmYnMT5Q5T4CsHlDbEpkmMQuFQAYNBIOviPnTZaVj5dCzS7vHejpWVlZE5aXnAycqMtrWci2S2AihdqxsF/+J41qDz5NAngJ2dHbu/GlNsEX1ZeJkuAxqNhrlz57J8+XLi4+OpUaMGQUFBfPDBB2UqJyjzvLHRzS74XZsUg8LeHQkQfDHuhecgTZj4qzEV3JQDAhqXPDSWE36UuMVDiPt2MOqYy7j2n4VEXnSo888cYvurGP2aJ0rpc6bL67W0cVIX6cGVxNChQ43aSqVSIiIiRPdrc8WzfXVeVpF5aGgobdu2xcLCgi+//JI2bdoQExPD7du3GTNmTJlr6Mri/6eq3pjciFA0iVEI2nwyTv4CSDDo8oGCEouIB1kvdD0mTPwdmAJfOaCwt1NciZR9++FUCtxE5U+Cce37PxT2HkXalHcjT71ez+nTpxnctTW5J9ehesago1JIUZ/awKA3WmNmZoa3tzfvvPMOISEhRdpOnToVqVTK9u3b8fb2RqksyMAs1J6EAgPQnlXBoM3H8JRAKpEUyIm9iLVOZmYmgYGBODk50aZNG9LS0li/fj05OTls2LCBypWLFso/dZ8lzBs/jnnVBti1GkjS9jnEL3sPua0LEjNzZNaPhocz1dpS9mDCxKuJKfCVE0a/5olK/nxZkeXVyHP79u306NEDOzs7/P39CQ8P56cpw+lbU47MoC/2ReBxCoPO1K51OL5qNjKZDJ1Ox/Xr11m3bp2RaermzZsxMzNj9uzZuLi4EBsbS3h4OGvWrGHQoEH85z//ASAjI4N27drx1Yg38Yrbx+t1XTGTS1HJjb9KKrkUg06Dhz6JTSP9nivo7dy5k8aNG2NnZ8fq1avp168fycnJXLlyhX79+j3z/h6ntHnjx7Fu/BYVRv1ApXHrsPDyB0GPwrnqY/t5dl1REyb+bkxzfOWEwiG2Z3UmEDRqHB+cJ/+BI4YKTcqVssbUqVO5ceOGWAtYv359IiMjmTVmDNMXreShg+8zKZv06tWLrVu3IggCCoWCUaNGcfnyZdq0aUNmZiYWFhbs37/fKOW/f//+9O/fH4CgoCAmTZqEk5MTp0+fFucBSyoynzqoE6fiorjqq8B30KAyXfP9+/eZNGkS27ZtIzc3Fz8/Pw4dOkT79u2f6x4ePnyYiRMn4uPjQ+PGjalTpw4WFhbokpMwkyvJ1wkYBD0UfgwCBp0GpDIQ9GjT7qNwqoI+M4mUXxdj3aQ7MpWVeJ//itIMEyZeNibllnLGs+o4phz+gaRT21CpVFhbWzNo0CDmzJmDubn5X3fSz8mVK1do0KABBoMBc3NznJ2diYuLQxAE0tLSsLOzeyZlk1u3blGvXj2xBvHBg0eama6urjx48KDYF4Nr167RrVs37t27x6efflrEpaAkatSowd27d1GpVEyfPp3PPvus2HaCILBy5Uq++eYbbt26haurK//5z3+KmN8+D+fOnaNVq1ZotVokEon4EjFq3HgOWrRBj5T0E+uL9QC0adqDh+s/Q5f+AInSHCufjti1GSK6XhSqAZXXIXQT/15Mga8c8iw6joc2r2LixIno9XokEgnOzs7cvHkTW1vbv+38y8KtW7do2LAhjo6OJCQkkJ+fL65TKBTk5+c/V+91xowZbN26lfDwcHGZTCZDpVIRHBxMly5dxOU6nY533nmHX3bsxavLMFp364cGeZkNf11cXEhKKvBMlEqlzJkzh08//VRcHxERwaeffsr+/fsRBIEOHTrw1VdflSphVlZyc3NZunQpa9euNbpWS0tLTp06RdWqVak5fB7mns156phxMRSn/2rCRHnBFPjKMWXp7cTFxeHp6YlGo8FgMLBu3ToGlXHY7e/i7NmztGnThvr163PmzBmCg4MZPXo0yckFNWYVKlQgLu5ZZNwKGD58OD/99BNQYPz66aef0qNHD9GmqHbt2ly/fh2JRMLWrVt5b+JMzBu/jaVnU2Qy2TMb/pqZmSEIAjqdjq5du4qO7vPmzWPZsmXExcVRvXp1PvroI0aPHv3CrgYPHz4kKCiIrVu3Eh0djYWFBf7+/uj1eo4cOSIO0daoUYN27doRmaTGptfnqJ9h6LyQl+n/Z8LEX41pjq8cUxYdx4oVK1KrVi0SExPx9/dn2LBhuLm50aFD8UXufzf79u2je/fudOnShT17CorC+/bty6JFi0Tt0McthMrC/PnzxV5vjRo1uHjxIjY2NvTp0wcAa2trsrKyiIiIYMaMGfz666/c0DnhHDATg0yOzgC6J1L/C3vZB64ncPxmchFroJSUFCQSCV5eXty8eZPatWsTGBjIiRMnUCqVdO/ena+//poqVaq8wN0q8NCbN28ev/32G4mJiTg6OtKpUyc2b95MkyYFvbHjx48TExPD4cOHqVy5Mvv27ePYsWOcPn2am4Irc359Hkf7Fy/NMGHi78LU4/sXEBERga2tLe7u7gwdOpQNGzawf//+Vy74rVy5kpEjRzJ8+HB++OEHcfnmzZvp378/v//+O0qlkoyMDPz9/Ytsn5SUhFwux97eHoD9+/fz9ttvo1arsbe3JzQ0lLp1jd0VkpOTuXz5MmFhYcycOZOsrCwqtO2PZash5OvL/tUoCAYFJQt5eXm0bNmS8PBwDAYDUqkUrVaLj48PkyZNYsCAAc95hwo4ePAgixYt4vjx42RlZVGpUiV69OjB+PHjnxpIBUHAwcGB9u3bs23bNuCv9f8zYeJVwBT4/oUMGTKEjRs3vlLBb/bs2UybNo2pU6cyc+ZMkrPzCb4Qx7X4NIJ37qWyuzPv9uxc4rxafn4+9erVo2LFiqxcuZLmzZuTnJyMmZkZGzdupGfPniUe++zZs/Ts2ZPk5GQGfziFk6qmxG+fhzr6MoJWjczSHhu/3ljXL3AfyIu+ROqB5egzk1B61MLpzUDkti6YK2RseK8p73Rvz9WrV8VEksaNG3PhwgXu3r1LtWpFNUSfhk6nY/369Xz//fdcuHABrVaLl5cXAwcOZNy4cdjY2JR5X++++y6bN28mLS1NrFGEP9//z4SJVwlT4PuXMnjwYH755RcOHDjw3KnyL4uxY8eydOlSlixZgn+3gSwNuc2xmwVJIWWdV/v4449ZunRpgYg0BckkM2bMYNq0aSUeV61W069fP3bv3k2bNm3YsWMHE3ff5uCNBPITY1DYeyCRK9CmxPJwwyRc+sxAbuNM/Ir/4PjGOCw8m5F+fB3quGu4Dw1CAuiiLxD3y3SkUikqlQqtVkuNGjXIzc2ladOmBAcHl+meZGdns2TJEtavX8/169eRy+U0bNiQESNG8M477yCXP/ssRXh4OL6+vmzYsEEs0XiSl+n/Z8LEq4op8P2LGTRoEJs2beLgwYO0a9fu6Rv8CQQEBLBjxw42bdpEXoXGzzXkFhoaSps2bcQelpWVFRkZGaUmi/z000+MHj0alUrFxo0b6dy5c4mGv9qUOBI2TMK+40iE/Bxyrh7Cbcg3QEGdZNy3A3F/dxEKx0rIJQY29K+OIS9LNJpVqVQkJSUxdepUcnJySjyvuLg4goKC2L59O/fu3cPS0pJWrVoxduxYunbt+ox3tijVqlXDycmJ8+fPv/C+TJgoz5iSW/7FrF+/HoPBQKdOnf7y4CcIAm3btuXs2bOEhIRwS3Am8P1RZN8NQ1BnI7dzw77tMMxrFCRo5Nw4QXroevRZKcitnbBrO5TZGDh48CBrPx8JFPTyLCwsyM7O5tChQ7z++utFjhsTE8Obb77JjRs3GDlyJEuXLhUD0ZPCzSn7vyPn6mEMunyUrjUwr9GE9GNrjSyPpEoVcjs3NEn3CgKfTEZYuhmj2hjPJep0OiZNmsSqVasYMeKRc8SVK1eYO3cuBw4cICkpCScnJ15//XV27NhBgwYNXvg+GwwGJBIJX331FbGxsZw9e/aF92nCRHnHFPj+5WzYsEEMfocOHTJSLfmz0Gg01K9fn3v37hEWFobOpgJfLQ0BS0fcBn6FzNaZvDu/k7TzazyGLwGZjOTdQbj0noqqemPy7vxO8o6vMKtQh6NKB1zrNGP62Hfw8PAQi9ObNWtmdExBEPjoo49YunQpXl5e3L59u8h825PCzY6dP8Ch0yjy4yNQ37uKRKYomPOzMK6BlJpZYtDkASULN8vlcjp06MDcuXOpUKEC3377LaGhoeTk5FC5cmUGDhzI+PHjnzljtTQKe8DJyclMmzaNzz//HBcXl5e2fxMmyiv/2MBXmBwR8TCTTLWuzEXH/0Y2btwo+rgdPnyYtm3b/mnHSk9Px9vbm7y8PG7duoWHhwcjf/4djVSBXetH9YUWns2Q27qS//A2chsnpCpLsfdn4dkUicIMXfoDVBXq8PbkpbxfSiH14cOH6devHzk5OSxbtoyRI0cW26444WaJVIaqkjc5146SFbYPqUKFkJ9r1EbQ5CJRPlLCeVK4WafTsWbNGu7fv8+tW7d46623qFOnDpMnT2bs2LFYWVk9/cY9IzqdjnPnztGiRQu6deuGu7s7n3/++Us/jgkT5ZF/XOC7HJteSnLEQxYcullq0fG/lV9++YX+/fvToUMHjhw5Qps2bV76MeLi4vDx8cHKyoro6GhsbGyMDFEfR5+ThjY1HqVzZeT2HigcK5F76yzmNZqQd/scErkChXM1DFCiIWpmZiY9e/bk6NGjdO3alc2bN2NhYVHi+ZUq3CwI6NIeoHCuQs7Vw48Wa9To0h6idH7kkGCjUpCZmcm3337Lhg0biIyMRKFQiILTnTt35pdffnmme1dWCoc2z5w5Q+vWralXrx7Xrl3j0qVLf8rxTJgoj/yj3BnWnYmm/w9nCrLydEKRJAX1H8sOXE+g/w9nWHcm+u850VeUX375hV69etG+fXuOHz/+UvcdHh5OrVq1qFChAnfu3BFT8IszRDXodSTv+gYrnw4oHCshkcqwrNee5F3zuDevJ8m7vsGh8xikygIdy0JD1MdZuHAhzs7OXLt2jdDQUPbs2SMGvdOnT2Nubk61atXo0qULY8aMISAggPDQ/ZjJJehz0sm5fgxBk4dB0JN39wI5N46hqtoAi1ot0CTHkBNxEoNOQ8bJjShcqqJwrASA1KBj66pvsbW1Ze7cuVSrVo19+/ahVqs5efIkEyZMYNeuXS/13hbH/fv3sbS0JDw8HKlUKrqzmzBh4h+U1VlQhPs8ChTP75P2T6Vv375s27aNo0eP0rp16xfe37Fjx+jUqRMtW7bkyJEjRlmNH20KY8el++LfBoNA8q55CPm5uPSehkQmJy/6Esk7vsal30yUbjXQPLxNUvAsXPr+D6VrdQB6NqhAUB9ffvnlF95//30yMzMZPnw4P/74YxFNz9TUVBwdHXkSO7dKOA1fhjo7g6TtX6JJjAKDgNzWBevG3bBuUKDj+aiOLxGl+x91fHYFXn0GnYYWSfuY8sk4fHx8ihxDp9OhUqlYvXo1gwcPfuF7WxKLFi0iMDAQg8GAXC7HysqKqKgo7OxMoxwmTPwjAt/l2HT6LjtO/N4lqKMvFZsVWFrRsUlzsCiFwS8kJIRWrVo9936Cg4Pp168fvXv3ZvPmzUXWD19zniMRiUDBMF3KvkXoMhJw6TMDqaJg6DLj7Dby467j0nuquF3i1i8wq1gX2+a9CraNu0Ls+ilir0ahUHDt2jVq1qwpbhMZGcmXX37J3r17Rd3PQiQSCStXruS03IeDNxJKLacoCQnQ2fvpws0dO3bk/v37XL9+/dkPUkYGDx7M+vXrUSgUDBs2jHnz5pmCngkTf/CPmONbGnIbtUaL3Nqp2KxAiVJF0vY5RkXHSTu/xn1oEGqdnu9CbptU5p9g8+bN9OnTh3bt2nH06NHnCn5Llixh3LhxjBs3joULFxbb5vF5tdT9S9GmxOLa/wsx6AGYudck80wwmoS7KF2ro3l4h/zYa1g3elTblpOebDSUp9Vq8fb2xtraGkEQyMnJQavV4ujoSMWKFUlPT0enK0hmMTMz4+DBg7Ru3ZpGsemcuJVMnlb/zNerUpTN8Perr76iWbNmPHz4EDc3t2c+TiGlJXDt3bsXc3NzQkNDadSo0XMfw4SJfyLlvsdXUtExwP2VY7D1H4Cgziq16NjkK1YyAQEB7Ny5k5CQkGL1MUtiypQpfPnll3z55ZdGVjxPsvzYHYIORJCXlkj8suEgU4h+bwAOXUZj5d2OzAu7yTq/C31uOjJzG6wbvYnNH709QZtP1axwpvb2Y/DgwaSlpSGVSpHJZOTl5WFubo5SqSQ7Oxu93jigSSQSGjVqRLdu3fDz86NVq1Zsv5rEF3tvGMl2PY1nHTZ3d3enc+fOrF69uszHKKT0BC4pgsGAPu4q66cMxa+m+zPv34SJfzrlPvAtP3aHBYduFgl8+pw04r4bjsfwb8m6uA+DoMOx82hx/f0fP8C21SAsa/ujkksJ7FTrqU4H/1aeNfgNHz6cNWvWsGrVKoYNG1ZiO41Gw/D3P+SEw+tI5MoS2z0NhRQWvGbJ8kXfEBISQk5ODpaWlnzyySe4u7szb948oqKiqFmzJjNmzODNN98kNDSUb7/9lpiYGORyOQ8ePCA9PV0MjFYN3sC+w3tIZEokpSjAPK9w8+eff878+fPJzs5+pms1CUqbMPHilPuszieLjqFoVqCgVSM1szRqU1LRscFg4Pz584wbN479+/f/NRfxihMcHEz37t157bXXOHXqVIntBEGga9eurF27lj179pQY9AqLyW1sbNiybhV5dy/w7Faof2AQyLp5hu6d23Pnzh2mTJnCgwcPGDJkCEFBQYwZM4batWsTGRlJZGQkAwYMwMbGhq5du/Lbb7+xevVq6tSpg8FgQK/X4+Liwuuvv84w/+p4PziAMvE6Bp0GQZtvfFydBomgo4Ihmf/WVNPF89lq8SZPnowsf36NAAAgAElEQVRarS6zdic8nsBVetADMBggT6tn9r4bpuxlEyaeoNzP8T1ZdGwwCCTvCQKZHIdO/wUoU9Fx2LUIunf/nGPHjpGbm4tOp+Phw4d07tz5z7+IcsDWrVvp1asXbdu25fjx47Ro0cJovU6nw8/Pj/DwcM6cOSN6wT1JYdZleno6FSpUKAhSjV3YkychX/ccgw96HcOauPG/n3MJDw8nMDCQqVOnYmdnx4cffsj06dONXAgEQWDnzp0sXbqU06dPk5eXR7Vq1Xjvvff4+OOPi51zKxRuvhafTsyDRHLSktGkRJF15SC3o28xMS2NjzQaZDIZ1tbWuLq6Uq1aNerVq0fTpk1p06ZNkf2qVCr8/f2ZOXMmAQEBAGRlZbFx40beffddFAqFUfvLsenM3hdB7La5xbpGGPRaknfNI//BbfSZibgOmIOqii95WoHZ+yLwrWhnSuAyYeIPyn3gezw5oiAr8Fv0Oem49JmBRFawrixFx+EXz5Oyd7fRvg8ePEjHjh2pXbs2DRs2pFWrVtSsWfOFnbLLK9u2baNnz560adOG48ePk5ubS3BwMEFBQfj4+JCYmMi1a9eoUaPokPHp06cZPHgw0dHRdOzYkZMnTxIfHw/Aqd0bSTa44tBhBFqh7H0/lULK5O4NyLwQT82aNYmPj6devXrs3LmTt956S2yn0Wj48ccfWbVqFZcvX8ZgMFCvXj1mzZrFf//731KL2qE0w99HSigajYbz589z6tQpLl26xM2bN1m3bh2LFy8mPz8fqVSKlZUVLi4uVKtWDW9vb9q1a8f//vc/kpOTcXJyIjQ0lP/+978sXLiQbdu2Ubt2bXH/S0Nuo9bpsfHrg+MbHxq5Rihda6B0roJZRW+sm/QgecdXRmdpSuAyYcKYch/4arvZYCZ/SL5OKDEr0KJWC9KOriIn4iQWnk2LFB2byaW0aFaXLb/JjJIf0tPTOXbsGCdOnEAQBDEL0NzcHHt7eypUqEDNmjXx9fWlefPm+Pn5oVKp/tob8Bezfft23n77bVq3bo1cLkev17NlyxakUilRUVE4OTkZtY+JiaFv376cP38ef39/Tpw4wblz5wgJCRHbnDlzBqVSyaKFC8s8f2Umk1Ip6Ryj2vdCr9fTrVs3Fi1aJGpdpqamsnDhQjZt2sStW7cwMzOjWbNmrF27ln79+r30lxelUom/v3+xc6A6nY6wsDBOnjxJWFgYkZGRbN68mdTUVACcnZ2xsrLCzKzg/+yNGzfw9fVl4sSJzJw5k9Rcrahuo3R+3GhWggQJurQHmLl5YtO0R8HiJ67NYChZ3caEiX8j5T65pTCrMyflYalZgaUVHRdmdRrUWXTr1o1z584hCAK7d+/m2LFjnDlzhps3b5KSkoJer0elUmFpaYmZmRmCIJCXlydmDMrlcmxsbHBzc6Nq1ap4e3vTpEkTWrVqhYeHx991m14q/fv3Z9OmTeLfjo6O3Lt3z6jnlJ2dzZAhQ9i5cyc1a9Zk48aNYlp9YGBgseUNPj4+4FCZhw71Ma/RpMC9/LEXGJVcil4QkDy4zr3ffsBWn8FHH33EhAkTkMvl3Llzh3nz5rF7927u37+Pra0t7dq1IzAw8E+RYHsZTJgwge+++46vv/6aL774goSEBKP1KpWKQV/8xIl0W3Eu+0nXCNdBXyF9bNg+bukwnN76BFUV30f7MSVwmTAhUu4DH8DIn39//qJjCXSu+6joWBAEZs6cyYkTJzh8+HCR9jdv3mTXrl0cP36ca9eucf/+fdRqNWZmZri5ueHq6oqtrS1SqZTExEQePHhAWloa+fn5SCQSLC0tcXR0pHLlytSqVYsGDRrQsmVLfH19n8tc9K9Gq9ViZmZmVDPn6enJrVu3gIL7FxgYyPLV63Fs0pUWbwRg6+xuVGPWuJ4XMTExxe6/Zs2aPHz4EK1MRb9P52NfrR4ZeRpi797k+qmDJJzeSYM6nsydO5f27dtz+vRpgoKCOHLkCGlpabi7u9O1a1cmTJiAl5fXX3JPXoTc3Fysra3ZsWMHPXv2FEcc6tWrx4IFC/Dx8eGLw7HsvmocEA2CXnSNsPULEIf1ofjABwXqNgv6vbjVkQkT5Z1/ROC7HJtO/x/OPFfR8ctQbklPT2fv3r0cOnSIsLAwoqKiyMzMRCqV4uTkRM2aNWnWrBleXl5oNBquXr1KZGQk9+7dIzk5mZycHAwGA2ZmZtjZ2eHu7k6NGjWoV68ezZo1o1WrVqK25Z9FWd0s9uzZQ58+fVCr1Ubbnzx5kgsXLjBtwY+oGvfA0rMpcrm82BqzrJtnyT63leyYa0CBj55UKhWHkjt06MCuXbtITU0lMDCQXbt2IZVK6dOnD3PnziU0NJTvvvuOM2fOoFarqVGjBn369OHjjz8uMtT6qqLT6YiMjOTIkSPMmjWLnJwc1Go1gmCcoSyRSGg6fhUJMudi95Py2xIUTpWxadJdXFZS4OtQ24WVw5q+/IsxYaKcUW4C39MezK+aVqcgCISGhrJ3715xqDQpKQm9Xo+1tTVVqlShYcOGdOjQgW7dupGfn8/Jkyc5f/48169fJyoqiocPH5KZmYlWq0Umk4nJEVWqVKFOnTo0btwYf39/qlev/txzVk8rhjaAkZuFt7c3169fRyKRIJFIEASBihUr8vDhQyx8X8ep00gEqbzU3rdBEECvpU9NGS2cdAwYMACt9pGVT7Vq1bCysiI8PBwPDw8+/vhjZDIZa9eu5cqVKwD4+voydOhQRo0a9UrMqxoMBhITE8W5vKtXrxIdHU1SUhJZWVmo1Wr0en2RwFYalpaWfPnll0Q6+LEnPLHYNin7vkWiMMOh0yhxmanHZ8JE6bzyge9ZHsxX49Nf+eLeO3fusHv3bkJCQggPDyc+Pt5oqNTb25tWrVrRvXt3vL29AVCr1Zw7d46zZ89y+fJlbt26RXx8PKmpqeTlFdQimpub4+joSIUKFahVqxa+vr74+fnRrFkzo3T+x3nWYuieVQW+fO9N7O3t8fX15dSpU2LAathnLLlebzyT2olKLkV9egMxh9cVWde0aVPq1q3LyZMnuXPnDiqVCj8/Pz744AN69er1l2TW5uTkEBkZSVhYGOfOnSMyMpL79++TlpZGTk4OGo0GQRBKdD2QSqUoFApUKhW2tra4urpSvXp1GjZsSJs2bWjYsKEYtB0dHbGxsSE6OhqlUsnKlStFEetCkYbcjFTUMZcx92yGRK5EHX2JpO1zcOo+EYuazTHotICB+BX/wbHrh6gq1SuY85ZITHN8Jkw8xisd+J5HpcK3oh3fhdzmaGQSEjB6EBcGynZeznzwmucrU9eUmZnJr7/+ysGDB7lw4QLR0dFkZGQgkUhwdHTE09OT5s2b06VLF9q3b29U4yUIAnfu3CE0NJSLFy8SERFBTEwMiYmJYsKNQqHAxsYGd3d3MZU+v3Jz9t03e6ZAJRG0DKyjokNlJR07dhQf+Eq3mlQYOo/EvQuLrTHTJN8jZc98dGkP/mjviX2nUSidKiMVdGh+/Zr4q6eLHM/e3p727dsTGBj4THJpJaHT6YiKiuLmzZtcunSJS5cuERUVRWJiIhkZGajVanQ6XYm9MolEglQqRalUYmlpKWb2enl50bx5c5o3b06tWrWea642MDCQ77//nr59+7JixQqjl5XCBK7czLRSXSPivhuOPtO4Z1jhvyuR27maZPlMmHiMVzbwvejQZWHRccSDLDLVWmxUCmq7WxPQqHw4sAuCwOnTp9m7dy+nT58mMjKSpKQkdDodVlZWVK5cmQYNGtC+fXt69OhR7NzWjh07CA4OpmfPnly9epWrV69y9+5dHmiUKN+YSOpvS4oNVPnxEaSfWIfm4W2QSFFV9sG+0yjkVg6g05D0y2Ry4yKQy+XodDqcek7GoqYf2pRYFPYeRjVmLn1moLBzQ1DnILN1KVBaubiX7MsH8HhvCRgE8u+c42HwF0bnXrly5RITYB4nMTGRiIgIbt68ydWrV7lx4waxsbGkpqaSnZ1Nfn5+qb0yiUSCXC7HzMwMGxsbnJ2dqVKlCvXq1aN58+b4+PhQpUqVl97DLDSMLSQrKwtbW1sOHDhA+/btAYyO+SIJXAZBQBdzgdZEULVqVZycnKhcuTJ9+/Z94eswYaI88koGvsux6XQeOZm0SwfRJEVjWactTm8FFmmXHrqRjND1uPT/AvOqBXMX/3SboZiYGHbt2kVISAhXr14lLi6OvLw8lEolbm5u1K1bVxwqnT17NsHBwVSpUoV9+/aJWY6FD9H8xJhiA5WQk46gVWNerRFIpQVlINmpuPabiUEQUN8+i/LcGuLi4pBa2FLxg5+KaG1qU+JI2DAJ+44jsazzyNPPIOjJDvuVtKM/UXn8VgAkgg6HE/NJT4jj7t27QEFd3PTp07l27Rq3b98mISGB9PR08vLySu2VwaMhRnNzc+zs7HBzc8PT05MGDRrg6+tLnTp18PDw+NuECAq/ck/6BNavX5/k5GQ0Gg39+vVjyZIl4roXSeBSSiFm1UcFLzJ/HNfFxYWHDx++wFWYMFF+eSXz55eG3EawsMe2ZT/yoi5i0GqKtNGmPSA3MhSZlYPR8n+6SkWVKlUYO3YsY8eOFZfl5OTw22+/ceDAAS5cuEBQUBDTpk0TH7B3796lXr16fPLJJwRO+vypxdCPByoA68ZvkbBhUkErqRSz6o2J/3UxAFY+BUOehY/wJ2vMCv0QAe4t6Fegj2owYNt6kLhcr9dzS+9E1t1Hru8ajYYpU6aIf8tkMpRKJba2tjg4OFCxYkXq1q2Lt7c3tWvXpk6dOri4uLzQvf2reDLgabVaunXrxo0bN8Q5UysrY+3P+pXsmNK19nOPgqS6jmXChAloNBoMBgMDBw588QsxYaKc8soFvuTsfI7dTMKiVksA8h/eRq9NLtIu9cAy7F97h5T9y4yWF6dScevWLTZv3mz0IP0nYWlpSe/evendu7e4LDExEVdXV/FvnU7H119/zU9nYrFt9SjolBaoCsmPvYbC6ZG8GwYDDk26orm8D4VzFaMic8fOH+DQaZRYYyaRPZqPrBy4CUGjJif8MDKbR0FKqjDDulItcn5/VNYgk8lISkrC3t7+he/Pq8CTQ5uPI5fLMTc3R6FQiBm87u5F7YQKE7HKMu8NBswVcjGBS2g2htWrVxMWFoajoyMLFy7kwIEDbN++3cis14SJfwOvXOALvhD31DY5EaFIZArMazQFlhVZLwGCL8bRzdOc/v37c+LECYA/JfAJgoBarSYnJ4fc3Fyys7PJzc0lJyeHvLw8cnNzyc3NJS8vT/yo1Wrxk5+fj1qtRqPRkJ+fT35+PhqNxuij0+nEn1qtVvzo9Xp0Op2YJl/4s/BTHHprNzT6R0/M0gIVgCYxioyTG3F+zP1cqjDDYONBZmYmzk+4XgBIpDJUlbzJuXaUrLB9RjVmUqUKq4ZvELdoEGb/WYbMsmBI2tG9EqqqVYmOjkYikaDX6/8xjuFPm02QSCRs3bqVDz/8kGXLlokuEcUx2K/qUxO49IJA+o1TtKksZUDTTkDB8O/GjRvx8/Pj2LFjqFQqevbsiZeXF/369WPNmjUlZv+aMPFP45ULfMXZDD2OkJ9L+rE1uPb7osQ2ap3A/xb+wH+3f2203M3NTZwfejxIGAwGo98LH1RP/l4eKKyvKw6ZTIZLhSrkPrlNCYFKm3afxM3Tse84siA1/jGkKkvs7OxQSksZdhMEMZPTCIMBgy4ffVaKGPjuR98h5Y/5PSh4UNetW1d0OWjSpEmxLgflgZL+PR5HKpWyePFiHB0dReHqkvCtaMfywU1KTOB6q64TFZ3fYp1EQvjxfWzZsoUaNWrg5eVFcnIyMlmBpN+VK1cIDg5mxIgR2NraMnfuXKMhdBMm/qm8coHvSZuhJ0kP3YCld3tRZ7MkdNKib68ZGRmiSohEIhHnjWQyGVKpFLlcjkwmQy6XI5fLUSgUyOVylEql+DEzM0OpVKJSqVCpVKK7d2HbwvaF2z/5KWz75O+F+y3u98K/C/dbFh48eGCkDSqVSrGxsUEmaEve6LFApctIJGHjVGz9+2NVr33Rpvk5aLVaqtoqSJRJyMtMK1JjlnPjGE7dJ5IXFYbM3AaFS1UM2nzSj/+MVGWFwqlAJFwll/LRmHc5ZR7Lnj17yMvLw9PTEx8fH+7cuUNYWBjffvutkeybi4sLlStXFp0z/P39qVOnzivjnFFSAsvTmDFjBmfOnCH6QQrLj90pVUmnJNeIx1/WLl26RL169di4cSNvv/22GPQKCQgIoFevXgXzv4GBfPPNNwQHB9O0qUnhxcQ/l1cuq/OjTWHsuHRf/Dvt+M/oM5PFrM77q8aiz0oRFeiF3EykZhbY+AVg6xcgbtezgQcN868SGBgoquALgvDMD6LyQmH5w759+zh79iwRERGi7U8hLi4ueAd8RJRVXXR52SUWQyvdapCw/jOsGnbFtnmvosfS5pMRup4xHWozbuIUWn9zjLxSasxyIkJJP74OfVYyErkSM49a2LUdhtKlGoBRjdn27dsZNmwYY8aMYc6cOUbH1el0XL58mVOnThEWFsbNmzeJjY0lOTmZvLw8DAYD5ubmODg4iIX8DRo0wM/Pj6ZNm/6lQ3mlzemVxuXYdBYcuM7Ju2lIpdKnKumUhEqlIj+/wDy3UqVKbNmyhebNm5d67MTERHr37s3Jkyfp2LEjmzdv/scMN5sw8TivXOArVKlQa7Qg6EkP3YA+KwXHN8aCVIaQnwOPWQc9WBOIfYcRmFdvLCrUP6lSsXPnTlasWMHevXv/EYEvMTGR3bt3c/ToUa5cuUJMTIyoDWpnZ4eTkxNWVlZcunSpyFxfYfmBoMkrMVClh24gI3QDEoWxFFjlTwrcwg06DW9LL5AcF8Xx48epNHAWD2TOL0UkHAp65oUSbc9CVFQUJ06c4MKFC1y/fl0s5M/KykIQBBQKRYlaqK/CA/55BBtKUh5ycHBAq9WSm5vLrFmzmDx5cpnPIyQkhIEDB5KUlMTEiROZNWvWK9OTNmHiZfDKBb5ClYqEoz+TcXKj0Tpb/wHYPZYGDwVqFY5dx4l1fMBTVSrKKsj8dyMIAqdOnRJ7cZGRkSQmJooOCTY2NpibFwT73NxcMjMz0Wg0KBQK7O3txUSbQszMzDh16hTLrwkvVAyde+s0ydu/BArS7pt2CeCeZy90PPvDUSroWBbgxetNvP7Ul5LU1FRCQ0M5d+4c4eHhBYX8Dx6QkZEhZlJaW1vj4uJC1apVqVu3rmgnVaVKlafu/3mHNgt52Vqzp06dEs12lyxZQkZGxjP3eL/88ktmzJiBtbU1a9eupWvXrs+0vQkTryqvXOCDl2sz9DjPKsj8V5KQkCBqeF6+fJl79+6RmZmJRCLB3NxcNCnVaDTk5eUhCAIWFha4uLhQo0YN0SHe09OTOXPmsHPnTrEdgJ2dHefPn8fT05NLsWn0WXYSreHZH9KCVk3C+s/EYmgomD/sPPoLouwaPNODW45Awm/LyL2yHxsbG/z8/AgICOC999575vN6EfLz8zl37hynT58uooWqVquRSCRYWFjg5OREpUqVxHnFQjspqVRapqHNO3fuIAhCkfKBwuL03Dw1KQe+Qx19CUGdjdzODfu2wzCv0YTsa0dJ/W3po43+SBCqOuJbdk4fUqJggyAI2Nvb06tXL3766adnvje5ubkMGDCA3bt307hxY7Zv3y6a/ZowUV55JQPfn2Ez9DKHkV4EvV7PyZMn+fXXX8VeXEJCAnq9Xky2gYKiZp1Oh1QqxdbWlooVK+Ll5UXjxo3p0KEDjRs3FoefdDod8+fPZ9myZURHR1OhQgVGjBjBZ599Rv/+/dm/fz+nTp1CqVSyY8cOZs6cibnP69i89g5SRdmdDQzafNKPriTv6kEx47XQP27EiBG0emcS/9t9FYNETmn/qR6/xzMGd+TOnTt/LJdQv359wsLCnu/m/gkIgsD169cJDQ0lLCyMiIiIYu2kCnU7a9asia+vL82bN6dly5ZGzhEDBgxgy5YtzJkzh/Hjx4v/foUvevp8NZlnt2Ll0xGZrTN5d34nedc8PIYvKZLMlX3lEBmnfqHCf3+gi7dbqYINP/30EyNGjCA+Pv65s2KvXLlCQEAAd+7cYfjw4Sxbtqxc+EeaMFEcr2Tgg5c79POyh5Fu3rxJzZo1n/qGf//+ffbs2cOxY8cICwsjJiZGHHqUyWRivVrhw9PJyYmqVavi4+NDixYt6NixY6mu7ceOHWPatGliUHvjjTeYM2eOkQHrvXv3+Oyzz9i2bZuY7AAFtj6v/Wca+xMtydcJpfeuDQKCToPHw9P8ungKjRo1EjMuIyMjadOmDWfPniU/Px+5aw0GzPqJIzcSMFepnioSvnXrVoYNG0ZOTg4ABw8epGPHjqXe11eBwh5eXFwcoaGhop1UdHQ0Dx8+JCsrC71ej1wux9bWFjc3N2JjY8nMzMTMzAwvLy927NiBtbMH/l8fKbGE5/7KMdj6D8CytrFI98MNk1BV9sGu1cAyCVBXrVqVqlWrEhIS8kLXvWrVKsaNG4dEImHJkiUMGzbshfZnwsTfwSsb+ODl9NLKMoxUkiiztb2zUe9Rq9UydOhQfvnlF9asWcPQoUOBgh5XaGgov/76K6dOneLatWtkZGQYZZEW3mZLS0uxZ9CoUSPatm2Lv79/mT3lEhMTmTp1Klu2bCEjIwNfX18mTZpEv379jNrdunWLefPmsWfPHh48MK6l8/HxEX3trsSll1gMbdAVSMUJcVeZPagNQ996TTwHKysr4uPjGTJkCMHBwYwaNYp9+/YBBUEdMyuW/nrhqSLher0eDw8PMjIy8PHxISwsjDVr1jBokPFc7qtEWefzMjMzOXnyJOfOnePq1avs2LFD7CEXUq9PIPm1OhqJChSiz0kj7rvheAz/FoVjJXG5LiOR+OUj8Bj1PQo7tzJZDoWGhtKmTRt+//13GjVq9CyXWwSdTseoUaNYvXo1np6ebNu2TbTQMmGiPPBKBz4o/cFcFpuhsgwjaVNiixVldus/U5wvjIqKokWLFiQkJABQoUIFDAYDSUlJRiaqUDDnZW1tTfXq1UWV/44dOxr1xJ4FQRBYsWIFCxcu5NatWzg7OzN06FCmTZtm5Mx+4sQJ5s+fT0hICOnp6bi7u/Pmm2/y2muvMXToUDHdf8WKFaLXWyGPF0PHJqTw+6ljpEZdo7ZZOueOHy7x3C5fvkzXrl3F4VoXFxcSEwuscVxdXfn+++/p3r17idtDgYuEVCqle/fuTJgwgaCgIMaNG8fChQuf6369iqjVaszNzbG0tESlUjFgwABatWrFriR7TsYXra006HUkbp6O3N4dxy5jjNaln9yIOvoyboO+EpeVxWS2efPmpKWlcfPmzZdyTffu3aNXr15cvHiRHj16sH79eiwsLF7Kvk2Y+DN55QNfIc9jM1SYIfqsw0j5D2+TsGESlT/egkIqwebo11w8fbzI9oXlA15eXvj5+eHv70+HDh1eWmr8hQsXmDJlCkeOHEEikdC+fXtmz54tvrELgsCmTZtYvnw5586dIz8/H09PT/r160dgYCAODg5s2rSJgQMH0qNHD7Kzszl16hTJycnF9jA1Gg0DBw5k27ZtNGvWjLNnzyKVSjl9+jTNmjUr9hzfffdd1q9fLwZ/iUSCwWBAqVTSoEEDzp8/T40aNVi7di0tWrQo03Vv2rSJQYMG0aJFC44ePfpKzCU9b11eIXq9nrlz5/Laa6/h5+cn7mv4mvMciTD20DMYBJJ3zUPIz8Wl9zQkMuPrj1/xH2xb9MXKt5O4rENtF1YOayqea2RkJEqlkurVq4tt7t27R7Vq1di4ceNLtSTas2cPw4YNIzs7m1mzZjFx4sSXtm8TJv4M/v4nShkpSaWiNErT/dTnpKFNjUfpXLnIusdFmQVBT7yyovhAL8Tc3NyoVOBlkZmZyfTp01m3bh0pKSl4eXmxZMkSRowYgVQqJTc3l6CgINauXcu1a9fEhJCgoCBGjBhhlLIeFBTEhAkT+PDDD1mwYAF5eXncvn272KD3008/MXr0aDEBplq1ajRp0gSNRsPrr7/OhQsXqFGj6P1ftWoVDg4OzJ8/H3g0DKjT6cQi6EGDBuHv70/Dhg1Zv349tWvXLvUe9OvXD29vb1q2bEnlypW5ePFiuZQqexyZTMakSZOKLLdRGX8FDQYDKfu+RZ+TjkufGUWCnjruOvrsVCy8jF/W7kZeY+TIH7h9+zbnz58nLy+Pfv36sX79erFN5cqV6d27N++//z4BAQEvrTbvrbfeIikpiSlTpjBlyhQWLVrEpk2baNWq1UvZvwkTL5t/dFVqSbqfBr2O5F3fYOXTwWjuBB6JMtu3excAPVIGvD8BQRC4d+8e06ZNo1KlSjg4OBTZ7/MiCALr16/H19cXOzs71qxZQ0BAAImJidy4cYPu3bszceJEqlevjpWVFdOnT8fFxYWtW7eSn5/P77//zgcffGAU9MaNG8eECROYP38+CxYsAAqCtY+Pj9Gxo6Ki8Pb2ZsSIEQwdOpTU1FS6d+/O+fPnRXmrjIwM2rZtW2ygl0gkrFu3joCAAGbPno2np6f4knD27FmqVKlCaGgoly5dQqvVUrduXdq3b19k3vFJ6tWrR1xcHFZWVlSrVo3Q0NAXvc0vxJ9VY1jbzQYz+aOvYer+pWhTYnEJ+NzI9aKQnKuHsajVEqnZoyFFhRTuXjzBDz/8wNGjR8nOzsZgMKBSqdBojC29Vq9eTXZ2Nl98UbLW7fMglUr58ssvSUhIoE6dOrRp04a2bduWqjlqwsTfxT868BWn+2kwCCTvCQKZHIdO/zVaV5Ioc6a6YBivUqVKzJw5k3v37hEX93QXiadx48YNevbsiaWlJcOGDcPBwYHjx4+TmprKBx98wMcff4yrqyvu7u6sXr1aHH7Mzs7m4MGD9F0pJ/kAACAASURBVOjRo9i39h49evDdd9+xZcsWPvroo2KPLQgCI0eOFAPV7du3Wb58ubi/EydOoNMV3D8HBwf69u1b7LHWrl1LcnIyP/zwA5MnT6ZixYo0bdqUtLQ0fv75Z7Gdr68vV65c4dChQ0RFRVGxYkUCAgLIzMws8f7Y2NgQERFBly5daNu2LUuXLi2xbXmli5cduj8SXnQZiWRf+g1Nwl3iFg/hXlAA94ICyL52FChINsqJCMXSp4PRPqRSKReDv2P+/Pniy4/BYODnn3/GzMwMZ2dnOnXqxOLFi8nPz2f8+PHMmTMHtVr90q/HwcGBQ4cOcerUKaKionBzc+OTTz4p1TjYhIm/mnIzx/c8PKn7WTCMtAhdRgIufWYYvVHrMhJ5uP4zbFsEYN3QWKGiLIkDZUWtVjNnzhx+/PFHHjx4QLVq1Rg9ejQffvghhw8fZtGiRYSGhpKVlUWlSpXo0aMH48ePL5N6iE6nw8/Pj6tXrxISElLinNquXbsYOnQoGo2GpUuX8u677xZpExISQmJiIgsWLMBgMHDmzJli9+Xm5karVq0IDi6QM7O3t+fDDz9kxowZpZ7rpk2bGDt2LKmpqbz33nssXry4VGWR2bNnM23aNIYMGcKaNWtK3feryo0bN2jdujVqtVq0ljIYDPiOXkKmddVSax9L4knBhv379xMQEIDBYCArK4uIiAjWrFnDoUOHiIiIICcnBysrK/Ly8qhTpw579uwp0/+t52XRokV89tlnqFQqVq5cSa9eRbVfTZj4q/lHB75C3c/C4c6U35agSYzCtf8Xoq4ngC4ruURR5rKkipeF3bt3M2vWLC5cuICFhQU9e/bkf//7H0eOHOHHH3/k4sWL6HQ6ateuzcCBAxk7dqxRxubTyMzMxNfXl7S0NC5evFjsfFxiYiLdu3fn3Llz9O7dm/Xr1z9VxmrJkiV8+umnYp3d42zcuJHBgweTlJSEg4MDWVlZ2NjYEBMTQ+XKRedOi2Px4sVMmTIFjUbD+PHjmTlzZolzT7/99hvdu3fH29ub06dPl7kE5FVBo9FQoUIFo+G/du3asWDNtpcq2BAREcH58+cZMmRIkfYJCQmsXbuWVatWERERARQIWnt6etKuXTuGDh1KkyYlF8M/D2q1mqFDhxIcHIyPj484h2zCxN/FPzrwPZ7VqctIJH7ZcJApkEgfWbM4dBmNLu1BiaLMZSkOLomYmBgmT54syoc1bdqU8ePHc+PGDTZu3EhkZCQKhYLGjRszYsQIhgwZ8lwZjLGxsdSvXx+VSkV4eHix849Tpkzh66+/pmLFiuzYsYMGDcrWg83Ozsba2ppbt27h6elptM7Dw4PmzZuzfft2AJYtW8Ynn3zyzEk/giDw+eef880336BUKpk9e3aJvnDR0dE0adIEg8HA77//Xm4eoDqdjk8//ZRFixaJtXxVqlThxo0bmJubv3SRhbJQo0YNXFxcGDny/+3deVxVdfrA8c9duFz2RQVUcM/ABTTTVMqNZNySNBMTw6V0tBzL8ddQo9VY48+aLOuXqTm5ZqXGuCblMqK5BIIK5AZCIhCCsst21/P748YVBFyQRS/f9+vF62XnnnvOuXEPz/me83yfZxbbt28nNjaW7OxsFAoF7dq1w9/fn0mTJjFixIh6SYRJTExk/PjxXLx4kcmTJ7N27VrR/FZoEhYd+KDh6n7WpqJ82MqVK7ly5Qpt27bl+eefp7S0lIiICDIyMnBwcGDQoEHMmzePwMDAez+wSs6cOcPAgQPp3Lkzp0+frvaH5NixY0yYMIG8vDyWLFnCG2+8cc/7cHNzIzQ0lGXLlpmXbdu2jRdeeIHs7GxatmwJQGBgIDk5OZw+fbpOn0Wr1TJv3jy++uorXF1dWbFiRY1p9+Xl5QwcOJCzZ8+ya9cuRo4cWaf9NQaj0cjSpUtZsmQJMpmMt956izVr1pCdnU1MTAy+vr7mdRu7rF50dDQDBgwgKirKPF1Fr9fz008/sWXLFk6cOEFaWhpGoxEPDw/69u3L+PHjCQ4Ovq/R9nfffcfs2bPR6XR88sknzJ49m48//pj4+Hg2bdpU6/seluLywoPP4gNfQ9T9rMnhw4d55513zOXDnnjiCdRqNSdPniQvLw83NzdGjBjBG2+8QY8ePe64vbsRERFBUFAQQ4cO5aeffqpyVV5cXMyECRPYv38/w4YNY/v27fd067SyoKAgkpOTOXfunHmZp6cnvXv3Zs+ePeZlLVu2ZObMmSxdurTuHwrTbdsZM2awY8cOvLy8WLduHcOGVW+GO336dDZu3Mj777/PwoUL72ufDWHNmjX87W9/o6ysjLlz5/LRRx8hl8s5duwYGRkZTJo0qdp77rdgw73y9/cnKyvLXC+1JtHR0WzevJnIyEiSk5PRaDS4uLjg5+fHmDFjCA0NpVWrVve0X6PRyLx581i1ahVt27bl2rVryOVytm3bxpgxY6qs+yAXlxceThYf+MB0Jb34h/PoaigLVRsrhYx3x3SrckW9b98+PvvsM3Nfv4ryYdu2baOwsJD27dvj4ODAb7/9RllZGR07duS5557jr3/9a73PQ1uzZg1z5sxh+vTpfPXVV1Ve+/TTTwkLC8PJyYlt27YxZMiQ+9rX999/T0hIiDk1/j//+Q8TJ07k6tWruLm5ATcrk1TUMa0PmZmZvPjii0RGRtK9e3fzlI/KVq5cyV/+8hfGjBnDjh07Hoi+ceHh4cydO5ecnBxCQ0NZuXLlPY+Q6lKwoS4yMzPx8vJi06ZNd10mLiUlhY0bN7Jv3z7Onz9PcXExdnZ2eHt7ExgYyPTp0+/6O5CVlUW3bt3Iz88HTMlRqamp5ou0B6W4vGBZmk3g+8eec9RSwKVGSjn845nu5pMoKiqKIUOGoNFoCA4ONncAt7e3x9bWlry8PCRJokePHoSGhjJ79uwGK9+0cOFCc6+0d955x7z87NmzjB07lrS0NBYsWMDSpUvrJRDo9XpUKhU///wzTz75JF5eXvj6+rJ3717zOuvXr2fOnDkNkiKfmJhISEgIp0+fZsCAAXz77bdVMhFPnDhBQEAAnp6enDp1CkdHR3Jzc7G1tTX3K2wMhw4dYsaMGaSnpxMUFMSGDRvqPMpuTCEhIURERJCbm1un70tOTg7ffPMNe/bsIS4ujtzcXKytrenUqRODBw9mypQp+Pv71/je3bt3ExQUVGWZn58fcXFxTfLcU2gmJAsXl5Yveb/9o+Qy/M+SyqOLhEIp2fUIkNq/+YPU/s0fpLaz10qAJLNSm3+cngqR2r/5g+T99o9SfHq+9Ouvv0rW1tYSYP6xtbWVZDKZZGNjIw0ePFjasmWLZDAYGvzzTJkyRZLL5dKGDRvMyzQajTRp0iRJJpNJffv2la5evVrv+23Xrp00bdo0aefOnZJMJqu2j9GjR0s9e/as9/1WduLECemRRx6RZDKZNHr0aCk3N9f8WlZWltSmTRvJwcFBOnr0qOTh4SG9/PLLDXo8FWJiYiQfHx9JJpNJAQEBUmZmZqPst76UlZVJ1tbW0qJFi+pte5s3b5bGjRsntW3bVpLJZJJCoZDat28vTZo0Sdq+fbuk0+kkSZKkoKAgSS6XS0OGDJECAwOlNm3aSAqFQhr14hyp61u7JDvf4ZLCsZUkU9lIVm4dJbfn/2E+dyt+nJ4MkQDJbdI/q5y3glCbpr8v1MC+OJxMud6A0r4FTgODq9Q3rMxr/lbaLQin3YJwnP1fAKBcb+B/1h+gZ8+eVVr6AAwfPpyff/6Z0tJSDh8+THBwcIPcZtu6dSuJiYkYjUYGDx7Mli1b2L9/v7kdzObNm3F1dSUiIoLw8HBOnjzZIOW9hg4dSmRkpDkh59Z9xMTENHg7oQEDBpCUlMTOnTs5ffo0bm5uTJ06lfLyctzd3bly5Qq+vr489dRTXL9+nW+++cZ8C60+3PoduHTpEv369aNfv37Y29uTmJjIwYMHad26db3tszGo1Wr+/ve/869//ateyvCp1WpCQkLYvn07GRkZ6PV6IiIiGDp0KLGxsUycOBGVSoWHhwf79u3DaDQSHR1NQEAAGRkZlJaWon4siHKtDqVDSzwmf4DX/K04D3qR67s+RF+Qbd6XLv8qpYnHUNjfzGQu1xtYeTi5pkMTBMDCK7fkFGs4knQdSQLbRwdi23UAcpu7v/UkSZBYpDS/p3LZqmnTpjV4LcKSkhKmT5/Ok08+SdeuXYmNjeXMmTMEBASY/8hPnTqV4OBg8vLyGnRy8PTp07ly5QppaWkoFApzI9rRo0fz2muvce3aNZ577rkG239lY8eOJTMzky+//JLdu3fj6OjIggULkMvlZGVlAaai0DqdjlWrVlV7f06xhtVHUnh96xlmbIzh9a1nWH0khdxiTbV1K5w5cwYXFxcSEhLIzMwkICCARx99lJKSEmJiYjh58mS9PdtsCosWLcLe3p5p06bV+7blcjmBgYGsX7+eS5cuodPpOHXqFM8++6z5YqKsrIywsDC8vLw4cDSKs7lGZFZqnJ8KQensjkwmx7ZLP5RO7miybga1vP2rcBkyDeQ3pwFJEkQmXr/t71No3iw68N2uSPWtfl85nYwvppKz91MMpYXm5dbWKpbviiI5OZldu3bxwQcfMHHiRDp06NAAR1zVli1bkMlk5OTkkJKSwoEDB+jWrRuvvvoqnTp1QqfTcfHiRdauXWuuq9kQXn/9dUaMGGH+719++QWZTIZMJiM6OprPP/8cMI0Kb2131JBeeuklcnNzWbx4MatWrcLW1tacnahUKtHr9bz77rvm547x6QXM+joW/w8PsfxgEjvjMjl08Ro74zL59GASAz88xJ83xxKfXlBlPyUlJYwdO5by8nICAgLw8vLit99+48CBA5w7d44+ffo02mduKHK5nFWrVhEeHk5aWlqD7693796MHDkShUKBg4MD1tbWeHp64urqykfh1TuhQPXC8iUXjyFTWGHTuW+1dWVA+On7LysoWCaLDny1FamuTG7riMfU5bR9ZT2tp32KpC0lZ8/N+WpaA1zO09C5c2eeeeYZwsLC2Lp1611PAK/J3Y44li5dWuXW08iRI2nZsiXr1q1j9erVXLhwoVFGGb169apSa7FyI9P+/fubOzIolcpGG/VVkMvlvPXWWxQVFVW5xShJEoMHD0aSJJ555hm+/iWVSf+O4sCFbDR6Y7XvRfkfy/afz2bSv6PYHJVqfm3WrFlkZmYiSRI5OTm89957XL58mYCAqjUzH3YTJ06kS5cu9dqy6HZ8fX1Zvnw5R44cobi4mPT0dBISEug1ZHS138+theWNmlIKjmzE9elZNW67XG/k4tUbjfExhIfQQ9OWqC5qKlJ9K7nKBuvWpuChsHPBdfgcMla8iFFTaq6AX1Gk+n7dfj5SFssPJpnnI50/9iMpKSlV2iEVFRXh7+/PwYMHG7Vc17Rp05g/f765tuTQoUPNrwUGBrJ3716USiVvv/0248aNa7TjqiwxMZHU1FRzRwKDwcDRo0c5fvw4Xx1O5P09CWTuXUF5ahzG8mKUzh64DJ6KTefH0eakkfvDJ+jzTR0jVB5deOf6HIxSIAdXvcu3334LmIKsTCbjxx9/fCDnDdaHLVu28Pjjj/P555+zYcMGli1bVuX3XZ86duzI3Llzqy2/9bytqbB8wbFvses+DKWze63br6/zVrA8Fh34bu11dlcqHuNVmuXhqLa672O503ykionK+89ncyTxOgWR2/Hz8+PKlSsUFNy89Zaent7ojVn/+9//UlhYyNNPP82BAweqzKWrKIT99NNP8+abbzbqcVXWrl07Nm7ciEajQavVkpeXx44dO3hh7ptYjwqjXFNqTpRQOLWiLCWW67s+pM2MFSjtXWn17FsonNxAMnLj9F4y/vMB77m0QX/2CsOGDWPYsGGoVCqsrKxqrINqKezs7HBycuK1115DqVSSkpLSYIGvNpXPW6mW/oTlV+Ix3MjlxhnTlBpjaRE5Oz/Asf8EnPpP+GM793/eCpbJogOfqddZFhq9EclogIofyYik14JcgTYrGbm1HUrXNhjLi8k7sAbrdj2Rq+0AU2UI79YO93UcUxcsZtt3mym/loqdz2Bajplvfq3kwlEKjn2D4UYuSoeWOA8OReo6AMch0zCc+4GC+HhsbW1p27Ytbm5udO7cGb1e36jBb/bs2QwaNIiIiAhcXV2rPE+0srLC1taW3bt3N1jPurvh4OBAaGholWVvv/22uWSdXGVKlKhQOVHCztsfudoeMF3vyGRy9PlXMSBnxF8/vqeSdQ+z0tJS/Pz80Gq15uSlmoqTN7TK521Ff0L3Sf+s0k3F/YUlYLhZjenqxvm4BLyMTSfT89b6OG8Fy2XRgW9CH0+WH0wCoPD4FgqPf2d+reRcJE7+L2DVwpP8I5swlhYgV9mi7tCLVmP/Zl5PAiY85lnnY4hPL+C/aXocBgSjvHwaSXezMaj+Rg45ez7G7blFqDv1oSwllpydH9B2zlq0ds4YfUZx8uPF9O3kVuf9369Dhw6RkpLC/v37USqVfPzFGk7k27F/6xmKyvXI9eW88N46ijRGWjxgF9iVs3pvdWuiBEDa8mAkbRlIEk5PhVTJDmwOtSBtbW3Zv38/EydOJCcnB71ez40bDfeczGAw0Lp1a4xGIy4uLtjY2JCVlYXc1gmHkE/N/QlRWJHx+c1OE64jXsW++y2jUJkcudre3HXlfs9bwbJZdOBraW/N4K6tOHAhG+enQqpc8Vdm121wjctlMlNdxPv5o/fF4WSsHumPUgJNVjIG3c2WNIYbucjVdth0No0obLv0RWZljb7gKgo7ZwzIWXsirUkD35w5c/D396dI6cKsr2M5kuQElKLRF5vXUSsdGfjhoSarlyhJEklJSXTt2rXKqLO2rN5bEyUqtJu/FaO2nJKz/0XhaPp/XpEdWNGWymAwEBkZiUqlYtCgQQ33oZrIoEGDSE5O5pVXXuHrr79mz549LFq0qEH2pVAo6NChAzExMeTm5gKm56jfrVjBQY07By5A+zd/uKtteb6yzvzv+jhvBctm0VmdAK8O6YJaWbdUf7VSwStDutx5xVrcbsQBpiQKqxZelF6KRjIaKE36BZnSCqtWplY7TT0f6dixY1y6dInxf1te54zIxpCdnY23tzceHh6EhYVx4cIFoOas3poSJSqTq9TY9x5J7g+fYCgp+CM7sIhLly4RFhaGu7s7I0eO5JNPPmmUz9YU7O3t2bRpE/PmzePy5csYjcY6zX28nYSEBAIDAzl16pR5ma2tLadOnWLixIlNet4Klq/Z1Opsipp/tzbCzf/5awxFOVWe8d2I30/+wTVIei0yhRUtn30T2y435yXVVyPcuvDx8UH56BDSr/xG8W9nqmVDmo5/H0W/hGMoycfasxstRr2Gg2urRquXWFJSQlRUFMOHD0eSJPOITy6X0/7FpRg8upnXNSVKfIa+MBu35/9R5ZlRZZLRQPonz+Mx5SNUHp0pSz7JtfD3qqzTsWNHRo8eTdeuXenevTu9evWqsQ/iw+7Df28hxbozRy6Z7lTcS2cErVbL+PHjmTlzJkFBQej1epYtW8aKFSvIzMyka9euhIWF8frrr6PVatm1a1eVNl2iVqfQUCz6VmeFipOgsau832keYVlqHAWR63GfvBSVR2e0WclcD38f5cTFqNw7AU03H+n48eNcLjTi1XU45ITXmA2pL8ym4Mgm3F/4X6xc25B3cA05uz9CGfIBSyIu4uvpXKV1Tl5eHuvWrWP+/Pl3PeE+Ly+P6Ohozpw5w/nz57l8+TKZmZnk5uZSWlqKwWCosi1JklAqlYwbNw7HJwdwMPlmMYLaEiXKLp9BYeOIlVsHJJ2Ggp+/Rq62x6ql6Tboc2NHUWSdwrZt29DpdMjlcrRaLTt37qSwsJCysjL0ej0ymQyVSoW9vT2urq54eHjg5eVFp06d8Pb2xs/PD29v70bPyq2rzVGpbEh3plx/7Y6ZyD8n5VQ5ZyRJYsqUKezbt4/k5GRWr17NwYMHUSqVPPvss3z00Ud4epqewVW0Obq1N2VTnbeC5Xs4zsB6MKV/B3w9nRu119md5hFqs3/D2qu7eR6hdeuuqNo8SllqnDnwmbbT+PORZs2aRftRs9AqrWvNhtRmXsTW+0lUrUydEpwGTuL3L6aiy7+KzLU1Kw8nmzMid+zYwYwZMygqKmLcuHHmKQGZmZlERUURHx/PhQsXSE1N5erVq+Tn51NWVobRaMTKygp7e3tatWqFp6cnw4cPp0ePHvTp04c+ffqgVqvp1asX58+fp1+/fnz77be0a9eO1UdSOJp6A43eeNtECZnCirwDX2K4kYNMqcK6TVfcJi5GplShVsrxa9+SP2/ezMKFC5k8eTLx8fF8+umnTJgwwbwdg8FAUlISCQkJXLhwgZSUFNLT0zl16hQHDhzgxo0baDQaJElCoVBgY2ODk5MTLVu2pE2bNnTo0IFHHnmEbt260bt3b3O7p6ay/udE5r82r8aRvr4gm99Xv4TM6uZcUsf+z7EE0/dkSv8OvPHGG+zcuRO9Xk9iYiJlZWV8+eWXTJs2rVpN29mzq99yrtAU561g+ZpN4APw9XRm9ZTHG63XWcV8pNqmUli3foSiqHC02b+hcu+ENisFTfo5HB4bdct2GjddMjo6msQrmXR81gfJWPUyu3I2pDbzIlUvw03/1l2/gpVLayITr3MsJo7XZr9EQkICer0euVxOv379KCsro7y8HEmSUKlUODo64ubmhpeXF0888QQ9e/akT58++Pn53dUIafbs2SgUCl5++WXz7c7KWb1KJ7fbJkrYeddcd7VydqCPjw+nTp3i+++/r1a1RaFQ4OPjg4+Pz22Ps6CggISEBM6ePWuedP/7779z7tw5CgoKKC0tRa83XTBZW1tjZ2eHi4sL7u7uVUaPvr6+dOvWDZVKdcf/NzUxGo3ExsaaO69XFp9ewAcRF8CuRY0j/Qpe87cik98cbZfpjPxz7wW+eD+MqIht5uUymYxRo0YxY8aMOh1rY5+3guVrVoGvQgt760Z5ZlYxHyk78psap1I4PxWC05MvcH3HUgylBShsHHEa8Dw2HW+WBGuK+UgzZ86k659CMchlUCnw3ZoNqe7Uh5xd/8Kh90iULm0oPL4FkCHpTQkPOp2WZ+YtoeD0afM2ZDIZffv2ZfLkyfTt25dHH330tl0tKuaT3WmOYE2jhspZvXV5kl1TdqBcLic4OPjeN/YHZ2dnBg0adNuMUKPRSEpKinn0mJycTFpaGvHx8URGRnLjxg3zRYNCoUCtVuPo6Fht9Ojj40OvXr1o06ZNtX3ExMTQv39/c/Hoyut8cTgZrdyq1pG+tUftiSPlegMFbZ/gmWfK8PDw4OrVq2RnZ2OoNOeurhrrvBUsX7NIbmkqOcUa/D88dMd6obdjrZRzImxYo13RVowCQlcd4nDqzcnLkmQkZ/dHGDWluD33trmCxo1TP1AUuwujpgzHvmMpjArHbcI7qL16ADCuV1tm9lSxYcMGNmzYQG5uLosWLWLx4sV3dTx3E/RuJz69gEn/jqJMd+9/eG2sFGyd1f+BvX1WXFxMfHw8Z8+eJSkpicuXL5ORkcG1a9fMo0edznSbXKVSVRk9gul3bTAYUKlULF26lHnz5pFXqqvxO2soySdj5QzazPg/ZAoVv69+ydQKSCZD3aE3LkOno7B1Ahr/OysI90oEvgZWUTmkriOOP3Vzb9TKIX5+flhZWeH7l1UcungNuPtsSF3e71xdP4+2r25E8UcllABvN9ZO7WvezokTJ2jdujWdOnWqcRsNoTlnBxqNRtLT04mLi+P8+fNcunSJtLQ0zp07Z27hVEGtVjM27HPiDG2rBD7JoOfatndRurSmxYi5GLVl6HIzULl3wlhWRN7+VRi1ZbgHv2/aThNmIgvC3WiWtzob06tDunD0Uk6dRhyNPR8pLi6OX3/9lbi4ONZduHm8tWVDSnotuvxMrFq2x1B0ndwfP8fh8bHmoAdVn0/KZDL8/f1vewz3O8KrSXPODpTL5bRv35727dsTFBRkXr5gwQI+++wzlEolAwYMYNasWfTt25dPfslDc/66eb2a5j3eqbC76IwgPOhE4Gtgfl7OLBzlXccRh3ej3mabMWMGfn5++Pr64p2fgrUyi5LcrFqzIW079yVn9zL0BVeRqWyw7/k0zk/d7Md3r88nG/Lmg8gOrGrIkCF4eHgQGhpqvvUJUH48xvzv2gpEV1NDYXfRGUF4kIlbnY3kTt0ZKjTViCMhIYFevXoRGxvLY4899lA+n7xbIjuwdq9vPcPOuEwAcn9agfbaZdNI/48amACazMSqhd33rcJQWoDH5KXmdcb1asvy4Lr3rBSEhiRGfI3kQR1xTJkyBYPBwNmzZ+nRo4e5yWxDZETWpCFubd6JyA6sXUUm8u1G+jKZ/LaF3UVnBOFBJ0Z8TeBBGnH4+flx9uxZjEYjAQEBfPnll+bJ5TEp1wj+9y8YZfd+fXS3GZFNEfiE2lnySF8QKogRXxN4kEYcMpkMo9H0R+7w4cOMGzeO0aNHk5qaytatW2k1YDwuAS9R3kDPJ0XQe7A01khfEJqSCHzNnEZjmmyuVqvx8/MjOjqaX3/91fz66v8JoaS1T709n6y4wSAC3oPrYcpEFoS6ELc6mzl7e3tKSkrYuHEjOp2Ol19+2fyatbU1xcXFKJVKEjIK6uX5pLi1+XBoznMfBcsnRnzNQE6xhvBTGVzMKqKoXI+jWom3hyPDuzig1+vZsmULwcHBTJ48ucr7tFothYWFtGjRot7qJYqg93BoznMfBcsnRnwWLD69gC8OJ3MkyTQh+dZeakZJoqu9jiUhg+ngKMPZ2TRSa9GiBYWFhaxZs4bp06c3ybELD4b6GukLwoNEBD4Lda/zBlukHSE3eiffffcdfn5+lJeXY2NjU/sbhWblQcpEFoT7JQKfBarLXtt4sQAAAu1JREFU8xlrpYyFo3wIHdCxAY9MEASh6YlnfBYmPr2AJREXKS3TkLt/JeWpcdUaiQIYdeXkH1pH6cVjSEY9qlYdWSpbRi8vF3HLShAEiyYCn4X54nCy6fam0YDSoWWNjUSVzu7k/bQCyWigzcxVyNX2aK9dplxvqNI1XRAEwRKJwGdBcoo1HEm6jiSBXKWutZGoZNBSeikaz1c3Ire2BcDaowuSBJGJ18kt1ojnNoIgWKzaW18LD53wUxm1vmYoyUeX9zuqVu3QZCahdHKj4Og3pH82mcy1r1Jy8ThgKrQffrr27QiCIDzsROCzIBezimqssSgZ9OTsXoZ9zwCsWnhhuJGL7voV5Na2eM7diOvw2eTuXY4uJ130UhMEweKJwGdBisr11ZbV1EhUplSBXImT/yRkCivU7XqibteTssun/9iO6KUmCILlEoHPgjiqqz6yrdxItNW4v5sbiVq5daj+5koVVSp3TRcEQbA0IvBZEFMvtZu/0rx9X6DLTcdtwjvIrW4mq6i9eqB0bEXhL9uQjAbKM85TnvYrNp0eE73UBEGweGICuwWp3EtNX3iN31fNAIUVMrnCvI7riFex7z4U7fUr5P74f+iup6J0dMN50IvYPjpQ9FITBMHiicBnYWZ9HXtfvdT+1M1dzOMTBMGiiVudFubVIV1QKxV3XrEGopeaIAjNgQh8FsbPy5mFo7yxsbq3X+29dE0XBEF4mInKLRZI9FITBEGonXjGZ8FELzVBEITqROBrBkQvNUEQhJtE4BMEQRCaFZHcIgiCIDQrIvAJgiAIzYoIfIIgCEKzIgKfIAiC0KyIwCcIgiA0KyLwCYIgCM2KCHyCIAhCsyICnyAIgtCsiMAnCIIgNCsi8AmCIAjNigh8giAIQrMiAp8gCILQrIjAJwiCIDQrIvAJgiAIzYoIfIIgCEKzIgKfIAiC0KyIwCcIgiA0KyLwCYIgCM2KCHyCIAhCsyICnyAIgtCsiMAnCIIgNCv/Dz63fsPPjuNGAAAAAElFTkSuQmCC\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd1iV5RvHP+9ZHGSqgCDgRkEUDbWcOdI0M0sbao7S3FaOtCxL/aXlyjR3aVnaULPMciau3LlQHKhgKhB7yD6c8f7+II4g64CoCM/nuroufN9n3O8Jzv0+9/Pc31uSZVlGIBAIBIJKguJhGyAQCAQCwYNEOD6BQCAQVCqE4xMIBAJBpUI4PoFAIBBUKoTjEwgEAkGlQjg+gUAgEFQqhOMTCAQCQaVCOD6BQCAQVCqE4xMIBAJBpUI4PoFAIBBUKoTjEwgEAkGlQjg+gUAgEFQqhOMTCAQCQaVCOD6BQCAQVCqE4xMIBAJBpUI4PoFAIBBUKoTjEwgEAkGlQjg+gUAgEFQqhOMTCAQCQaVCOD6BQCAQVCqE4xMIBAJBpUI4PoFAIBBUKlQP2wCB4FEgLlXH5tPhBEclk5xpwF6rwtvVnpdbeFDd1uphmycQCEqAJMuy/LCNEAjKK+fCklh+IISDV2MB0BlM5ntalQIZ6NTImbEdG9DM0/EhWSkQCEqCcHwCQSF8f/wGn+wIJtNgpKi/EkkCrUrJtJ7eDGpd54HZJxAISocIdQoEBZDt9C6ToTcV21aWIUNv5JMdlwGE8xMIyjlixScQ3MW5sCReWfkXEduXkXkjEFNmKipHV6p2fA3r+i2RjXrifl+ALjIEY3IMNQZ8ira2HwDWaiUbR7bGz0OEPQWC8oo41SkQ3MXyAyFkZulR2Tnh+upcPCduxPHJwcRunYchKRoAKw9fnJ57B6VN1Tx9Mw1GVhwIeRhmCwQCCxGhToEgF3GpOg5ejUVSa3HsMNB8vUqDx1E51EAXFYKNYzvsWz2ffUOR991RlmH/lVjiU3XitKdAUE4RKz6BIBebT4cXeN2Ylog+IQKNc61ix5CAzWcKHkcgEDx8hOMTCHIRHJWcJ2UBQDYaiPv9M2ybPoW6umexY2QaTARHptwvEwUCwT0iQp0CQS6SMw15/i3LJuK2LQSlimrdRpdgHH1ZmyaoRAjBhPuLcHwCQS7stXf+JGRZJn7HEoxpSbi8PBNJafmfi71WfT/ME1RwihZMiGJRwFUhmFAGCMcnqDCUxVuyt6s9VqoodAYTCbuXo48Po0b/2SjUefvLBj2QnQkkmwzIhixQqpEkCa1KgbebXVk/nqCCU5xgQuZ/TvDPS9H8dTVOCCbcAyKPr5JQkUMnZSkrFpeqo928faTFRxGxcli2M1Mozfer9RiHrW9nwlcMw5gck6ev++ivUTnWwEql4Oh7XR75z1Xw4CiJYEIO1moF03r6COdXCoTjq+BUdK3J+yErNnL9KfZcji5yvKLm6d64BqsGtSx5Z0GlpDjBhNwkHf6J24d/wKX/bKzrNBeCCaVEnOqswHx//Ab9Vx9nz+VodAZTvtOKmf9d+/NSNP1XH+f74zcejqGl5M5bctFOD/LKihX3nOM6NUCrUhbZpjC0KiVjOzUoVV9B5cQSwQQAfWIk6VcOo7StZr4mBBNKh9jjq6BUdK3Jc2FJfLIjmOjjW0kL2ktW7A1sfDri1GsiAKkX95Owa/mdDrKMbNDh+vpiPtkh4efhWOhbcjNPR6b19C5l6MlbvH0LLMYSwQSVYw0AEv5cSdVOrxO/e6W5nRBMKB3C8VVAzoUlMfl/80kM3JPPIRSlM5mhN/HJjuAinUJ5YfmBEDINRlS21XFo24+Mf84g67PM9219O2Pr29n879TzAdw+ugFNjfrmt+SiwpE5zl9UZxDcTywVTEgLPoykVGNdvxWwMk/bHMGEUU/Wv8/WVhxEqLMCsvxACKYqVXFo2w9bv2757hemMwmPRugk5y1ZlqFKo7ZUadgGhbV9kX1SL+zFpkkXJEnK85ZcFINa12HjyNZ0b5x9YEU2ZOW5r/3vmicJbBzZWjg9QYmxRDDBpEsn6eB3VOs6ssAxhGBCyRGOr4KR4xSqNCzYIUhKNfatnkfr6ZtPZxKw2Ck8TAp7Sy4Mw+0YdGEXsWnSxXzNUlkxPw9HVg1qyViPSBL/+p7efq485e1Cn+buTOzWkOT1b3NozhAC9/1e0scQCCwSTEg6/CM2vl3MIc+CxxGCCSVBhDorGCV1CgVR3kMnBb0lF0Xqhb1YeTRG7ehqvlaSt+SoqCimThhHZmYmzzmNplu3O6vo2WpIAkaNGsU///zD9OnTkSTJYtsElRtLBBMyb57DmBJPytntAJjSk4n7bS72rV/CofVL/40jBBNKgnB8FYySOoWCKO+hk7vfkosj7cI+HNq8UsA4xb8lG41G+vTpg06XvQLevHlzHseXkZEBQGZmJh9//DFKpZIPP/ywRPYJKi+WCCbUGPAJGI3mf0d+N5GqTw3Hul4LACGYUApEqLOCUVKnUPg45Td0kvstuTgywy9hTE2gSqN2BYxT/FvyvHnzOHXqFDnprr/99hu5U1+Tk5NRq7PHeemll3jppZcstk0geKmFB5Adjk8N3EVW9HXClw7m1sKXuLXwJVIv7kdpbY/Stqr5PyQFCq0tCo01kK0f9JK/x0N8ikcPseKrYJTEKRQ9TvkNneR+S5ZNRsj5TzZlH0BRKM1qK2lBe6nSsC0Kqyp5xrD0LdnX15cePXqwbds2FAoFMTExhIWFUatWLWRZ5qmnnqJr165MmzaNFi1a4O3tfV+eWVAxcbK1omNDZ/ZcNlF76jaL+niM/cb8syRB50bOIpWhhIgVXwUj2ykokE3GbCeQyyHIpuxwiWzQm08o5uhM5l7FlPfQSc5bMsDtIxu49Vlfko9vJu3ifm591pfbRzYAIBuySAs+jE3Tp/KNYelb8vPPP88vv/wCwPXr17l27RoeHtn9JEli586dvPPOO/Tp04clS5aUwdMJKhtCMOHBIyTLKhg5WpPR+9dz+8hPee45tBuAY4eBRepMAo+E1uSDlBXbuXMnvXv3Rq8vPPwbERGBp6cnp06dwt/fv+RGCSo13x25zic7L5NlLL5tDkKrs/SIUGcFwxw6MQ7MowSRm9yhkrt5VEIn4zo14NC1ODL0Jfim+I+SviXv2bMHJyenItu4u7vj7e3NlClT2Lt3b4ltElReUlJSWPzmizg1fZrEOp2LF0wATPpMXGLO0Kfpkw/MzoqECHVWQCpD6CRHVsxaXbJfYZM+E6/UINytLXeYp06dwsvLq9h2M2bM4ODBg2RmZpbIJkHlJCkpiRkzZlC9enUCAwP5bPTzbBzZmm7eLkgmA1pV3t9trUqBlUpBd98a1Ly8ib+++RRnZ2emTJlCZGTkQ3qKRxPh+CogpXUKsj6TjvZx1HN8NAIBg1rXYVpPH6zVSopLnZMksFYr0f+9kT8WvYubmxtdu3bl119/xWQqOv0jJCSEli2LD4v269cPa2trZs+eXZLHEFRCFi5ciLu7O3PnzkWv12NlZUWbNm3w83CkxrXfift6NBO7NaRPc/c8gglH3+vCqkEt+Wjca6hUKjIyMliyZAmenp4cOHDgYT/WI4PY46vAlKRkj5VSQcS2paQG7sTKyopnnnmGCRMm0LFjxwdncCk5H57EigMh7L8Si8Sdgp1wp/RS50bOjO3UgOM7NjFmzBizs5MkifPnz9OkSZNCx1er1WzdupWePXsWa8uIESPYunUrMTExxbYVVF5WrlzJpEmTzNGBxx9/nBMnTnDx4kWaNWuGLMsYDIZCxRASEhJwc3MjKysLSZLo3r07mzdvxsbG5kE+xiOLcHwVnJI4hTf6dOPUqVNAtkNo1qwZZ8+efTiGl4L4VB2bz4QTHJnCzr0HSIyOYObEUbzS0tO8ZxkZGUndunXNCenLli1j3LhxhY4ZFRWFm5sbGRkZaLXaYm1ISEjAycmJAwcO8OSTYv9FUDAmkwlPT0+ioqIAmDhxIu+88w7NmjUjNjYWlUrF1atXqVu3bqFjuLu7ExubXWfzySefJCAg4IHYXiGQBZWCuJRMedXBEHnChrPysG//lidsOCuvOhgix6VkmtssW7ZM1mq1MiBrNBo5JibmIVp8b1SvXl0G5Hnz5uW716hRI1mtVst169aV7ezs5Ojo6ELHWb16tWxtbV2iuf39/eU2bdqU2GZB5WHQoEGylZWVHBQUJD/99NPyzp075UaNGslKpVIGZBsbG/mnn34qcowVK1bIv/32m3z69GlZoVDI06ZNe0DWP/oIxycwc+vWLRmQfX195SpVqsgtWrSQjUbjwzarxFy8eFHWaDQyIFepUkUODg7Oc//PP/+Ujxw5Iuv1etnLy0uuVq2anJiYWOBYgwcPluvXr1+i+Xfs2CErFAo5JSWl1M8gqLisW7dOliRJ3rFjh/na7du35V69epl/b5VKpTx27FiLx1yzZo0sSZK8devW+2FyhUM4PkEefvrpJzk1NVUOCQmRtVqt3LFjx4dtUol57733ZJVKJZOdpy77+fnJJpOpwLY6nU728PCQXV1d5bS0tHz3/fz85N69e5fYhqpVq8pvv/12ifsJKjYhISGySqWSJ02aVOD9du3ayc2aNZMXLVokb9mypURjDx8+XFar1XJoaGhZmFqhEY5PUChBQUGyRqORn3322YdtSonw8/OTJUmSAblu3bryoEGDZL1eX2j7lJQU2dnZWa5du3a+dg4ODvKcOXNKbMPEiRNlBweHEvcTVFz0er3s7OwsP/bYY4W2sbOzk+fPn1/qOfz9/eVq1arJN2/elHv06CGfPn261GNVZITjExTJ33//LatUKrlfv34P2xSLSUlJkXU6nezg4CAvXLjQoj7x8fGyg4OD7OPjYw7vGo1GWZIk+dy5c6WyQaFQyH/88UeJ+woqJl27dpXt7OwKjCzIsixHRETIgBwfH1/qOTIyMmR7e3tZpVLJSqVSnjFjRqnHqsiIPD5BkbRq1Yo///yTzZs3M3JkwRWgyxu2trZoNBqqV6/OhQsXLOpTrVo1Ll26xK1bt3jiiScwmUwEBgYCFJnqUJQNbdq04aOPPipxX0HFY/78+ezbt499+/ZRpUqVAtusWbMGR0dHqlWrVup5tm/fTlZWFgaDAaPRyJ49e0o9VkVGOD5BsXTu3JmtW7fy9ddfM3ny5IdtjsV4eHgQGhpqcfuaNWty7tw5goKC6NatGzt27MDR0RFFAZXqLWHevHmcO3eOuLi4UvUXVAxOnjzJ+++/z/z584sUQvjjjz/uWef15MmTyLKMSqUy/7s4gYZKycNecgoeHTZs2CBLkvTIhE+GDRsm16tXr8T9zp07J6vVarlGjRpy8+bN78kGFxcXeejQofc0huDRJSUlRba1tZWffvrpYttaW1vLK1asuOc5w8LC5AkTJpgPeOU+6RmbkimvPBAij99wRh767d/y+A1n5JUH8qY1VQZEArugRKxZs4aRI0eyYMEC3nnnnYdtTpEsXryYGTNmcPv27RL3PXbsGG3btqV+/fqEhISU2oaZM2fy2WefkZqaWuoxBI8ujz32GJGRkYSHh5tXYQUREhKCl5cXKSkp2NralsncKSkpPP300wCs2rST5QdCOHg1O+FdV4CQRadGzozt2IBmno5lMn95RoQ6BSVi+PDhfP7550yZMoWvvvrqYZtTJC1btiQtLa1Ufdu0aYNGo+H69euMHz++1DZ88MEHZGZm8sMPP5R6DMGjyfjx47lw4QLHjh0r0ukBrF69GicnpzJzegB2dnYcPXqUZ976lP6rj7PncjQ6gymP04NsNSedwcSfl6Lpv/o43x+/UWY2lFceDTViQbliwoQJJCcnM3r0aOzs7BgwYEChbeNSdWw+HU5wVDLJmQbstSq8Xe15uYXHfS991LJlS4xGI6mpqSX+QklPTycrK4tvvvmG4cOH4+DgwMcff1xiGzQaDV26dGHWrFkMHFhwmShBxWP79u0sXbqUH374oUjZsRx27tzJ448/XuZ2fHvoKp8vmEvq9bOYMlNRObpSteNrWNdviSEpmohVbyCp70jx2bd+kU/I/j2tyHX+hOMTlIrp06eTkpLCoEGDsLGxoXfv3nnunwtLKiK0EsWigKv3PbSi1WpRKpWcOnWKTp06lahvQEAAarWaoUOHAvDGG2/g6OjIpEmTSmzHZ599RvPmzbl16xa1atUqcX/Bo0VUVBR9+/ZlyJAhRb4U5ubKlSu8++67ZWrHubAk5u64DDbVcX11LkoHZzJCTxG7dR41hy0zt/OcuBFJcaeMWYbexCc7gvHzcMTPo2KGPUWoU1BqFixYwIgRI+jTpw/79u0zX//++I1yE1qxtbXl9OnTJe4XEBCAs7MzAEOHDuXzzz9n8uTJrFmzpsRj+fn54e7u/kidiBWUDpPJROvWralduzbffvutRX0CAwPR6/W88sorZWrL8gMhZCnUOHYYiMqxBpKkoEqDx1E51EAXVfS+dabByIoDpd/bLu+IFZ/gnli1ahXJycl0796dw4cPc02uwSc7LpOhL/4ItSxDht7IJzsuA/cntOLk5GRxLl9uTp8+naf4bE54d+TIkdjb25f4S2rixIl88MEHmEymUqdHCMo//fv3Jzo6moiICIv7rF69GldXVzQaTZnZEZeq4+DV2HzlyIxpiegTItA434k8RKwYCpKEts5jVO08FGUVB2QZ9l+JJT5Vd9+3JB4GwvEJ7pkff/yRlJQUurw0FJvGHbl9PoCs2BvY+HTEqddEAHQRwSQd+p6sqBCQFGhrNaVqt1GobKvd19CKh4dHqU5lhoaGMmTIkDzXpk+fTlJSEgMGDMDOzo5nnnnG4vEmTJjA1KlTWbVqFWPHji2xPYLyz5o1a9i8eTN79uwpURJ6QEAAbdu2LVNbNp8Oz3dNNhqI+/0zbJs+hbq6J6asDFxfW4SmRj1MGckk/LmSuD8+o0a/WQBIwOYz4Yx6sn6Z2lYeEK+egjLhjz/+oHbPkchVHHFo2w9bv2557psyU7Ft3gP3Md/gPvYbJI018dsXm+/fr9BKgwYNSvT2nUNcXBzdunXLd/3zzz/n9ddf57nnnuPw4cMWj6dQKOjZsycLFiwosS2C8k9wcDCjR49m6tSpPPXUUyXqe/36dQYPHly29kQl59likGUTcdsWglJFtW6jAVBorLFy80JSKFHaVKVatzFk/nMWky4dyN6SCI5MKVO7ygvC8QnKhLhUHUaXRth4t6dKwzYorO3z3Leu3xIb7/YorKqgUGuxa9ELXcRl8/3coZWypEmTJsTHx5eoT3h4OEajsdDq819//TUvvPACXbp0McuaWcLChQu5efMmV65cKZE9gvJNVlYW7du3p2XLlnz66acl6vvXX39hMpl47rnnytSm5EyD+WdZlonfsQRjWhLOfT5AUhYS6JPMHXKNoy9Tu8oLwvEJyoSCQitFoQu7iNop7wnHnNBKWVKaXL7t27djY2NT5J7L5s2b6dixI61bt+batWsWjVu/fn3q1atXqpOhgvJLt27dMBgMHDhwoMR9165di4eHR5nv+9pr7zi3hN3L0ceH4fLSdBTqO/t1un+voI8PR5ZNGDOSSdjzFVa1mqLQ2uQaR12mdpUXxB6foEy4O7RSFFkx/3D7yE84v/hhnuv3I7RSmly+gwcPUrNmzWLb7d69m7Zt29K8eXOuXLmCh4dHsX2mTp3KmDFjMBgMxSY1C8o/s2bN4vDhw5w9exatVlt8h7s4cOBAoZGFe8Hb1R4rVRRp8VGkBu4CpZrwpXfCqdV6jEOSFCQeXIcpPQmFpgraOs1x7n0npUKrUuDtZlfmtpUHxF+eoEzIHVopCn3iv8RsmkHVriPReuavelDWoRWtVotKpeLvv/+mS5cuFvUJCgrC19e32HYKhYKjR4/i5+eHr68voaGhODk5Fdln2LBhvP3223z22WdMnTrVInsE5ZMjR44wc+ZMvvjiC/z8/Erc32QycevWLV5//fV7tuPMmTOYTCZMJhNBQUGcuXQNfacpqBxcqD11W6F9bRoX7nRl4CX/4l/mHkVEqFNQJuQOrRSG4XYM0T99iEO7/tg2KdgJ3Y/Qiq2tLadOnbK4/a1bt2jfvr1FbRUKBYGBgTg5OeHj40NycnKx7fv06cOSJUsstkdQ/khOTubpp5+mZ8+evPnmm6UaY9euXUiSVGJxhbtZv349kyZNYsqUKUyaNIm1a9diSE2ks3cNJKn4/gUhSdC5kXOFTGUA4fgEZUR2aEWBbDIiG7LAZATZhGzIQjYZMaTEEf3TB9i16IXdYz0LHON+hVacnJy4ePGiRW1NJhPJycn07FmwjQWhUqm4ePEiarUaHx8fMjMzi2y/YMECoqKiSuSMBeWLtm3b4ujoyNatW0s9xrp166hbt+497+917doVo9GIXp8dLWncuDGBgYG8/VQjtCplMb0LRqtSMrZTg3uyqzwjqjMIyoS4VB3t5u0jev96bh/5Kc89h3YDQJK4ffjHPLqAALXe2Wz+2Uql4Oh7Xcr8LbNz587o9XqL0g9OnDhB27ZtMRqNJZ4nOTmZevXq4ejoSHBwcJF7eE2aNMHFxSWP4o3g0WDMmDF8/fXXhISE3JMEnYeHB7169WLVqlWl6n/ixAmGDh1KcHAwLi4uxMXFUaVKFS5cuGC26/vjNywWlMjBWq1gWk8fodUpEBSHk60VHRs6s8c4EMcOBYsxO7Z/tdD+sslEcvAJnu/xCR4eHubQ4bhx4+7ZNi8vL4srUe/atQtHx9Il0dvb2xMcHEz9+vXx9/cnMDCw0Lf56dOn8+qrr5KZmVmqQxGCh8Ovv/7Kl19+yc8//3xPTs9gMPDvv//yxhtvlLhvYGAgr732GkFBQbRq1YrLly9jb29P/fr1WbduXR67cpzXJzuCyTQY8ym55EaSsld603p6V2inB2LFJyhDzoUl0X/1cTL0JV8taRRw85sJ2cou/+Hv718qnc27WbJkCR9++GGx+28APXr0IC4u7p7CkLdu3cLHx4dmzZpx9OjRQtvZ2dnx1ltvlTj3S1A896MqSHh4OPXq1WPYsGGlXqXlsHHjRgYPHkxWVpbFfS5fvszgwYM5c+YMzZs3Z926dTRpcueAWHp6OlWqVCmw7/nwJFYcCGH/lVhkk4msXAvAnHp8nRs5M7ZTgworTJ0b4fgEZUppQisaBUx/zpfYY1t4//330emyk9jHjx/P4sWLi+ldPEePHqVDhw4WhS/r1KlDt27dWL169T3NeeXKFZo1a0bHjh3ZvXt3gW1Gjx7NL7/8Qmxs7D3NJbhD0VVBSl9w1WQyUatWLezt7bl06dI92/n8888TGhpqkY5saGgogwcP5vjx4/j6+vLtt9/SokWLUs0bn6rj6VHTuZVi4LkX++OgVePtZsdL/ve/TFh5QhxuEZQpg1rXYVpPH6zVyuJPlMkmMGYRuWM5X04ZjLe3N76+vkiSRKNGjVi+fDk1a9Zk796992STv7+/+dBKcURHR9/zKTuARo0acfToUfbt28fLL79cYJtPP/2U+Pj4UiU+C/JzP6uC9O3bl8TExCJX8CXh+PHjdO/evcg2t27dolOnTnh5eZGQkMDhw4cJCgoqtdMDyEiK5dzGhcRvW8Sw+joW9WvOqCfrVyqnB8LxCe4Dg1rXYePI1nRvXAMrlQKtKu+vmValQCVB+tXjNI78k7Rzuzh8+DAvv/wyN2/exM3Njf379xMbG0vTpk3p1q0bjz/+OLdu3SqVPTm5fCdPniyyXWpqKpmZmSUSny4Kf39/9u/fz5YtWxg+fHi++9WqVeOxxx5j1KhRdOrU6Z4qvVd27kQait7HgrxVQSxxfitWrOD3339n9+7dpd7/zU16ejoxMTGMHDmywPuRkZF069aNOnXqEB4ezt69ewkODi4TIetx48ZhMpmQZbly68bKAsF9JC4lU151MESesOGsPOzbv+UJG87Kqw6GyHEpmfLPP/8sS5IkK5VKmex8WVmr1coHDhzIM8bZs2dlLy8vWaFQyIMHD5Z1Ol2J7XB0dJTnzp1bZJvNmzfLGo2mxGMXx/bt22WFQiG/88475msmk0meP3++bG9vb372/v37l/nclYHAW4lyw/e3yjZ+3WSlvbMsaaxltUtd2eXlmXLtqdvk2lO3yU7Pvyerqntk36vuKTv3nSbXnrpN9v5op3wuLLHQsYOCgmSFQiHPnDmzzOxdvXq1rNVq812PjY2Vn332WVmSJLl27dryjh07ymxOWZbl/fv35/lb02g0cnR0dJnO8aggHJ/gofLtt9+a/xAB2d/fv9C269evl+3t7WWtVisvWrSoRPN4eXnJgwcPLrLN2LFjZQ8PjxKNaykbNmyQJUmSP/74YzkkJER+4YUX5DZt2sgajcb87Lkdo8ByRqw7Kdd6Z7Ps0G6A7D76a7nWe7/Lzi9NlyWNtew++mvZfdy3MgqV7PLyTLnWe3/Izi/NkCWVlezx1vdynfe3yaPWnyxw3IyMDNnR0VHu0KFDmdrbtWvXPL/niYmJcp8+fWSFQiHXrFlT/vXXX8t0vhy2bt0qt2rVSlar1bJGo5G1Wq28ffv2+zJXeUeEOgUPlddee41+/foB8Pbbb3P+/PlCJZwGDRpEYmIio0ePZvLkybi7u1u8P+bh4UFoaGiRbU6fPk3Dhg1LYr7F9OvXj1WrVjF9+nT8/PzYvn07H3zwAb169TLn+7m6ut6XuSsyOQVXJbW20ErjxpR4FFobrOu3RJIkqjRohaS2wpAUWWRVkM6dO6NQKAgICChTm0+fPs2zzz5LamoqAwYMwMnJiaNHj/L9998TERFBnz59ynS+HHr37s3ff/+Ni4sLY8aMISMjo0RCDRUJ4fgED52ffvqJ2bNns3TpUiZOnMj69euZPXt2gW0VCgWLFi0iJiaGxo0b06VLF9q0aVNszT0vLy/+/fffIttcv36dJ554otTPURz+/v5YWVmRnp6OwWDgt99+Y/PmzWbJq9LuYVZmCqsKkrvSuMa1AerqnqRfO4FsMpJ+9RiSSo3auS5QcFWQadOmcfLkSQ4fPlymldGTkpJITEzk8uXLODo6smfPHlavXk1UVCyRPpkAACAASURBVBQDBgwos3mKIi0tzSIR9oqMSGAXPHQkSWLatGmkpqYyf/58RowYwfTp06lfv36hXwbVqlVjz549nDlzhldeeYVatWoxZMgQvvzyywK/qJo0acJPP/1UwEh3SEhI4Omnny6TZyqI8ePHI/938kKWZTZt2sTq1atZtGgRp0+fJjY29r7kn1VkCqoKcnelcQCbJl2I+30BsiELSanG6YWpKDTZwgF3VwXZv38/c+bM4auvvsLHx6fMbM3KyjIfnAoICGDJkiWMHTu2zMa3lMzMTDw9PR/4vOUJkccnKFeMGzeOVatW0bdvX3799VcOHTpk0Wm27777jrfeeguDwcC8efN466238twvTorsn3/+oV69euj1+vtWLigrK4udO3eycuVKAgICMBqNfPfddwwZMoQDQf+wcEcQV1OzRbrLKv+sojPsu5PsC44x/1uWTcT9vgCTLh2XFz9CUqrIuBFI3G/zcOn3MRrX+mRFhRC7eRYur/wPTY16ADzl7cLXr7UiISEBDw8PevbsyebNmwubtkQYDAYmT57MypUrMRqNeHh4cOPGjTIZuzSoVCoOHTpEmzZtHpoNDxsR6hSUK5YvX86gQYPYsmUL7dq1o3Pnzvzzzz/F9nvttddISkpi+PDhTJw4EU9PTw4dOmS+/9hjjxWZy7d9+3ZsbW3va408jUbD888/z65du4iNjaV79+588MEHrDv2D2N+vsKF28oyzz+r6OSuCiIXUmk8K/o6Vp6+WLl5IUkKrNwaoqnZiIwbgbnGyX7haNOmDc7OzmzatOmebTOZTLz33nvY2dmxZs0apk+fjrW19UNZ5eXGaDRSr169h2rDw0Y4PkG547vvvuO5557j+PHj1K1bl8cee8yi5HOFQsGSJUuIjo6mYcOGdOzYkXbt2hEZGYlGo0GlUnHixIkC+x46dMiiQrJlRdWqVdm1axcTl//KnJ3B9yX/rDKQUxUECq80buXmhS78ElnR1wHIigpFF3YRjUsd4E5VkKFDh3Ljxg1OnDhxTxUTTCYTM2fOxNbWlqVLlzJ58mSSk5MZNmwYqampDBs2rPQPfI8kJCQA4Ozs/NBsKA+IPT5BuWTLli107dqVQ4cO4ejoiJ+fHyEhIRatyKpXr87evXs5efIk/fv3x8PDg6FDh2Jra8vp06fp1q1bvj6WFp8tS86FJbHmdEIeebfk03+QFrSXrNgb2Ph0xKnXxHz9MvQmPtkRjJ+HY6XQVSyKl1p4sCjgKobbMYVWGrf17YxD+wHEbpmDMT0JpbU9Dm1exrquP5CdS6K8dYrvvvuO33//vdSna00mE/Pnz2f27NkYDAbeeust5syZY/6dXb16NQ4ODsUWK76fhIaGolAo7rkU0qOO2OMTlFtMJhPt2rUjMDAQpVJJ06ZNOXbsWInH+eabbxg/fjxpaWm0bNmSv//+O18be3t7Zs2a9UDVU0auP8Wey9F5VnrpV46CJJHxzxlkfVaBjg+ylfS7N67BqkEtH5C15ZeCPkdLkSRoX8eeDeO6MHbsWL744otS2fDFF18wffp0MjIyGDVqFJ9//jlqdXb49NNPP2XNmjWkpqbi6urK4cOHsbe3L9U898qmTZsYMmRIsTUjKzqV2+0LyjUKhYIjR47g5eUFZOc/lebI97Bhw7h9+zY1a9bk5MmT1KpViyNHjpjvm0wmUlJS6NWrV5nZXhw5+Wd3f1lXadSWKg3boLAu+ouxqPyzysa4Tg3M4c6SYqVSEPDFZHx9fUvl9L766iuqVavG5MmT6devH8nJySxdutTs9AAcHBwIDw8nNjaWK1euUK1atWJzSu8XYWFhogwWwvEJyjkKhYIzZ87g5uaGlZUVmzZtYvr06aUap1evXnh4eFCvXj06dOhAhw4diIqK4ujRoygUCurXr38fnqBgCss/KwkF5Z9VRlTJERj+3oRVCYuNW6sVOF7fS+qtSxYVKc7NunXrcHFxYezYsfTq1Yvbt2/z1VdfFehUWrdubU6xUSgU9O/f/6EdLvn333+xsbF5KHOXJ4TjE5R7VCoVFy9epGrVqtjY2DB79my+++67Eo/j5+dHUlISBw4c4NixY4SHh+Pu7s5bb71F1apVgexDLgcPHixynLhUHasOhjJh41mGfXeSCRvPsupgaIlWXwXln5WUu/PPKhOyLLN//36eeeYZmjRpgiF4Px/18rWsKggyJn0mqgt/cPKnRezduxdbW1uL5v35559xc3Nj6NChdOnShYSEBNatW1doHTzI/r3LyMgAoGXLlqxduxapeCPvC1FRUQ8tzFqeEIdbBI8EGo2Gy5cvm1dlw4YNo3bt2iUqIdSqVSvS09MBeOKJJ/jnn39YvXo1o0ePBmDZsmX873//Q6/Xc+3atXwn34qu9RbFooCrFufaJWcaLLa76HH0ZTLOo0RAQACDBw8mJSWFtLQ0JElixYoV9GxdBz8PR3PB1YyMjLynO/8Lh9qnhnF+wwLCokJwcXGx6DDL77//zrhx4/j333/p3bs3X3/9NdWqVbPIXrVajUajQaFQsH379jxh0AdNbGxsmVSYeNQRKz7BI4ONjQ3BwcGoVCqsra15+umnuXbtmsX9mzVrhslkIikpyXxtxIgRuLu706hRI9566y3i4uJIS0vLd+S8LGq9HThwgBUrVgB588/uhZz8s8pEtWrVzE4PsiMCnTt3BsDPw5FVg1py9L0uKC/thH/+5ilvF9IvHcA9/ixH3+tC8o6FZEWFABAfH8+gQYMKnevPP/+kbt26vPDCCzRt2pTIyEi2bNlSpNMrKCLg/OQAlq/57qGvthISEqhevfpDtaE8IFZ8gkcKR0dHLl++jJeXFyqVihYtWnDjxg2L3r5z5/LlLgIaExPDBx98wIQJE9DpdBgMBnbs2MGaNWsYPnx4iarK5861A/C1SuTIkSOkp6czffp0JEmiW7duqNNisFIp8sttmYyQ859sQjZkgUKJpMi/gZWTfybLMsnJycTExODm5mZx2O5Rxd/fHz8/P44dO4YkSfj7+2NtbQ1glnw7+08M6TbuKLN0+LnZ8F3Aag5mpnBlUCeuXr0KgK2tLZMnT2b8+PGcPXsWHx8f8x7dX3/9xRtvvEFoaChdunTh8OHDuLu7F2lXUREBTYu+zLmk5Nj3px6q+k5SUhJ+fn4PZe7yhHB8gkeOGjVqEBQUhLe3NzqdDj8/P27cuGFRjp+dnR1nzpwxO77k5GR0Oh12dnZYWVlhNBoxmUyYTCZGjBhBiqYaX4VUyef04v74jMwb5zDpM1HaVMW+9YvYNbvjTHNy7Z63vc6C98djMt3p37BhQx5r/STyU+/ls+/2kQ3cPnJHUzTt4n4c2g3AscPAfG0zMjN5u9fjjE1LQqVSYTAYmD17Nu+//37xH+IjzLBhwzh58iS7du3izTff5NVXXy3Q6Vg3aAXAkv2huI9dS3roKZ4ZmB3Wfvfdd/noo4+wtbUlMDCQVq1a8eGHH/LMM88wdOhQgoODad++PQEBAdSuXbtYm7JfjoLJNBQsRGCQJQz/RQT+uhrHtJ7eDGpdp8w+E0tJSUnBzc3tgc9b3hB5fIJHlitXrtC0aVNMJhPNmjXj9OnTxfZp2LAhTZo04c0330Sv1xMREcHYsWPz5DXpdDqSk5M5dOgQi06mEi5Vz/dllhV7E3XVmkgqNfr4MKJ+fB+Xl2di5drA3EaSwJMEDs0Zks+OCRMmkPrYqwQEx5Q6/8xVH82JhcPNwtcqlYrAwMBSJ+I/CgLZM2fOZNasWWzfvp0ePXogyzLrj99gzs4rhTqdHGSTCdmYhSrod0J3fYskSaSmpuLj40N4eLj5wMkTTzzBunXrzGk0xVGSiEAO1moF03r6PHDnZ2dnx7x58x66bNrDRjg+wSNNYGAgLVu2xGQy8cILL/Drr78W2G7Pnj289tprREVFmb/gTCaTWcGibdu2TJs2jR49epj7xKXqaDdvX7GnL/Xx4UT/+D5Vu47ExqdD3ptGPWHLXsOUcUdyTaVSodPpCIpIpv/q42ToCxbOLgprtZKNI1uz68evmDlzZvZBjv+epV27dsyZM4d27doB2QLcy5YtY/78+SiV+UOmRR/aKT8C2V9//TUjRoxg9erVvPHGG0DpnI4SIzN6N2VIm7r06NGDP//8E1mWkSSJYcOGsWbNGovHOheWRP/Vx0nPyCT+zxVk3gjElJmKytGVqh1fw7p+S1Iv7idh1/I7nWQZ2aCjzvAlbJ0x+IGq72g0GrZs2cKzzz77wOYsjwjHJ3jkOXr0KB06dMBkMjFlyhTmz58PYP4yA4iIiMDLy8t8rFyj0SBJEjpddgqCUqnkjz/+MJeNAVh1MJRFAVcLdXzxu1eQFrQX2aBDU6M+NQbORaGxztNG1uu4ffhHbp/4BZVKxQsvvMCPP/5oPtlXmi9ukz4T7aUdfDrsGbp27cq0adNYsWIFGzZsQK1W87///Y+goCCcnJx44403iIuL45tvvuH1119nzZo1eY7SFxeiy0GSQKtSPrQQ3e7du+nZsyfTpk3j448/Bu44nQy9sdDQs2zUE/f7AnSRIRiTY6gx4FO0tf3QqhS4BP3Aoa0/oFAosLa2Nq+cU1NTLU43yFGNMeoyST7xC7ZNu6J0cCYj9BRxvy+g5rBlqBxr5OmTej6A20c34D56NT18XR+o+o5CoXgo8nzlDeH4BBWCPXv20L17d2RZ5vPPP2f58uV4e3uzbds2c5tvvvmGMWPGkJWVRevWrbG1tSUgIACVSsXo0aNZunRpnjEnbDzLb4FFF6+VTUZ0EcFk3grCofVL5ooAuend1JV9n75GZmYm58+fz5fz9f3xG8zadokso0xRf4ySBAqTkZjdq0gN3IlCoUCpVOLj40OPHj2YNWuWOVE6Pj6eDz74gJ9++omUlOxcPysrK95//31mzJhhnvdRCNGdO3eOli1bMnDgQL799lvz9dxSZYWFnjXOtUk5swONawPifpuLU+8paGv7IQHOughG+Spp3LixWb/SwcGBhg0bWmRXcRGBf79+E4d2A7DxbpfnetSP76Ot1RTH9q9ipVJw9L0uDySUbDAYUKvVZGRkVHr1FpHOIKgQdOvWjV9++QWASZMmERoayp49e/LU3xs6dChNmzYFYNSoUfTv3x8AT09PFi5cmG9MS3LtJIUSracvxpQ4Us7uKLBNmt7E7t27OXr0aIGJzv1bepCx7VN87LOwUinQ3iW/pZZkrFQKujeuwYYRT5B2bheQHarV6/VcuHCBl19+OU8B3urVq/Pll1+ycuVK83WdTsfMmTPp27cvp2/E8cmOYKKPbyXy2wncXPACcdsW5Zk35dxuIlaN4NbCl4jeOB1DSrz50M758CQeBOHh4bRp04Ynn3wyj9O7W/JN41wbSZWT2iEhIWFIjERSqrFv9TxaT1/IJcwsA7dtPHmh3yDatGnDE088QatWrSx2elC0+k7uCvC5MdyOQRd2EZsmXf6z9MGp74SFhQFUeqcH4lSnoALh6+uLUqk0OzuDwUBgYCAtWrQAsiu9//LLL9SpU4cePXoQFxcHZK8WC6raXqJcO5MJQ2JkgbfstepCj8InJibSunVrwq5e5a/fvsfOyY3NZ8IJjkwhOVPP34cPEhl8iqCtq3GrZgdAhw4d+Ouvv8xjODk54e/vX+D4Bw8eRKlU4ubmhoODAykpKRw7dozRX/xKprU7KtvqOLTtZxbFziHz5nmSDq6jxoBPUVerSULAV8T9vgDXgXPJNBhZcSDkvofoUlNT8fPzw9nZmZ9//jnPvYKczt2hZ+v6RduX43RGPVk6qbrC1HcKqgCfQ+qFvVh5NEbtmJ00/yDVd65fv35f600+SogVn6DCMGPGjDwrPJPJxIYNG/K0sanuiu+L45m5+wYz90XjO3w+e8IpUG7M29UelZT/i82YlkTapYOYsjKQTUYyrp8m7fJBtHWa52ubk2tXEFevXqVp06ZcvXoVpVKJXq+nuq0Vo56sz6J+zfn6tVY4hWwn/vBGRr0+0JwS0a9fP/MhFUmSSEtLo2HDhgUq7n/11Vekp6fz77//cvnyZcLDwwm6doNkW09kuXBR7IzQk1Txbp+9klKqcWjbH13YBfSJkQ9EINtgMNCkSRO0Wi1hYWHUrFmTIUOGcP78eaBgp1O9+1g8J22ixsB5WDdsg6QsOrn/Xp1OQREBWTYRt20hKFVU6zY63/20C/uwbfrUXeM8GPWdGzduFPiCVxkRjk9QYVi7di2bN2+mVatW5muLFi3CaDRyLiyJketP0W7ePvQ+3dkVHM+pyExSnRqzOOAqbeftY9T3pzgXdieE91RdG/T6AsKdkkTK2Z2EL3+dsMX9Sdz/DVWfGkEVryfyNZWBl/zzF7i9dOkSzZs3599/s/cQra2tSU1Nzdfu5s2bQLaCyFtvvQVAr169sLOz44svvsDHxwelUklSUhJ16tQxFxqFbMe/ePFiLl++nGdMiwWy82z/Z/+sj822536E6PR6PdevX2f//v14eXkRFRXFCy+8gFKpRKfTsX79epo3b45WqyXg4JECx7Ak9Jybe3E6d0cECqsAn0Nm+CWMqQlUaZR3z+9Bqe+Eh4cXqSlamRDrXkGFQavV8uKLL/Liiy8SHx/Pq6++yp49exg+9zuO62oWenIx87+Vw93JxR+9O4FMfQO0DZ5AyrU/pKzigOvAucUbJJuwir/Olg0RuLi4oNVq0Wq1NG/eHFdXVwYMGGDetzIajeZDKGa7MjPN+zI6nY6VK1fSsmVLhg4dSkJCApIkMXr0aBo0aIBOp8PKyoq6dety/vx5ateuTVZWFhMnTkSr1dKwYUMmTpzIK6+8YpFAtrZeC+K2zsfusWdQVa3J7SMbAAnZoDN/ZgWtltLT07l58ya3bt0iIiKCyMhIoqOjiY2NJT4+nsTERJKTk0lNTSU9PR2dToder8dguPOCIUkSsixjb2/P1q1bzactJUkyK7V4eNXj75gijgIVEXrOzb04nezq71HmzzKnAnyN/rPzaITmkBa0lyoN26KwuuN8iooIlDWRkZEVXtXHUoTjE1RIqlevzu7du/lk41+sv5BGpqH4XLkcubGPfg1kypR3iTr8MxpXL2rUfQxJUfIDAVYqJde3r2LEykuo1Wqsra1JS0tj8eLFvPnmmyxYsIBvvvmGIUOGEBAQkO/QwcWLFzEajSgUCiRJYtKkSXTs2BHAfNxeo9Fw6dIl6tSpg9FoxNHRkQYNGtC7d2+ysrKQJMl8mnTo0KEMHTqUmv0/Rl2n4D3BHKzrNMex/avEbvkUky4D+1a9kaysUdrd0Xnc/PsO1o7qZHZeOWFmSZJQKpVoNBq0Wi02NjbY2tpib2+Pk5MTjRo1MotD16xZE3d3d2rVqoWnpyeTJk1i1apVHD58mNatWwPg7e3N9evXeeaZZ1i2bBmenp6sOhjKuf9STYxpSWTePId1g8eRVBoybwSSdvkgTr3fzf7/atCTs2KVTYZsGTilGmu10mKns2rVKlavXo2Liwtubm7odDr+iYxD//g4kJTFVoCXDVmkBR/GuU9eVZ3CIgL3g+jo6IeuFVpeEOkMggpL7jyv3BgzUojf8QWZN86isLanasfXsPHtlKeNSZ9J9A9TyYoKwbb5M1R96g0Uasudn1al4MNnfWjjbKRx48ZkZWUfHNFoNMTGxmJvb8/gwYP5888/iY6OLnCM6Oho1q1bR3p6OjNnzmTgwIHExcURExNDQkICycnJpKenk5WVRe4/45wDPh4eHkRGRmI0GpEkCY1Gg4+PDzr/AaS75M3jSvxrPcbkuEIrvusTIohc+zbu475Dqc1eNdQ2RfF8jdu4u7vj4eFB7dq1qVmzpjmRvqTMnz+fqVOnsnnzZvr27Wu+/uOPP+Lu7m52+pA3lcCYfpvYLXPIivkHZBMqBxfsWjyHXfNsMYLwFcMwJsfkmct99NfYOLlZnErwww8/MHToUPT6O6FRd3d3On30I0duppRafad74xoPLI+vQ4cOqFQq9u/f/0DmK8+IFZ+gwrL8QEiBK72EP1ciKdV4vPU9WdHXidn8P9QuddE439FklJQa6j47mv4eKTg4OBCYmsChNBdMKEAq/ItdkkApm4jZ/RVyw5eo3XIAy5cv5+233zavilxdXXn++efZtGkTzZs3p2vXrsTExJCYmEhKSgoZGRlmRylJkvkk3i+//IKtra15BajRaFAqlRgMBvR6PVlZWXlWXuHhd/bgqlSpgrOzM7Iso0mPJcNkQFaoChXFxmREn/gvaqfaGJNjid+5FLuWvc1OT6tS8Gq3TqU+EXk3GzZsYOrUqSxevDiP0wN49dVX87V3srWiY0Nn9lyOLjb07DH2m/wXZROdGzlb5PSOHDnC8uXLzU5PoVDwxBNPcPDgQS5FpXG6lOo7WpWSsZ0aFN+wjEhMTMTHx+eBzVeeESs+QYWksORiU1YmYYv7U3P4ctTVslMM4v5YiNKuOlU7vZ6nbU5yscqYSf/+/dkXGIJDm1eo6tseiTt7gwBqBZhMMq6mOKpG/s329SvN93IEpAtCqVSiVCqRZRlZljGZTOafc+6r1Wr0ej0KhYLatWtjb2+Pg4MD1atXx8nJiRo1auDm5oa7uztpaWkMHDiQl19+GTc3NxYvXsz06dOZOXNmgZ9N0qEf8ohiAzi0G4B9q+eJ+mEqhqRIJI01tk274vjkYHOViLJMvP7rr7/o3LkzEyZMKDCfsjAKW9FbhCGL38d3LlQuLCsri1mzZvHll18SFxdHs2bNqFWrFtu3b6d+/fqcOnUKO7vsMGlphAAUJj1Vbxxg2+L3HphodK1atXj++efzCTVURsSKT1AhKezkoiEhAkmhNDs9ALVLXXS3gvK1lWWZFybO5cjX/zM7otgtn5J2sAbqhu1RVa+NQmuDKTONrNgbpAUFcD2XJqd5zv+cXs4+l62tLaGhoWbNTltbW/r370+rVq3w8PCgVq1a1K5dO88JvGXLlvHee+9ZVH/QxcWFrl278uabbzJ37lymTp2KXq/nk08+AfKulhw7DCyw8gNAzTeWFXhdkrB4tVQcwcHBdO3alb59+5bI6QE083RkWk/vEjsdtWQi/uBa/Bb0yXfv9OnTTJkyhb/++gtra2v69+/PnDlzcHJy4vr160RERPDHH3+YnR5gVrEpifTb+I51GdO1DzU3fYG3tzeDBg2iT58+NG7c2OLnKClpaWmiMsN/iHSGCkxBBTFXHQy9r/lXD5qPPvqI119/nZMnT+bZ5yrs5KJJn4FklVdPU2FVBVNWRr62WUaZy5HJ3B0UUWSlUeXmUVIDlhP7yyy6O0QxvF1t5sycxvr169m3bx8LFy40Oy6FQsGePXtISUkhIiKC+fPnI8sy0dHR3Lx5E19fX7766iu+/PJLGjRogI+PT75j58OGDSM9PT1fakJBdO7cmU2bNrF06VL0ej1r165l7ty5ZmFngHGdGqBV5RestgSNQiqTEF1MTAwtW7akZcuW+RLULWVQ6zpM6+mDtVpJcfKaEtni3u8+3ZDEk38QGZl96tNgMDBnzhzc3d1p1aoV0dHR/PDDD6SkpLB69WqcnJwAqFevHqdOnSrQeQxqXYeNI1vTvXENrFQK1Hd9s2pVCrP6zsaRrRn9VGMGD84+BBMcHMzMmTPx9fXlxo0bpfocLCEjIwNPT8/iG1YCRKizAvKoqO2XBbVr1+bWrVsoFApsbGzo0KEDvXr1Yr+xEX9HFODMokKJ+v5dak3+xXwt+cSvZN4KwuXlGfnad6jnSNWgjaxevdqcIH7x4kVq1qyJs7MzRqORH374gQEDBuTpFxUVhYeHB7a2tqSmpjJkyBC++SZ7r8nb25uaNWuyb98+c/szZ84wcOBArly5Qo8ePfj+++/zFdd1c3Pj5ZdfZsmSJRZ9NqtWrWLs2LGsXLkST09PevfuTffu3dm+fTtQuhCdWpKJ2rkCj8x/mDx5Ms899xwuLi4W988hIyPDHLa9evVqqQ/E5HA+PIkVB0LYfyU2XxhaSXZ9Reuk62z4aCh+Ho7Y2dkxZswYLly4wJ49e1CpVPTt25cFCxZQs2bNe7IlPlVHi5fH4d+lF1Vd3LHXqvF2s+Ml/7zlnc6cOUOHDh1IT08HYNasWXz44Yf3NHdRqFQq9u3bx5NPPnnf5nhUEI6vgvGoqO2XlPDwcE6fPs358+e5cuUKN27cICIiglu3buUp8pqD/5tLiLetl+96Sfb4APo0d2fBi024fPkya9asYdu2bZw/f56FCxcya9YsDAYDbm5u3Lx501xxIYe5c+fy6quvcvHiRXr16sX//vc/+vbtS5MmTbhw4UKBYa0dO3YwYsQIoqOjGTx4MCtXrjSnObzyyisEBgaaK4hbwqxZs5gxYwY///wztWrVon379jRr1ozjx4+jUChK9fsy8blWxMXFmStcNGnShAMHDlicI2YymfD29iYxMZGbN2+WaVJ1fKouj+SbvVbNlb/3EfDVbPSpiQwePBh/f3/effdd9Ho9DRo04P333+f111+/Z+ebw5YtW+jbty+zZ89m2rRphbaTZZlatWoRHR2NlZUVWq2Wy5cvm1eYZY0kSYSFheHh8WDSJ8ozwvFVIB4Vtf27SU5O5tSpU5w7d47g4GDzXkpcXJy5QjpgPs0ImA+B3I2Xlxdbt27lYIym0JJCsVvnARLVn3mbrJjrxPw8E9dBC/Kc6oTskkLJR38i+cSvaLVaZFnGysqK8PBwXF1dzUorGo2GpUuXMnLkyEKf8csvv2TMmDF4e3tjNBq5cuVKkZ/JmjVreOedd9DpdLzzzjvMmjWLPXv20LNnT/NBF0sZP348y5YtY+/evbi7u+Pv74+rqytBQUFotdoiV0s5EYLOjZwZ26kBfh6OLF26lHfeeQe9Xo9KpaJz587s3LmzwFp/BdGhQwfOnDlDaGgorq6uFj9Hafnwww/N+5uQ7QDq1q3L7du3isIXCAAAIABJREFUzXqtZcXNmzdp3Lgx6enp9O7dm61btxbZfs2aNdy4cYNp06bRuHFjEhMTuXTp0j2vOu8mOTkZBwcHc15oZUccbqkgnAtLMqvtpwXtJSv2BjY+HfPkZWXcCCThz1UYk2PR1GyI07MTyXBw4ZMdwfh5OOY74Za7nl1pycrKIigoiLNnz3Lx4kVCQ0MJCwsjJiaGpKQkMjMzMZlMKJVKrKysUKlUKBQKDAaDOTEawMbGBjc3Nxo0aMBjjz1G+/btefLJJ9m4cSPDhw9HrVbz5ZdfMnToUAAiE08W6BgBqj09lvgdXxC+dCAKa3uqPz02n9MD0FhZIf1zApPJZA5H2drampOoc57Bx8eH5OT8h1pyM2rUKC5fvswXX3zB7Nmzi/3chg8fzrBhw/j444+ZO3cuS5cuZc6cOUiSxLZt2+jdu3exY+TwxRdfEBMTQ7du3Th58iShoaE0btyYunXrcvHiRfw8qrFqUMsCV0sFhej69+/PlClTzKdVH3/8cYud3oABAzhx4gSBgYH33emZTCbWrl3L4sWL81xXqVRkZGSQkJCQpxjxvaLX63nuuefMNR8DAgIwGAxFCkMPHz7c/PO1a9fw8/OjYcOGnDt3jvr1yyZVBCAkJMRcekkgVnwVhpzaZGnBR0GSzGr7OY7PmH6biC9HUP2Zt6nS4HGS/vqezPCLuA1ZmC+RVq/X8+mnn7Jo0SIiIiKwsbEpcE6TycT169c5ffo0QUFBXLt2jZs3bxIVFUViYiJpaWnmN0xra2scHBxwcHBAo9FgNBpJS0vj9u3bpKSkmFcPVatWpVatWjRu3JhWrVrRpUsXfHx8Cv2DzcjIoF69emYHmZmZSXp6OtbW1vSY/QtnYosO4RWGbDJB+Dl6OUaya9cuwsLCMJlMeHp6EhkZSVZWFg4ODqSnp3P27FmLTuMNHz6cdevWIUkSFy5cwMvLyyJbsrKyGDduHGvXrgWgVatWHDt2rMTP1LVrV44cOcKlS5dwdnamSZMmJCUlcf78eWrVqlX8ALno3LkzqampvPHGG4wdO5aJEycWeyrzvffe47PPPmPv3r106tSpxPZbyr///suUKVPYsmULer0ejUZjfnHJoWfPnuzevZudO3fSrVu3Mpn3hx9+YNCgQWYBAY1GQ0BAAB06dLB4DJPJxOOPP87Fixc5efIkTZo0KRPbfvnlFwYOHFigkHllRKz4KgC5a5NVadQWAF1UCEb9nTBO+tVjaJxqYePdHgCH9q+SsuRV9PFhqKt7mtX2b127RL9+/YiIiMBkMvF/9s47qoqr68PPbXDpVaQpigWMXTA2lNiwxYi9JSoRey+xJEZjizG2GHssscbekKhYERUbKhgsIAYVREBA6eWW+f7g5UakI6j54rOWa8ncM2f2DJfZp+z927t27SIhIYGQkBDCw8OJiooiPj6elJQUTZK1XC7HwMAAc3NzbG1tqVu3LlpaWqSmphITE8Pjx495/vw5z58/JyoqCl1dXSpWrEi1atWoV68eLi4utG7dGmPjkgfa6Ojo0K1bNzZt2qRJ3JZKpVy5coV1+44jpQ4KSjFrVWURfW4ba6PDgH/0I0+dOkWNGjXw9/dn3Lhx3L59m9q1a6Orq0ujRo0YOHAgQ4YMySM/lvMsv//+e7y9vWnUqBFPnjzJE8CSH1paWmzcuJElS5bg5OTE1atXcXBwYOfOnbkEuYvi1KlTODs7U79+fR49ekRYWBiNGjXCwcGBa9euUa9evWL3dfToUbS1tdHW1sbExIQBAwaQkpLChg0b8m2/Zs0alixZwo4dO8rN6e3du5d58+Zx//59rKysmD17NpMnT0ZfX18zOzU3NycxMZFjx45RpUoV9u/fX2aOr2/fvpqiwKamppiYmGiW6YuLWCzm+vXrtG3bFicnJy5dulSi33FBREREoK1d/sVu/y18nPG9Y+JSMjlwM5IH0UkkZSgxlEtxtDSkt5NtqfOi1l94lGc/600JqoTTGxDUSsw6jNG0ido0GiOXgeg5tkAqEuAvbx55535xSSQSDA0NMTU1xdramipVqlCzZk3q1auHra0twcHBXLlyhb/++ovHjx8TFxdHZmYmEokEY2NjbG1tcXR0pHHjxrRu3ZoGDRqU6XLLuXPn8PDw4OnTp0C207Ozs+PRo0fI5XKWeV1n1cXIEu97qm8eJPT45lzHK1WqpLkOwLp165g+fTpRUVFs3ryZ3bt3ExQURGZmJjY2NrRv355x48bRsGFDli1bxrfffktaWhqCIFCjRg0yMzNLXCrm0aNHVK9eHWdnZ27evMmnn37K7t27qVq1arHOVyqVODo6kpiYSHh4OLq6urRv3x4/Pz9OnTpF69ati23L63h7e+Pu7k7fvn3ZtWtXrs+OHj1K9+7d+fHHH5kxY0ap+i+IuLg4ZsyYwZ49e8jIyMDV1ZUlS5bkqk+4a9cu6tWrR+PGjVm8eDHTpk1j6dKlnDt3jtDQUO7evVumNunq6rJq1apc6SOloWvXrpw8eRIfHx/atGnzVn1NmzaNHTt2aFI4/ut8dHzviPJMMZi49zZHAqNyHXvT8cUdX4lE1yhX5GL0jm/Qr98B/XrtAKiQGs4Lr6U8e/ZMM0JevXo19erVw9fXl4CAAEJDQ3n27BmJiYnZIeI6OlSoUIGqVatSr149WrRoQevWrUsV4l4Srly5goeHB6Ghobi6uvLy5UuCgoI0n+cUne3evXuxIxcR1OhoyfiusyPtq+pgZ2eXa8QuFouxsLBg69atdOjQgS1btjBu3DhSU1NzdXPr1i1Wr17N6dOnefbsGdra2iiVSurXr4+fnx+6urokJydrhJkDAwNLNBjQ19dn3rx5tGzZkq+++orQ0FA6d+7Mzp07izVrzsjIoGrVqmhpaREWFoZMJqN///7s27ePPXv20Lt372Lb8jrnzp2jQ4cOdOnShSNHjgBw/fp1mjdvzrBhw1i3bl0RPRSfY8eOMXv2bIKCgjA3N2f48OF8//33hc5qWrVqRUZGBtWqVePChQvMnz+fsWPHavbkyoKMjAx0dHR4/vx5mexhDhgwgH379nH48GG6du1a6n4GDRrE1atXSxQR/P+Zjzud74CdVx/Tb+NVTt+PIVOpzhNpmPG/Y6fuxdBv41V2Xn1cov7zK4j5JmKZHHVm7n0OdVYaIq1/krnNrbJzvZo0aYKOjg4qlYqRI0fi4uLCkiVLCAkJoWbNmhplC4VCoSlD4+vry6+//krfvn3L1endunVL42DNzMx4+PAh58+f58iRI7mWF21tbXF3dwfyJhfLpbm/9jnJxWkPr6F79Te6161AxYoVGTduXK7Z2MyZM2nUqBGdOnWiYcOGJCYm5htA06hRI7Zs2UJERARpaWl4enqiVCq5d+8eenp6WFtbM3r0aLZu3crDhw/5/PPPS/QMGjZsyP79+2ncuDEPHjzAy8uLW7duYW5ujqenp2YJuiBywuYTExNp1KgRarWa3bt3M378ePr27cvq1fkrthRFmzZt8PPz4/jx47Rv357w8HBatWpFhw4dysTpJSUlMW7cOIyNjXF3d0dPTw8/Pz9iY2NZsGBBkUt5np6eBAUFsXLlSqKjo7GwsCAjI0NTE7EsOHfuHFKptMwCd/744w88PT1xd3dn9+7dRZ/wBmq1mpSUFGJiYkq1lfD/FuEj5cqOK+GC4/fHBbsZ3sX+5/j9cWHHlfBc/SQnJwuurq6Cjo6O0LhxY2H69OmCl5eXEBISIvRbeSJPH4bN+wp6ddpqfjbtOFbQtqml+bnS5AOCSKotWA9bpzlm8cVUwcbGRmjRooUwcuRIYevWrUJERMT7eXBvEBwcLDg5OQkikUhwcnISgoODc30+btw4ARC0tLQELS0tYf369fn2E5ecIay/ECZM3HNb+HrrdWHintvC+gthQlxyhmBjYyMAQoUKFYTTp08LCQkJgp6enjBo0CBh2bJlgkQiEZycnISrV68KtWvXFkQikSAWi4Xk5ORCba9Tp47QokULzX2MGDFCsLOzE0QikSCTyQRAaNq0qZCYmFisZ7Fq1SpBR0cnz/H169cLBgYGgra2tjB79mxBpVIV2k9ERISgo6MjtGzZUnNs8eLFgkgkEmbNmlUsW/Lj9u3bgpaWliCRSIT69esXaUdRnD17Vvj0008FkUgkmJqaCpMnTxZSU1NL3I9CoRDEYrFw8uRJoWnTpkL9+vUFAwMDYenSpW9l3+tMnDhRsLKyKrP+cvjmm28EkUgkbNiwoUTnrVixQiC7+pEglUoFOzs74dy5c2Vu37+Nj46vHAl8+lJw/D6vU9KuVEdAIhNEMrkgkskFqalNPs7vhBAU8VIQBEGIiooSHBwcBLFYrPkSv/6v0cBpQs1Zfwp2M7yFytOOCpWnHhIMm/YS9Gq3FipPPSRUnnZUsB2/SxBp6wrm7jOzP2/SU9CydtBcz2HWcWH9hbD3/MTyEhYWJjRr1kwQiURC3bp1hZs3b+b6XKFQCC4uLoJEIhH2798vXLhwQahZs2apXoxffPGF5pnq6OgIQ4YMER48eCBkZGQIgiAIoaGhgqWlpaCjoyMcP35c+O677wRAkMlkwowZM/J9wYeFhQkikUi4fft2ns8yMzOFLVu2CLVr19Zc18LCQujTp49w/vz5Au1MTU0VAOHevXt5PlOpVMKsWbMEbW1twdDQUPjtt98Kvefg4GBBJpMJ3bt3F2JiYoRu3boJK1asEMRisTB06NAinlhurl+/Ljg5OQmPHj0SLCwsBECoV6+eoFAoStSPIGTf47Rp0wQzMzNBJBIJzs7Ogo+PT4n7eRNHR0fh888/F27cuCGIRCKhTp06Qrt27d663xxcXFyEVq1alVl/rzN//nxBJBKVyFGHhoYKcrlc8/3S1tb+YAaz75OPjq8cGbb9hlBlZt4ZnXalOoJpp3GFzvqqzPQWRuy4IVy/fl3Q19fP1+HJZDJh5MiRQt/BnoLdN4cFuxneglGL/nnaGbXonz2j67dAkJraCiKplqBdqY5gM3Kz5no1Zx0X4pIz3vcj0xARESF89tlngkgkEhwcHIRLly7laRMTEyPY2NgIBgYGeWaApWHYsGG5XhAzZ87M00alUgn9+/cXRCKR4ObmJkgkEmHBggWCtra2YGxsLOzcuTNX+44dOwr29vZFXnvFihWCSCTStBeLxYJMJhPq168vzJs3T4iPj8/V3tLSUhg7dmyB/WVkZAgeHh6CRCIRrK2thePHjxfY1t/fX5BIJIKurq4glUqFNWvWCH/++acgkUiELl26FGl7DlOmTBHEYrEgkUgEAwMD4c6dO4K+vr7g4OAgZGZmFquPK1euCC1bthTEYrFgaGgojBo1Snj58mWxbSiKOXPmCEZGRoIgCIKdnZ1gb28vWFhYlFn/lpaWwuTJk8usvzf55ZdfBJFIJMyePVtzrKhBXrNmzTQzvnnz5pWbbf8mPga3lBMFlcUBiN41A706rTGo36HQPkRqJU9XDUKdj+J/DgYGBlhaWqLddizJxvZQitD9d10QszBiY2MZPHgwPj4+VK1ald9++422bdvmaXft2jVat26NtbU1t27dKpPK0rNnz2bBggXo6+tjYGDAs2fPCmx79OhR+vTpQ1ZWFn///TdWVlZ4enqye/du7O3t2bNnD7Vq1cLAwIBdu3bRr1+/Iq8/fvx41q5dy+XLl3FycmL//v38/vvvXLt2jaSkJMzNzXFxcWHEiBFs3ryZwMDAIqs1JCQk8NVXX3HixAkcHBzYtWtXrohHgPv379OkSROSk5OB7CCQCxcucOPGDVxcXGjQoAFXrlwpMgCnRo0ahIVlp3/o6elx6tQp7O3tqVWrFkZGRjx48CBPmgdk5ykuWrSIdevWERsbS926dZk3bx7dunUr8pmVlISEBMzMzAgNDdUESAmCgFKpLJNoY5lMhre3Nx06FP63/TZs2bIFT09PJkyYgJ6eHhs2bOD58+cFJsofOXKE7t27Y2RkpJFH+6/z0fGVE/mlGOQQvWsGirjssHiZqQ3Grb5Cbpc3h0qkVhDvu4Pk64dyHTc1NeXo0aM0b95c88f6NrXJdGQS9g5vWmBtsnfBq1ev8PDwwMvLCxsbG9auXVtg0MfmzZsZPnw4nTp1wsvLq8zSI0JCQggLC8PZ2RkbGxuWL1/O+PHjC2x/7tw52rZti0Qi4ddff2X06NFERkbSu3dvrl27hpWVFSkpKSQmJhbbhq5du3L69GlCQkKws/tHTebJkyesXr0aLy8vjXNRq9XMnDmT8ePHFxlMER4eTr9+/bhx4wbNmjXjjz/+wM7Ojvj4eNq2bcvdu3c15ZMkEgnJycno6Ojw8OFDGjZsiFXVmkz4ZTdhcWn5puG8ePECS0tL1Go12traCILA7Nmz+e6770hISMDBwQGZTMaDBw80g5Q7d+4wZcoUzp8/j1wup3fv3ixevLjcI4KtrKxwd3dn3bp1GBkZkZyczIkTJ97aWUVFRWFjY0NmZmaJUlRKw4EDB+jduzcSiQS5XM6BAwfo2LFjvm2VSiVaWlrMnz+/UO3Q/xIfozrLiYLK4gCYtPbAZuQmbMdsQ79BR2IPzkfxMm9+jSCWMXjCTC5cuMDIkSMxMzNDJBIxe/ZsXFxccr3wc2qT6bxZD6UIsrU6Hd+b00tJSaF///6YmZlx9epVdu/ezdOnTwt0emPGjGHYsGF89913eHt7l2lOoIODA126dKFixYqMHz+e6dOnF6p0UbFiRUQiETNnzmTcuHF89tlnmJubc+XKFXx9fXn+/DnJyckMHz68wEK0b3L06FFq1apF/fr1c8mg2dnZaSJrFQoF+/btQyQS8euvv2JlZYWpqSldu3blyJEj+Yp2V61alWvXrnHlyhVevHhB1apV6datG9OnT+fOnTuMHj2a/v37I5VKUalULFq0CIA0eQV6/uJDVsfvWXLyHkcCozj3IJYjgVH8ciaU5ovPMWJnAMNnLkStVmNqasrcuXOJiIjgu+++4/Lly5iYmPDo0SMgu7TP3LlzsbW1pUGDBkRGRrJ161ZSUlL4/fffy93pAXTs2BFvb28gW0oOsh3J2+Lt7Y2urm65Oz1AIxKeo4C0fv36vG3+V5Zs6sG/qPzlj0TYtv1/V5astHyc8ZUTX2+7wbkHscVqG7N3NjrVGmPonDdPp62jBZsHZys3CILArVu3sLW1pWLFivn29W+pzpCRkcGoUaPYsWMHJiYmLF26lMGDBxfYXqlU4urqyvXr19mzZw89e/YsV/vUajXm5ua0adOmwJdieHg49vb2mt9L+/btUSgUnDhxgqCgICZOnMjKlSuZNm2axplMmDChyGtnZWVhb2+PWCzm77//LnAJq1atWjg6OjJ//nw2btzImTNnNOLX1atX54svvmDcuHH51mA7cuQIw4YN04g06+joEBAQgJ2dHUOHDuXs2bMsOnCZZWf/Lvq7BKgVmTTXieaPeaM0+q5Llixh2rRpnD9/HisrKyZNmsSJEycA6NatG6tXr34vlQKCg4OpW7cuycnJaGlpIZfLsbS0fOu0hoEDB3Ljxo13kivXq1cvjh07hkQiIT09HZFIRGJiIgYGBv+psmSl5eOMr5wwlJdADU4kIjumIr9+ZK81E+Hk5FSg04Oic9akIiFXQcx37fSysrIYPXo0hoaGHDlyhFWrVvHixYtCnV50dDSVK1cmODiYO3fulLvTg+xk9a1bt3Lo0KF8lT1atmyJq6srANbW1kyaNIno6GiqVatGy5YtmTZtGu7u7owaNYrExEQ8PT2ZMmUK1tbWnD17ttBra2lp8ddff5GYmEizZs3ybXPx4kX09PTw8vKiXr16REVFcffuXbKysvDy8qJWrVps2bKFypUrY2RkRMeOHdmzZ49mNuju7p6rjFJ6ejotW7ZEIpGwZ88epm/0ZunZR6QritY6FQCRTJtAUVV2XXsCwL59+5gzJ7u+YefOnXF0dCQkJIQ1a9ZQs2ZNzp49q5GYe9fUqVNHIzaupaVF/fr1y0TR5K+//qJ27dplYGHRHDhwgKioKDZs2EDTpk0RBIHevXuz40r55gz/f+HjjK+cKGiPT52RQmZUCPLKdUEsIfW+HwknV2Pl8aumPlwOcqmYSe1rMqJV6VTa31Tbv3nlIs/vBxDsvZkKBjpFd1CGKJVKpk+fzpo1a9DS0mLOnDlMmTKlyPOuXLlCmzZtqFSpEgEBAWUSxFISnJycSE5O5quvvuL06dP4+fkB2cna58+fB7L3xAYMGMBvv/2Gjo6ORqTY1taWgIAAzUAlISGBAQMGcOrUKRo2bMiBAwcKlRrLqaLQpUsXDh3K3udVq9WkpqZSoUIFjaqMVCpl/vz5+cqBxcXFsWbNGg4dOsT9+/dRqVRUrVqVTp06aRLVxWIxQnaEN3Z2dmw4cJKJXo9z7RcLSgXxp9aS8TgQdUYKUmNLTFwHo1Mtd0CUjkzCiOppTP26j8axicVi/P39adKkCZD9XXB2diY0NJTbt2/j4OBQ8l/MW9KhQweio6MJCgoiJCQER0dHjh49WqKqF29iZGTErFmz+Oabb8rQ0uIRHR1NrxkriavUKldZqaL4EMqSvQ8+Or5yoqCoTlVaIrH7fkCREAkiMTIzW4xbfolO1YZ5+tCWivGf3qbUGp5v0rBhQwIDA5k5cyY//vhjmfRZFGq1mjlz5rBs2TJEIhHTp09n1qxZxdqb++233xg1ahSdO3fm6NGj76WkyrZt2xgyZAgymQxBEDRVIO7cuUOTJk3IyMhALpcTHByMvb09Uqk01x6bRCJh27ZtDBw4UHMsODiY3r17ExISQo8ePdi+fXuBxVgvXbqEq6srEydOJC0tjevXr3Pz5k2OHz9Or169SE9PRy6X4+3tnW/065ucPXuW9evXc+bMGV69egVkO6aqVaty+fJlTp06xYmUSlyJSM0101NnZZB07SD6ddshMapA+qMA4ryWYP31aqTGr61ACAKpof7EHV6ElpYWOjo6pKam8vPPPzNp0j8lstRqNS4uLty6dYurV6/SoEGDYv0+yorDhw/Tu3dvsrKyEIvFSCQSrK2tiYiIKFV/arUaqVTK3bt3qVWrVhlbWzRBEa/os86PZ3+uzndwkhX3lHjv5Sj/F0ugZVkdk/Yj0DKv/EEEt71rPjq+ciI6OpqeK32IwryARczCKesUA0EQNBFscrmcPXv2lEu4eA5qtZrFixezcOFClEolkyZNYuHChcV2XqNGjWLDhg3Mnj2bH374odzsLIzff/+dr7/+WvOzRCIhKSlJ46S++OILjh07Rrdu3TTalHK5nMzMTLS1talZsybOzs5s3bqVLl26cPjw4Vz7dQcPHmT48OEkJyczffp05s6dm+/z2b59O4MHD0YmkyESiYiKisLMzIzNmzczbNgwBEEgISEBExOTYt/b+PHjWbVqFZDt+NRqNTKZjIXLfmVTrF2BgVmvE7V5LEYt+qPn2CLXcS2JiNNjm6BKyy70GhcXR926dfPda2zfvj0XLlzg4sWLmhnhuyAn+jRnvzhnKba0GpvXrl2jefPm7235dviOAHyCnpB4Nf/BiViuhzojFYmRBQhqkm/9SUrQKayHrv6g0pneFR/3+MqIBQsW0LFjRxwcHNDW1sbKyoqXF/egLS3dI5ZLJYz+rHqZ2Xf//n3NTCQjI4O+fftqIu3KmlWrVmFiYsIPP/zA0KFDSUlJYdGiRcVyekqlkmbNmrFp0yYOHz783pweQJ8+fRg5cmSu3LOEhATN/3Pqz82cOVNzLOcZd+3alevXr7NlyxZ8fX3x9fXF0tKSO3fuaNr27NmTFy9eMGvWLH7++WfMzc3Zt29fLhvS09P55ZdfkEqlKBQKJBIJ586dA2Do0KF07twZkUhUIqcH2cujrq6ufPfddxw8eJDw8HBCQ0NR2DoV63xV6ksUCc/QqpC3jp9YJOJk6Cvs7e359NNP6dy5c75OD9BUlXdxcdHc17tALBZTu3ZtTTRk165dEYvFjB07tlT9nTx58r1pYeaUJRPJ5Bi3HIjUuCIikRjd6p8iNapIZnQYYrn+/45nBx6JRGLN7E8Q0JQl+6/w0fGVEcePH+fUqVOEhoaSlZWFrq4ut84cZlaXWh9EioGvry+ZmZmIRCJkMhlt27bNN+z9bdi0aRNmZmZMnjyZvn37kpiYyMqVKwutQP060dHRVKpUiXv37hEcHFyuM9LioKenx7p16/D19cXc3ByVSkVwcDCQ/bI5GyXGsvt01t4VmLj3NuvOP0TQ0qNnz57s27dP4zBbtWpFbGwstWrVomHDhsybN09zDbFYzOzZs0lMTMTNzY1+/frh4OBAYGAgAB4eHiQmJiKVShGJRKSnp7N161bN+YcPH8a4YiVWnbnPxL23+XrbDSbuvV1k2HqOcPSCBQtwd3enSpUqVKlShdgsaZGzPUGlJM5rKfp12yIzy+vQMpRqHjxPLvZzPnLkCH369MHNzU2TZvAuGDhwoKagb//+/VGr1Rw5cqRIke/8uHLlSrFLQ5U1B25G5ns8v8HJ0xV9ebqkOwmnN2DY7J8qHCLgwK38+/n/yMelzjJi7ty5mtmJjo4O27dvp1evXsCHkWLw9OlT7ty5w+HDhzlx4kSZKtLv3r2biRMnEh8fz4ABA1i/fn2Be1YFcfnyZdq1a0flypW5efMm+vr6ZWZfWZCVlUX9+vWp91lXjJr3yTdUXEsCCoUSt7o2BYaKr1y5kilTplC3bl0uXLiQJ1jnyZMn9O7dm4CAABo1akRwcDBisZhjx45x8uRJVqxYgVqt5tWrV4QnqlnjG4ZvSCwikahEYetVqlQhKioKa2trPDw86NevH0ZGRsw8+ZTzIS8KfA6CoCbOawnqzDQsen6PSJL/oOb1NJziMmLECDZt2sTu3bvp06dPic4tDampqRgYGHD79m3q16+PVCpFKpUyefLkEu+BV6lShfbt27Nx48ZysrZg8iuIbW1+AAAgAElEQVRLJqiUxO6bg9TECrOOuWex6qwMUoPPIjG0QLf6P7+j7g1sWNH33e61vi8+Or63JC4uDjc3N4KCgmjXrh1nz56lfv36BAQEaJYVAO5EvmKtbxjnQ14gglyRV1LUSKRSWjtUYPRn1ct1k9nX15e2bduWyV7E4cOHGTt2LNHR0fTo0YNNmzZhZGRU4n42bNjA6NGj6dq1K4cOHXovQSzF4bfz91l65m8UAm81gHn06BGtWrUiISGB/fv355usf/78edzc3DSJ73Xq1CEwMBCFQpGdaO7YmmBZzRINpvo0sub69ev4+/uzdOlSXrzI7eD09fXpNG8P1wtIPxUEgfjjK1EmxmDR+wfEsoKDrtwbWPNL37wBW0UxefJkfvnlFzZv3oyHh0eJzy8plStXpnXr1mzbto3KlStrpOpyAn+Ki1wuZ/PmzbmCmN4Vb+YMF2dwIghqIlcOxHrYOiR62e+b0gxW/q18mG+Yfwnr1q3D2tqahIQEHjx4wMmTJ/Hw8OD333/P5fQA6tkas/5LZ/ynt2FS+5p0b2BDW0cLKqSGk+C3A99JLqz/0rncI6tatWqFIAgEBASUug8fHx+qVKlCz549adSoETExMezfv79UTm/48OGMGjWKOXPmcOTIkQ/W6e28+pgV5x+TpS7c6UH25+kKFQuP3883T6patWpERETQs2dPvvjiC7766qs8y86xsbG5av0FBwfTo0cP5HI5Paev4C9ZjeLl2P3Plm8P3MSsiTufffYZixYtyvViF4vFNGnShC+++AJZ6osC96UTfNagiI/AotfsQp2eoMjEa/u6QlVvCmL58uXMmjWLoUOHaoJvypOuXbvi4+MDgLOzMyqVipSUlBLVvktJSSEzM5MuXbqUl5mF8nrOcPbg5FdUqa+o0P3bAmfkCAKCMhNVcvxr/cjyb/v/kI8zvlIQHx+Pm5sbgYGBTJ06lcWLF5e6r44dO+Lj48OAAQPYuXNnHodZHlhYWDBkyBB+/vnnEp3n5+fH0KFDefToEW3btmXbtm1YW1uXyoasrCxatmzJrVu3OHjw4FvlT5U3+emgPl3WK1cbQZmFQcPOmLqNzHW8qFBxLy8v+vbti6mpKX5+flSrlp2z6evry7Zt23j58iWJiYncvXuXV69e0X/MDK7qN+XFNS9S/zpL1ovH6NVyxfzz7FSBwsLW5VIx+0Y0w0pbQdWqVfNUjq9cuTK//7GfUSfj8+zzKRNjebbua5DIEIklmuOmHcegX7t1rrZaEhEJW8egpc7k3r17pQr6+Pnnn5kxYwYLFy7MFTxU1uSo77x48YJjx44xevRoWrduTUhISLGDvw4cOMDAgQM1eZXvmtdzhuNPriYrNpyK/RYgfq3IdHr4bSQ6hsgsqiAoMnnlt4O0kMvYjNyESKr11jnD/zY+Or4SsmHDBsaNG4eVlRWnTp166+RbGxsboqKikMvl/Pzzz4wbN66MLC2Y1q1bk56eztWrV4vV/saNGwwZMoT79+/j4uLCjh07cgkol5SoqCgaNWpERkYG165dey8JzCVh+I4ATt+PKXB2pc5KJ3LVV1j0/gF55Tq5PnszVPzVq1eMGDGC2rVrM3v2bM2x1q1b89dff7FixQrGjBnDw4cPuXTpEjdv3uTBgwc8efKE2NhY5O3Ho1ujKekPr4JIRHr4LQRFlsbxqTNSCg1br2uixmdWr1wBHCKRCE9PTzZs2IBIJCryfgtFUGOvlcy3rSwYNGgQKSkpBAUFlSrwY+3atYwdO5aZM2eycOHCUhhTPExMTBgzZgwzZszAwMCAK1eu0Lx5c27dulWs/MLRo0dz7NixUucAvi05OcOp8dEFDk5EEhmv/HaiSo5DJNVC27omxq6D0bLI/r2Udc7wh04JdLX+2yQkJODm5sbt27eZPHkyS5Ysees+o6KiiI/PXmrIyMhg4sSJfPrpp+Wez9SuXTuWLl1aZLs7d+4wePBggoKCaNy4Mffv339rJ3Xp0iXat2+PnZ0dAQEBH1wQy5vkhIoX5gTSQvyR6BqhXSmvXNXroeK3r16kX79+JCYm8uTJEzp16oS/vz+BgYHo6Oigp6fH+PHjNRUhdHV1MTMzo1KlSri6uuJQz4lNL6qgUIOuQ3MAMqPDUCniNNcTy/URy/U1134zbP3OCxWGFjZIlenExMRoFFuWL1+uWW0Y81l1Lj6MK1WlD9RKLm+cQ8cfw5HL5aSmplKtWjXu3LlDnTp1ij7/NUaPHo2+vj4eHh6kpKSwcuXKkttTDFq1asWBAwdYsGABBgYGXLx4kTp16jB27FguXbpU5Pk3b958r4M3c31tXGtW4PR9NXYzCo6K1XN0yfe4SAStHSr8Z5wefNzjKxYbN27E0tKS2NhY7t69WyZOD7IjGZVKpSbFoFevXhgYGJRJ34XRr18/Xr16VWDY9sOHD2nSpIlmtBsYGFgmM7O1a9fi6upKp06duHfv3gfv9KDgUPHXSfnrLHp12hS4TK1Wq2ncZxxubm7Ex8ejVCq5du0aTZs25fvvv+fixYvo6Ojw1Vdf8cMPP2BsbIy+vj4nT57k6dOnXL58mS1btmDUsGOx90ALCluXa2uzYNdpnj9/zqFDh5gyZQrXr19HT09P0+ZtKn3Mc2+AlbZCUzVAJpNRs2ZNGjVqxIULFzTPIz09vVh9Dho0iL1797J69Wo8PT1LZE9xGTduHA8fPkSpVFKzZk18fHxYtmwZ/v7+ufI2CyI8PPydJt/nRz3JcySULj2prHOG/w18dHyF8PLlSz799FNGjhzJuHHjePr0KY6OjmXWf+vWrTlx4gQLFy5EW1ubvXv38sknn5RZ/wVRrVo1TcHM13ny5AmtWrXCwcGBlJQUrl27xu3bt6lXL2+twJLi6enJ2LFjmTt37gcdufkmhZWXguy9r8yIYPTqFiwXplBDutxEM8CB7OXFzMxMkpKSCAsL4+zZs6xevZo5c+bw4sULPvvsM1xdXXMtfRdly+tUnrSXSpP2Yeo2Eq2K/+zbvJ5j5+7uztKlS2ncuHEep/1l0yp817kWOjIJRW07i0TZe5nfda7FoOZVOXr0KDo62ftLCoWChIQEmjdvTps2bdi7dy/dunXDzc2tWPcB2ZUIvL292bp1a7EK+paUdu3aIZVK2blzJ61bt+bOnTu0b98eCwuLQusx5hAfH19gLbzyQKVScfv2bdasWUP37t3R1tZm/JfdGFLfEG1pyWIE3ndZsvfFv+Pt8x7YvHkzlpaWPH/+nODgYI1KR1libm5O+/btNeomr9dfK29sbGzw8vICspdc27dvT9WqVYmOjsbX15e7d+/SuPHbhzZnZWXRuHFjtm3bhpeXF7NmzXrrPt8lSRmF19FLCT6Htu0nyIwLl7nq3K0XiYmJbN++nbZt2yKXywv8fUulUo4dO8b27dvZsGEDNWrU4Pnz50Xa8iZiLTn6DTsR770cVeo/UZxJGYpinV9UpQ+5VJxvpY/69eszZswYRCIRfn5+ODs74+fnh6WlJf369cPHx4eAgACePHlS7Hvp1KkTZ8+e5eDBgwXWanwbGjZsyObNm+nfvz9xcXGo1WqmTZvG/v37CxV6ePToEWq1mubNm5e5TQWxfft2GjVqxNSpUzUJ9xMmTMA2PZyEM5vQlopKNFj5rwlUw0fHl4dXr17RtGlThg8fzujRo4mIiCh30VkLCwvkcjnffvst33//fYleCKXFyckJf39/Pv/8c2xtbXn48CEnTpwgNDSUVq1alck1IiMjqVSpEmFhYdy7d69cXljlTVHlpVKDz6Ffp00x+pGhr69Pv379OHPmDKmpqZiamhZ6zpdffsnTp08RiUTY2dkRF/W0RLYDbx22/mYazud1LEh7eI20u+cZ+1lV/Ke3yTcNZ/78+Zw+fZqWLVty/Phxrl27RkpKCpA9C8zMzGTz5s15rpdTPDU/FRpXV1f8/f05deoUbdq0KVPlocGDB2tEA8RiMT4+PkycOBGxWFxoMru3tzcGBgZIJJIC25Q1AwYMoFq1app0Eblczs2bN/Hw8KBy1hP2j2iuGay8mZpS0GDlv8bHqM7X2Lp1KyNGjKBChQr4+Pi8k9pahw8fZtSoUcTExCCVShEEgUuXLtG0adNyu2ZSUhJt2rTh5s2b2NjYsGrVKrp3716m1/Dz88PNzQ17e3sCAgJKrOTyoVBQeSmAjMj7xO6dhe3YHYi1C76/sggVnzBhAluvPcPU9SsEsRRBrQK1ileX/kCVHI9Zp3EglpDx5E6hYesSVDTRicPFPIMHDx5w7949UlNTuXTpUrFe3qdPn9YsU3bt2lWzalAUarWa2rVr8/DhQ414gkwmIyMjA7FYXKLiqZLESJydnalfvz5Xrlwpk2XzrKws5HI5Fy9epH///ri5ubFp0yaGDRvG4cOHNQV736R3797cvXuXe/fuvbUNxWX58uVMnTo1l36rSqVCJBJx4MABevToAWSXJVu05xz7Tl2mfZduGMplOFoZ0KuR7X8qkCU/Pjo+IDExkY4dO3L9+nXGjh3LihUr3tke1N27d3F2ds41ektKSspVJLSsSEtLY+TIkfzxxx+YmJgQFxdHTEwMFhYWZXqd1atXM2HCBLp3786+ffv+Nft5+VFQeSmA+JOrERSZmHctvK5gWYWK/3nWj9En4xFJtXh1cReJl3MnWRu16I+sgl2hYesitZKnqwahTv9nmdXOzo7Hjx8Xy4acihSQ7bjWrl1boqCT8PBwjhw5wuzZs0lJSaFixYp8v/00qy89K5EKTRMzBQ0aNKBatWrcunWr2HqwhVG9enUaNmyISqXSDAqSkpIwMTHh4MGDuLu75zmnVq1a1KtXj71797719YtCrVbTt29fDh06xE8//UTFihVzFXDW0dHh7t27uVJHPv30U27cuEFSUtI7CZz7t/Cfd3zbtm1jxIgRmJmZ4ePjU+KQ67Lg4MGDDBgwgKysLFq0aFGsEOqSkJWVxdixY/n9998xNDRk8eLFeHp6oq+vz08//VRqRfr88PDwYNu2beWeePwueZu8trIu+eK57Tpn7seAqOSDiRxbnNJvM2bMGE1tQS0tLXr06MHs2bMLXdZPSEjAysoqVzSwjo4Oly9fpmHDksuTnThxgi/nbkDP5SvEMnnRJ+Rc83/FU1tZi6lTpw6WlpYEBwejpaVVYhteZ9q0aWzZsoUlS5YwevRoTeRp27ZtiYyMJCQkJM85BgYGLFq0qEz/hvIjKSmJxo0b8+TJE06ePMlnn30GZOcVjxw5EplMhkQiIS0tTROodOfOHRo1aoRKpWL16tWMGTOmXG38N/HvHYq/JUlJSbRo0YKvv/6aYcOGERER8V6cHmSXp5k4cSIAjRo1KrN+lUolEyZMwMDAgL1797J06VLi4+M1I/SqVavyxx9/sGzZsrd2tllZWTg7O7Nr1y68vb3/3zg9yM5rk0tLt4dT1qHi49rUREerdKsBObYMGzaMNWvWoKOjg7a2Np6enly5coVPPvkEc3NzPD09efo0737iH3/8odEOzUGtVpf6u2NdpxkWbiNJOLmayFVf8XR5b55tGE5ykI+mTfrjQJ79NpKnS3sS/cdMlImxpCvULDz+gFdiQ8LCwoiLi6NGjRqkpaWVyo4cJk+eTHx8PM2bNycjI0Mj5L569WoePnyYZzlTqVSSkpJS7nvXd+7cwcbGhpSUFB4/fqxxerGxsUyYMIFBgwYxePBgWrZsqXF6giDw9ddfa5aVlyxZwn98jpOL/6Tj27FjBxYWFoSHh3P79m1WrVr13pfjFi1ahLGxMRUrViy6cRGo1WpmzpyJgYEBmzdvZu7cubx8+ZIJEyYA2Xl6Dg4O3L17l6tXrzJjxgwuX75c6utFRkZia2vL33//zf379+ncufNb38OHxNvktZV1qHhZ2TJs2DCWLVuGi4sLa9as4fHjx8TExDBw4ED+/PNP7OzssLa2ZtKkSZr9rU8++YSxY8diaGiIhYUFEomE5OTkUqsNrfENI0OpwrBpb2xGbaHy5P1Y9PqeV347shPz0xJ5cfhHjFt9SaWJu9G2rMGLo9nygBlKFWt9w7CwsCAsLIz09HSqVav2VpHRlpaWmJubs2HDBgwMDNi1axeQvZxZs2bNPLO6ixcvIpFIqFKlSqmvWRTbtm2jUaNGmtleTpFctVpNs2bNsLW1ZevWrWzcuJFTp05pzvPy8uLWrVuanyMjI7l48WK52flv4z/l+HJmeYMHD2bo0KFERkaWSY5aWSAWi1m47FeeG9cpUV218+fPa6Sv1Go18+bNw8DAgJUrV/LNN9+QlJTEjBkzcjn2ihUrakbHgiAgl8tp3759qez29fWlevXqVKhQgcjISI3W5P83SpvXVh5Rc2Vly6hRozhz5ozmZwsLC1auXMnz5895/PgxnTt3ZseOHVSoUIEqVapw/vx5Fi5cSMuWLbG2tkalUhEbW0AphyJ4XRFHq4IdImnOLFaECBHKl89JC72Clnll9BxdEEm1MHIZgCI2HEV8RC5FHFNTU/7++28kEgn29vYFBqIUh7Zt23LkyBEcHBw04tUAixcv5sKFC7kc66lTp4qMzH0bRo4ciYeHB9988w3nzp3LtY85dOhQnj17hr+/f77CCfXq1WPp0qVYWlpibW1Nhw4d3okO8L+F/7d7fAqFArVajbZ2dkDBrl27GDp0KCYmJpw8eZL69eu/Zwv/oSQRba/XVYuJicHR0ZG0tDQmTJjAunXrUCgUjBs3jkWLFhW64f/gwQOcnZ1JTU1FLpeTkpJSrKg+QRA0f0ArV65k8uTJmsKr/wUKKy+V87t6F+Wl3rRFrVKjeO0vuSxtuXv3LvPnz+fEiRMkJydjaGioScBfsmRJqfaO3oyWjfdZS+pfZxGUmWhVrEbFgT/x6sJ2BLUSsw7/9B+1aTRGLgPRc2yRJ1o2IyOD2rVrEx8fz71790oloH7t2jWaNWvGxIkT2blzZy7Hbm5ujru7O5s2bQKgTZs2pKena4rZlhWZmZm4uLgQGBjIvn378kRcHzx4kN69e3PkyJEixd0dHBxo0qQJ27dvL1Mb/+38v9Xq7N+/P8+ePePUqVN07tyZy5cvM2LECNasWfPelzVfp6gitTkv1lP3YvALjdPUeFOr1fTs2ZOkpCTUajVLly5l1KhRrFixolib/I6OjuzcuZPu3btjaWlZLKfn7+/Pl19+ib+/P9OnT2fHjh38+OOPzJgxo8T3/W8lJ68tPiWTA7ciefA8maQMxXsJFX/Tlr8iEvA558erF1G4NKnLygn9y8SW2rVrs2fPHiDbMXh4eHD//n0Avv32W6RSKUOHDi1RZOWbKjRmHUZj2n4Emc8ekPH0L0QSGWpFBhLd3KWuxNp6CFnZQSdvVnqXy+WEhIRQt25datasyV9//VVicewmTZogl8uRyWSaRPac98XEiRNZuHAhv/32G2KxmNDQ0HwjPd+G8PBwGjdujCAIPHjwIM8KSlRUFAMGDMDT07NYFU2Sk5PLZPvkdeJSMjlwM5IH0UkkZSgxlEtxtDSkt9O/J03iXzPjK8nDvnbtGq1bt0alUqFWqzEzM+PkyZPFUlp/l2Q7vfukK4qfiJsT0ea1PFtVIgeJRMLNmzdLPJOtW7cupqamGh3FwnBzc+PMmTNoa2ujUqnw8vJ6p1JNHykeCxYsYM6cOTRt2pTTp0+XeQ7ln3/+Sffu3WnVqhX+/v6oVCpUKhVOTk5MnDiRvn37Fjm4fLN46uvEn1yNzLwyypfPEdQqzDqM1nwWtXkMRi0GoOfYAsi/eKparcbZ2ZkHDx5w8+bNEgtQuLq6kpaWxu3btzl27BidOnXS9Kujo8OPP/7IlClT0NLSYu/evWWWA+vl5UWvXr2oU6cO/v7+yOW5I13VajX29vZoaWkRGhparD6NjY35/vvvmTKl8JSb4lDalakPkQ9n6lMAQRGvGL4jgBaLz7HiTChHAqM49yCWI4FR/HImlOaLzzFiZwBBEdmSTIIg4OHhQXp6OllZWQiCgL+//wfn9IIiXrHw+IN8nV7qvQs82ziSp8t68my9JxkRwZrP0hVqZh8JwutyELq6ulSuXBl7e3vs7e0JDw8vsR3L1vxGhVYDitxX/Pvvv7lw4QKCIJCRkUGbNm3o0KFDyW/8I+XOrFmzCAoKIjQ0FAsLC3x9fcu0/zp16qBQKBgyZAiCIJCens7evXuRSCQMGjQIHR0dPvvsM06cOFFgH4Uq4qjVKF8+R1bBDkXsP99pdVYGypfRaFWo/Fo/eSNcxWIxAQEBODk50aBBg1xBHsVh2LBhBAUFYWNjw8GDB3P127t3b37++Wfi4+NRKBRl9jcwa9Ys3N3dGTx4MLdu3crj9CBbsDs6Ohp/f/9i95uZmYmtre1b27fz6mP6bbzK6fsxZCrVefJaM/537NS9GPptvJpvAeYPiQ96xlfUMmAOrye2Buz5RVO+RC6Xo1Kp6NOnDzt37nxHVhePgnLD0sNvE3/iVyp0m46WdU1UKdnq8FIDc00bEdDOsQIbB39a6uuXdPT2euKyXC4nIyODixcv4uKSf6mTj7x/lEolvXr1wsvLi1GjRrFmzZoy6VetViORSAgJCcHBwYGEhARMTEw0n/3++++sWbOGoKAgtLW1cXV1ZdasWbRo0ULTR84eX1piAhlPgtCp/ikiqRYZjwN5cfhHzL+YhraNI882DMOs0wR0qzfm1cVdZEQEYzXof7q5yiyGNbXmu54FV0bo0KED586dw9fXN9f1i7o/mUxGkyZNePnypWZZF7JzGc3NzZk6dSqrVq0qdpWJwq7l5uaGr68vGzZsYOjQofm227t3L/3798fb27tEUdNSqZSLFy/SrFmzUtu48+pjps79mZeBp/MUPgZIvX+RV5d2oUqOR2pgjrHrIMxqt/igdUA/WMdXmmVAmUgg7vRvGMYG0a9fP2rUqEGVKlVo0KAB5ubmRXfwjihMDSR6x1T06rlhUL9w9fq3UQMp6YCidw0J8we5oa2tTdeuXXFzc6NFixbUqlXrY6TYv4Ddu3czZMgQbG1tuXjxYqmCPt5EJpNx/PhxunXrxtq1axkyZEieNllZWaxdu5YNGzYQEhKCnp4eHTp0YPbs2VjbO9Bi8TnSkl7y4vAismLDQVAjNbLAwKkrBg2yl9DTHweScGo9qqRYtKxqYt5lElLj/+1ZqRRErhlCv+6fs2XLlgL3tnv06IGXlxc+Pj60bVtwFY3X+eSTT5DJZISGhuZxbi4uLty9exdjY+NSrbLkEB0djbOzM4mJifj5+RUoAhAZGYm9vb0m/7IkiEQioqKisLKyKpWNQRGv6LfxKvHBF/MtfKxMjuPZOk8ses5Cbu9E+qMA4o78hM2ozegbm7F3eNMPsvLDB+n4giJe0WH4twWOMNSKDF6e20Lag0sIaiVaFapi+WV2fo9cKmbfiGYfxMNevXo1y5YtY+bMmXz11VeaUi0F6T8KahVPl/bEuOVAUoJOIaiy0K3RFOPWXyOW5XZwpdV/LM2AQiKo6F1Dwk9Du5ToWh/5cIiNjaVVq1Y8evSIjRs35uuoikNqaiqhoaG0aNGCbt26cfr0aVxdXXMtCeZHWloaS5YsYfv27YSHh2NsbEzVQYtI0LGldIXe1aQ9vELKiRVkZmYvy9esWZNVq1blm5ozaNAgdu3axaFDh+jWrVuR/c+dO5fly5eTlJREREREruXCwMBAGjZsiKura6mXkf38/OjQoQO2trYEBARgZGSUbzu1Wk2VKlXQ09PLNfMsDomJiRgbG6NSqUod0PfmytRLvx2okuI07+PMqBBiD8yj0vhdmnMiVg7Aotf3yG1rlalqUVnyQe7xrfENQ61rglHzvujXy/slTji5GnVGMtbD1lFpwm5M2g3TfJapUrPWNyxX+4cPH74TLb03SU1N5enTp0ycOBEzMzPc3d3Zv38/N/+Ozne2p0p9BWolaSGXqfjlYqw8fiUr5m8S/fPa/npEW0JCAps2baJDhw6EhYWxc+dOIiPzFlAtbF8RQJHwjCdLuhN3LHd1dpVIwtEnEu5Evsr3vI98+FhYWPDgwQPGjx/P119/TadOnfKosBSHGTNm0KRJEzIyMti/fz/x8fEEBgYWeZ6uri5z5szh0aNHxMXF4eHhweM/N6BSZJTmdtDRlpJ87SAZGRmaKvIhISH069cvXwexfft2RowYQY8ePdi9e3c+PeZmwoQJJCUloaenxx9//JHrswYNGiAWi3n27FmpbF++fDmtW7emS5cuhISEFOj0ILsSw4sXL0olMPH48WNEIlGpnd7ruZYFoWVZHZlZJdIeXkNQq0gLvYJIKkNWoWquXMsPjQ8unSHnYevWzK5vlRkdhkrxT0KqIj6CtIfXsB2zTaOIr235jyTU6w9brEhj1qxZbNq0CUNDQ/r27VvotdVqNUlJSURHRxMbG0tsbCwvXrwgPj6ely9f8vLlSxITE0lKSiI5OZnU1FTS0tJIT08nMzOTrKwsFAoFSqUStVqtkQjKWSo5evQo/v7+1B2zBsgbaSf636zOwKkrUv3sxFiDxu4k+u/FxHVQnvbnLl2h+ne9ePr0KTKZDIVCQXp6OkOHDkVLS4u1a9fy5ZdfapYjc5QyCiLh1Hq0rWrk+1mOUsaHOHr7SPFZtmwZvXr1omPHjlhYWHDmzJkSyeRNnTqVLVu2oFBkV1m3tbUlOjq6yPOysrLw8/PDz8+PkydPEhAQAMDougbsup+OWlT8V1FOZHPzISfyhPubmppSu3ZtevXqxfbt23MFiaxduxZ9fX0GDhxIampqoeLaxsbGWFhYkJKSwrx589i8eTMzZ85k27ZtmhzhsLAwgoODiy11+LrI9OLFi5k6dWqh7Xft2sW+ffvw8fEpVaL8kydP3krs/sDNvIPnNxGJJejVaUOc1xIEZRYiiQxz9xmItbKfuwg4cCvyrSqTlAcfnOMr6mFnRoUiNbLg1cVdpEToiPMAACAASURBVN49j0TfJFd4M2R/wTqM+oGgPUtRq9Wo1WoSEhKoW7duLkeVmZmJUqnM46hyRklSqRSZTIa2tjba2tro6Oigq6uLvr4+RkZGVKpUCSMjI0xMTDA1NcXMzAxzc3MsLCyoWLEivr6+jB07FplMRo0aNdi4cSPOzs5M3HubR4FRee5NItdHYpB7L7KwPbSYyMfEPHoEoBEcbteuHQqFgqysLIYOHcratWs5ePAgWoZmhY7eUu9dQCzXQ2bmiPLV8zyfvz6g+Lfk6nwkf5o1a0ZMTAydO3emcePGzJgxg4ULFxbrXDs7O3744QdN7uY333zDhAkTSE1NRU9Pr8DzvL296dmzJ2KxWFNH79tvv2X+YDcccvacFapClz1fD2LLCZpYuHAh3333HZAddRkWFoapqSknT57ExMSE5cuXM2rUKE0fP//8M3p6egwfPpyUlBSNRu7rPH/+nO7du+dKXn/06BFisZj09HSuXbumOd68efNiyaS9LjJ99uxZjd5mQTx9+pQhQ4YwYcKEUqsqRUZGFiunNyUlhfv379OwYcNcuZhv5lrmR/rjQF6d/52KAxahZVmNrOgwXhyYj7TPXLQq2ufJtfxQ+OAcX1EPW5Ucj+LFE3RrNsd27DYynz0gdv9ctMwrIzOvBIBCDRHJylxLOWq1GkdHx0IdlZWVFfr6+mV2L8+fP8fa2polS5bQs2dPjRNztDREW5r/cqd+3XYk3/RGx94JJFKSbhxBt3reSuhyqZgZE4ejbFuJ6dOnk5aWhq6uLq6urhw+fBilUolCoeDq1avY2NjQ7OvvwTr/yC51ZhqvLu6iYv8fSXlNIPhNPtTR20dKjlwu59y5c6xbt45x48bh5eXFhQsXMDU1JS0tjYSEhALD4CdNmsTChQtJTExk6NChfPPNN3h7e+e7opKSkkL79u3ZsmULjRs35saNG0B2VYfp06cD2RJs9WyNC1TEUSsyEYvFVNPNZIlHOxramWk++/bbb9m5cydJSUlERkYyadIkVq5ciSAIVKhQgdGjR7N06VIOHz6skSecM2cO+vr6TJ48mZSUFGbNmpXLZplMlqdMk1gsxtXVlZcvX3Lz5k2USqWmHt7rSe75cefOHVq0aIGhoSGPHz/W6G0WRE5Fd0dHR1asWFFo28KIiooqVg7n+fPn6datGzo6Ori6utKzZ08cHBx4+rxo0e+smL/RrlRbs1KkbVUTLWsH0h8HolXRHoCkDEWp76G8+OD2+JIyCt93EEm1QCzFqEU/RBIZ8sp1kVeuS3p47lydz7v3ITAwkL59+2qWO3bt2sWmTZtYsmQJM2fOZPjw4fTo0QMXFxdq1KhRpk4PoFWrVoSHh9OrV69cM7deTgXn1Ri16IeWVQ2e/TaCqI0j0apYDaPmeV8oAtDbyZaxY8cSFBREvXr1qFu3Lp9//rlGf9Pd3R0vLy9evnxJfdcuBQ4oXvntQL++G1LDwiNfP9TR20dKz6hRo3j06BGJiYlYW1tz6NAhevfuTZMmTTSrCG8ilUqZNm0aVlZW6OnpYW1tnUvX8nW2bNlCQEAATZo04caNG5pq5UOHDsXQ0FDT7s1K790b2NDW0YLuDWzoX8eAane3cnnxEJztLXBycmLbtm2ameO9e/c01SRWrFiBUqnEzc2NFy+yU3USExNp0KAB7u7uGo3aKVOmsG7dOmbPns3MmTMJDg6mQYMGvHz5EnNzc/z9/TUpGpA9ULCzs+Pzzz9HrVYjEomYOnUqKpWKDRs25LrnhIQEzf8LEpkujD59+pCQkPBWwvGQLWlY1DstMzOT58+fIxaLSUtL48SJE3h6etKqVSuePPqnDJOgViEos0CtAkGNoMxCUKvQtqpBZuQ9smL+BiAr+hGZEXfRsqiiOTe/XMv3zQc34ys0sRWQvfZANeSzHGgol1G/fn327NlDTEwMZ86cKZfirqXBXF8b15oV8s3jE0mkmHUYnUut4k1EomwNxpwlx+rVq3Pr1i1SU1NJTk7m0KFDtG/fXhNFCpAp5D/GyYr5m4wnQVh5rCyW7R/i6O0jb0dOIVpPT0969uyJRCJBS0uLLVu2MGLEiDzt41IykdXrTM3BVny97QZGHSdw+fnDPMvgKpWKH3/8EaVSSXJyMlWrVuXMmTN069atwP0tM33t/FcUhmQv93l5ebF06VKGDRuGp6cnTZo0YcqUKbnUU8RiMT4+PqSlpdGoUSNCQkIQiUQaUemffvqJiRMnMmLECPT09Bg0aBDLly9HEAT279/P8OHDsbe359KlS9StWxe1Wq1Jh6pWrRpisRhjY2MWLFhAWFgYCxcu1CynPnnyhOrVq7Njxw58fX357f/au/P4mO798eOv2ZKZ7BKRBLEGse/komppWpSiqLVfrf7qtrWUe7vZSks3rSqtpW7VVWppbaWoorbqVbsgooKEIPu+zH5+f0wzMslM9jD4PB+PPG5zzmfOnJnb5n3O53ze7/eKFbz99tt89NFHpfr/YvXq1WzZsoV9+/bZXBiUR1JSks0xUlNT+emnn9i3bx9nz54lNjaWnJwcawf3fEqlEjc3N+IvncStcwMMZsg4usGm8XHOxQN4dx2Jz2Oj8e42kqStH2HKTUeh8cL7H8PQ1Lc8N1Yr5YQGOV8DXKdLZ8hf6q/VG8BsIv33dZiyUvDrOwnkCpAkbv/nVdxb9sL7H89ZltP+MJugsZ+j8rNMdZZ3qf+9lJ8fk2dwvNjEEY1KUeb8mCkbz7DNznPFzBM/kX74O2QuliAp6bUgmVH5BdsNhoPb1GLhcOeqgiNUjqioKFq3bm1tNOvt7U18fLx1xqS4ogeSQYdao7EperBu3TrGjBlj8+x80aJF5W5jVJDZbGbdunUsWrSIM2fOoFQqeeyxx5g2bRq9evWyGfvXX3/RpUsXUlJSrH/k69Spw+bNmzGZTPTu3ZucnBwA2rZta1PpJX8q+IknnuCXX34BoF69eixcuJDBgwcTHx9PzZo1OXjwIN27d2fChAksX74cSZKQy+X8+OOPpS5pdv36dRo3bsyUKVP49NNPK/T9XL9+nV69elmLit++fRudTodaraZ27dq0atWKnj17MnDgQIKDg9FoNGi1d1fYqlQq1vy4jXdPykp8zleciuQbVyWnC3z5yd0JB9bYXGEA1isMfVIsKbsXY0iKQelVA5/uz+PWpIt1nLN+2YVVpFZnWSsiOModNBu0SLq7CbqZx7dgzEjA96kJRQoEPwgXFEL5vfnmmyxcuBA3Nzeys7ORJImBAweybdu2Mhc9mPRYLab274Ber6dhw4Y8+eST9OrViyeffLLCdzKFGY1GVqxYwbJly7h48SJubm707t2bWbNm0aHD3VXIP//8M8OGDUOr1aJUKq3P6YxGIzKZzBqsrl+/Tp06lrJokiQx+qVX8G7zFK4B9cnUGklLuM0THZoyolNd/Dxc6dSpEyaTif379xMYGGjNK/T19SUqKgp/f/8SP4PZbKZWrVoEBASUKj2k4OtOnTrF9u3bOXr0KFFRUSQmJlpz9zw8PBg8eDDh4eEMGDDA5ru/ffs2s2fPZsuWLdbpWZlMhr+/PydPniQ4ONhhhanSkMlw2jw+pwt84LicV2k485dtT3nKspWnDFBx1WIKSj/yPcb0O1QfUHQq6kG5oBDKLyUlhUuXLhEZGcnKlSs5f/48L8xbyYF0nzJdoCkx01R3ie/nvFLpga44Wq2WhQsXsmrVKqKjo/Hy8qJfv37MmjXLWqz6k08+Yfr06dZnhAA1a9bEYDCQlJRE+/btOXnyZKnL+nWvruX5ft0ZNGgQW7duBcDT05OcnByWL1/Oyy/fzTN2ZNCgQezbt487d+7g6Wl/atBoNLJ37152797Nn3/+SXR0NGlpaYAlyIaEhNC5c2f69u1L7969adSoEf369WPp0qXWY+Tm5jJ//nxWrVrFjRs3CAwMZOTIkUyZMoXGjRvj5ubGiRMnrGki93pm6l5xysD3sH7ZjtyrHm+P0gWFUDkOXYhh/MZIdEbbf2mM6Qmk/LoU/a0oUKpwb9KVak+MRya/297qfv+3mJmZySeffMLatWu5ceOGtZ/erFmz8Pf3L7Li0c/Pj2nTpvH1118zdu43rL2YW6oLUlelnORfV5Dy5zYAnnnmGSZOnEinTp2KTU5PTEykRo0afPPNN4wfP946XZp/7tu3b2fv3r2cPn2amJgYsrOzUSqV+Pv707RpU7p27cozzzxDu3bt7K4qrV69OpMmTWLWrFmsXr2aL774gvPnz+Ph4cHTTz/NnDlzaNKkiXX8qlWrCAsLK9LN4l7OTN0rThn44OH8sktS1T3eHrULCqHiHF0sJfwwG4WbD359JmDW5pCwcSYerZ/Cq8PdHnHOdLGUmJjIvHnz+PHHH4mPj8fDw4Ps7Gy7YzuMmMLlC+fIvX7W0hPQvRpeYUPwbP0U+uQbpPz8OcY0S66rS2AI1cL/idK7Bmn7V0L0Eb799luGDRsGWKqnREVFFWnfdfLkScLCwvjXv/7FggUL6NWrF56enkRERHDr1i20Wi2urq7UrFmTli1b8vjjjzN48OAy9RdUq9XUq1ePa9csKy67devGzJkzizwDLY17NTN1rzht4IOH78t2Bo/iBYVQPsVNj9/6zyv49noJTUNLjmnab99i1ufi12eizTh70+MpKSm4urpWevpQacXExNCzZ0+bXD1fX19cXFxIxZOA0R9hTE9AVa0mMqUKQ8pN4tdNo8awOah8AjFrc1B41wDJTNbpnWSf+5WaL32F2aAl9YdZbFrxOX369GHHjh2MHDkSDw8Pa3Wbs2fP8tNPP7FhwwaioqKs7+/u7k7dunVp27at9Xlceaq1XL58mdmzZ7Nz506ys7OpX78+s2bNYuzYsRVuwH2vZqbuBadLZyiopMTWB+3LdgbWihfigkIoQXFVlLw6DCQn8jCudVpi1maTd+0kPo+NKTKuYNGDa9euMW/ePNasWcOHH37Im2++WYVn71h+mbX8qc68vDxSU1Px8PAgfObXXEiV4eJf1+ZTyJBhTLuDa2AIcrUlYEsSyGRy692fTOGCpsMg1Go1U6ZMYdmyZej1enJycqhevTppaWlIkoSPj49NEJLJZAQEBHDhwoVydTtJTU1l7ty5rF+/noSEBOrUqcMbb7zBnDlz2LlzZ5kb8TqSn2tZ1TNT94JT3/EV9DB82c7kYbp6E6qGoxQYAEPyTZJ3fGZtJ+Teojd+T0+x+4e7oTyZ2I1ziYmJsZYGbNmyJTNnzsTDw8P64+npiaenJ15eXqjV6grfoTgSExND/fr1qVWrFnPmzGHkyJG4u7tzITqWZ1dHov/7v4WUPUvJOb8fyajDJaAhAaM/Rv532s+NhcOR9HkgSXg/NhqfriMAMBv1JP1nPNqMu/WFFQoFI0aMYMKECXTu3Bm5XE5QUJA1VaRRo0YsXLiw1C2TwLLQZfHixSxfvpzo6GiqVavGs88+y5w5c6hVqxZGoxGVSkVubq5NPq9g8cAEPqFqiAsKwZFxq0/wW1Rike2SZObWspfwbNMHr07PYjbkkbJzESq/WlTrOa7IeN31k8RvnGOzTS6X4+LigslksgbD/J/C8mvn5v8oFArrj1KptNbUzf9xcXGx/ri6uqJWq621dvObKG/evBmDwYBKpaJmzZq8/vrr6Bp0Z9XJRNv8RLMJ3a0otDfO4x02FJni7iSZWa8l58J+FF41rGUF5ZKRanF/0CVIwf5rOSQbXZG5aGjbIpRBPToxrH1tJG0W/v7+1KhRg++//57evXuX+k5v8+bNzJ8/n1OnTuHi4kLv3r2ZPXu2TdoGWBLp69WrZ/f7FETgEwTBAUd3fKbcDOIWjyZ4ykbkakth6ty//kf64TXU/H9Li4x3T7xA5LfvFN3u7k61atUICAigbt26NG7cmFatWtGhQwdq165NdnY2WVlZNj85OTk2P7m5udbC8/k/Wq0WrVaLTqez/q9er7d2T8nJySE+Pt4mKGg0Gpq9NJ9kD/uLR1J++QpV9To2i3fAchEQt2g0NV9ehsLdMjMS6KUmLddSBMBeCoS/MYla6RfYsPSTIgFvz5491KlTx2Z68uTJk8yZM4f9+/djMBjo2LEjb731VrGJ8QcPHiQ8PNxh2blHnVM/4xME4f5xVExd4eaN0juArDO78Or8LJI+j+zz+1HVKBo01Eo5k8cOpe/skYwaNYrTp0+j1+t56623qFevHhcvXiQ6OporV65w9OhRMjIy0Ol0SJKEi4sLXl5eVK9endq1axMSEkKzZs1o27Yt7dq1K1UBZnuOHz9Ot27dUCqVdOvWjblz59K5c2eHd7gAmM3WZ3k2JAnJqMOUlWINfPGZ9nsM5j9OuCXzI8W/F9//GWvz7Hzbtm0MGTKE/v37s2TJEubMmcOWLVtIT0+nUaNGfPTRR0ycONGmg4Ij+a3KBPvEHZ8gCHYVt6pTn3CN1H0rMCReB7kCdd1W+Ib/E4V7NZtxBVd1SpLEt99+y/Tp04mIiCAgIMDhe8fFxXHixAkiIiKIiooiJiaGO3fukJqaSm5uLiaTCYVCgZubG76+vgQGBlK/fn2aNGlCq1at6NSpk8PuEomJidb6mqGhodbt+Xe4ppx0tLHn0IR0QqZ0QRtzlqStH1L9mbeQKV1QaLxQ1aiHZNCRfngNuZePUuuVb0jZvRhtzLkiKRC6W1GkH1mLPj4aZHLUdVpSLfyfeFarbl0t/euvvzJw4ECbsmGBgYGMGjWKWbNm4eNTtufsH330EZ9++qlNwWzhLhH4BEFwyFmLHuTm5nLmzBlOnz5NZGQkV69e5ebNmyQlJZGVlWWtN6pWq/Hy8iIgIIDatWvTqFEjmjdvTrt27WjTpo3N3VN+Wb/czDSStn5kXbij9K6BZ/sBeLbpQ07U76QfXospKxmZ0gXXmo3xeXwsLjXqo0+KtZsCYc5Jx2zQWgo3y+Wk/rocU3YqAcPfR6NS8KTiIovn3K2UpFQqmTdvnrVtU3m8/vrrbNmyhZs3b5b/S36IicAnCIJDD2rRA7PZzPXr1zl+/Djnz5/n8uXLxMbGkpCQQFpaGnl5eZjNZpRKJe7u7vj5+RFQN4Q7nSYgyRQlv0EJDClxJKybRrUnxuPe9DGbfbr4aBLWTaPOv34EyYz+2kkydn5mbXQrk8l48skn2blzZ7nff+TIkZw7d47IyMiKfpSHknjGJwiCQ62DfZjRL7ScRQ9C71sqjFwup2HDhjRs2JCRI0faHZOens6pU6c4c+YMkZGRXL9+HW5fRApqgaycqRSFUyA0DYve7epuXkRV3VIEG5kcZd02uHr50TykLuHh4fTq1atMFVrsSU5OLrZc2qNO3PEJglCi0lZRQjIjmQx8MKTdA1n0YPefkby2+S8kRfkXhhSXAqFPvE7Cumn4D5mJOrgFAC4KGa1kN7jz2xouXrxIRkaGNb+vR48ejBkzhk6dOpXpHDp06EBAQECF7hofZk7XgV0QBOczJqweG8eH8VSzAFyVctRK2z8daqUcV6Wc9oEqEtdNf6CC3u3bt1m2bBnt2rWjX1hzOLsVjar8fxplcgXq4OaYspLJOrPLut2QdpvEH2ZT7Ynx1qAHoDdJBLcI4+jRo5w4ccJaPLpOnTps2rSJsLAwlEol9erVY8SIEWzatMn6DNORzMzMUrVDelSJOz5BEMqkuKIH1dxUKBQKLly4QPPmze/3qZbo7bffZuHChSgUCuuKygsXLnAmy71Ud7iSJDlMPk/ZtRiZyhXf8H9izEgk/vt38P7HUDzb9isyVplwiZStH5CXl4ckSSgUCnJycpDJZJjNZvbu3cuGDRs4evQoMTExGI1G/Pz8aNOmDf3792fMmDH4+flZjxcUFMTzzz/P/PnzK/YFFSM5W8emU3FExWeSqTXipVYSGujFsPbOX/xCPOMTBKFM/Dxci21G7OPjw7Zt2x6IwDd69Gi+/PJL8vIszZgbNGhA8+bNaQ7F1glWyUBv0KM0aTG5etlNgci5dIjqz7yFMSuZhPXT8Wzf327QA8hMjic9Pd36u1wup2XLljRt2pROnToRHh7OypUrrWXcLl68yJo1a9i3bx8zZsxgypQpuLu7ExoaSnh4OFlZWdSsWbNKvrPi+xTGs3DfX/Ro4s9rj4fQOtg5yx2KOz5BECpVx44d8fX1Zc+ePff7VEp09OhRHn/8ccBSGs1e8ez8O9wdR05z/Mx5nh3QF195Hp/8czB+HZ9G3XEokkHrMAUi/fd1ZPy+DplKbXPcOv/eBFimiSf1aEDED5+zZs0a8vLyaN26NSEhIVy6dIlbt26RmZmJJEl4eHgQFBREkyZN6NixI7169SIsLIz09HTWrl3Lzp07OXv2LMnJySgUCho0aEDXrl0ZMWIE4eHhFa5/+rB0zBGBTxCESjVx4kS2bdtGXJzj7g7OYP/+/Tz11FMMHDiQqVOnMnjwYM6ePUutWrXsjm/bti1nz55l3Lhx9O3bl+HDh4Pak9qvrUKmdCn3eRRM8v/5558ZNWoU77//PlOmTLEZd/nyZfbu3cv//vc/IiMjuXHjBhkZGZhMJjQaDYGBgYSEhNC+fXs+/vhj3nvvPSIjIzl27BhxcXGYzWYCAwNp3749gwYNYvjw4UVaQ/373/+mc+fOPPfcc0XO82FqaSYCnyAIlWrXrl0MHDjQqetEbt++ncGDBzN69Gi+++47oPjndWfPniUsLAydTmdtO/Tpp59iMpmoPng6bo3CypUCIQOeam6b5J+VlWUtsF0acXFx7N27l6NHjxIREUFsbCyJiZbSa66urvj7+9OwYUMCAgLIysoiNjaWa9euodVq8fb2pkWLFjz55JMMHDiQtm3bolKpePPNN5k7d671+zh3M53nlh3m1s6v0MacxazNRukTSLXHx6Jp2MFhdRqlh69TNrEWgU8QhEql1+txdXXl+vXr1KtX736fThEbN25k1KhRjB8/nmXLlpXqNQMHDmT79u2A5flb7dq1rXdR6pqNCRozH7O87EsmzAYtuds/5MkOTejatSsdO3akY8eO5erLly81NRU/Pz+SkpLYv38/hw8fJiIigmvXrpGcnIxer0elUuHj44NarcZgMJCZmUlubq71GDKZjLCwMPbt24ebmxvj15xkz7lYMo5txqPlEyi8/cm7epLk7Z9Sc9xXGFJuOqxOU5UVfMpLBD5BECqdl5cX7733HlOnTr3fp2Jj1apVvPTSS0ydOpUFCxaU+nXt27fn1q1bJCQkEBISgpubGwMGDODYsWPcuHGDd7/7lXe3ncMsK33wM+u1pP22kuyzuwFQqVQYjUaio6Np0KBBmT9bvtOnT9OxY0dMJvvVdrKzszl48CCHDh3i9OnTXL16lYSEBJs6ofnkcjnT5nzIj/pWdmu23l45Ee+uI3EP7Wqz3aY6DbbTuc5ArOoUBKHS1a9fnwMHDjhV4Pvqq6+YPHkyM2fO5P333y/Ta0+dOgVY7oSOHz9OtWqWYtynT5+mQ4cO9GvshWlAS97dehaZUgUyx9OektmMTDKiufwLN/8OegAGg4FBgwZVKOiBpRdfcR0cPDw86N+/P/3797fZ3rx5c2uJM5lMhiRJVKtWjXNZarATr0w5aRhSb+HiX6fIPpvqNFimdDedjit2NfC9JBLYBUGodB07duT8+fP3+zSs5s+fz+TJk/n444/LHPQKy8zMtP5zu3btqFatGvPmzWNs1wa8VC+L3L+OoZRJYLRNMlcr5ZiNenxyYsna+j6pf25DobCtC7pjxw5WrlxZofO7detWqZ8PFtSiRQuCgoKYOnUqf/zxByaTieTkZBq2717kbk8yGUne/hkeLXuj8gu22adPvE7G0fVU6/midZvWaCbqTlb5PlAVEHd8giBUuj59+rBmzZr7fRoAvPvuu8ybN4/FixczceLECh1LJpPZBD6AwYMHs379ej7//HPenTiW1QsbcvvgN7g0fowXp874O7nbkuT/Wp92xGmzGDx4MBER2aSkpNgcq2vXrrz88svs2bOHDRs2lCv94Pbt2+XqVbhhwwa7zxYztUab3yXJTPLPC0ChxDf8FZt9jqrTWI7jPIudxB2fIAiVrl+/fuj1euvqwvvlX//6F/PmzWPlypUVDnpgeeZVOPDNmTOH+Ph4rly5AsCkSZPIS0sk48/NPN9IYuXYjiwc3oZx/6iDOc+Sj7dz5040Gg2NGjUCLP3z1Go1hw8fpnHjxmzfvp0GDRqQkJBQ5nOMj48vkqZQGo4W1Hip794fSZJEyq7FmHLS8R883aYOqTEjkYT1M/HuOgKPFr3sHMd5GuOKwCcIQqVzc3PDzc2NrVu33rdzePXVV1m0aBHr16/nxRdfLPkFpSCXy8nOzrbZVrt2bYKDg5k9ezZJSUnMmTPHum/dunXWf87JycHFxZLvp9friYyMZO7cubz11ltMnz6dF198EU9PT65cuYJCocBgMFC3bl127dpFWSQnJ+Pl5VX+D1lIaKAXrn/XZk3dswRDyk1qDH0XuerudGpJ1WnUSjmhQZ6Vdk4VJgmCIFSBpk2bSkOHDr0v7z169GhJLpdLP/30U6Ue19XVVfrxxx+LbJ85c6bk5eUlPffcc5JCoZAACZA8PDwks9ksSZIkxcXFSTKZTHJ1dZVkMpl0+fJl6+vXrl0rKRQKqWfPnpKvr6+kVqslmUwmNWnSRJLJZNLUqVNLPLfExETp6NGjUtu2baVu3bpJer2+Uj5zUpZWajxzl1Tr1W8tn0uhkmQqtfXHb8C/Je9uoyTAZrtMpZbqvvOzVPedn6XGM3dJyVnaSjmfyiDSGQRBqBJjxozh+PHj/PXXX/f0fZ999lm2b9/Onj176N27d6Ue293dnaVLlzJ27Fib7dnZ2Xh5ebFkyRJSUlKYNWsW3t7eZGRkcOfOHQIDAzGbzezYsYPw8HCCg4MZNmwYy5cvtx7j5MmTdO/enaCgIGsX+dzcXHx9fUlK08mzpAAAH4ZJREFUSqJ169b8/vvvDp/fzZ8/nxkzZmA2WxaimM1mdu3aRd++fSv8ucevOcneSwnFt6RywBnz+MRUpyAIVSI8PJybN2/e0/fs06cPO3bs4NChQ5Ue9AAUCkWRqU6wpAg0a9aMrVu3Mm7cOAASExPx9fXltddeAyzTpAMHDsTNzY3Jkyfz3XffWYMUWHroxcTEkJeXh06nw9XVFU9PTzQaDQqFgujoaAIDAzl58qTdcxs9ejRKpRKz2YzZbKZ69erWOqQVNaFHCGpl+TrTq5UKXusRUinnUVlE4BMEoUoMHDgQrVZr03WgqpjNZh577DEOHDjA//73P7p27Vryi8pBqVSSk5Njd9+kSZM4dOgQBw4cwNXVFRcXF1atWsW2bdu4dOmSzdgZM2ZgMpn48ssvbbbXqFGDGzduEBoaSlpaGgqFgszMTEaNGkV2djZyuZyOHTvaTb6vVauWNdCpVCqWLFlSrtWd9rQO9mFGv9Ay9ym01OoMdapyZSACnyAIVSS/JFZ+qa+qYjab6dSpEydPnrQmlFeV4gLfyy+/jNlsZu3atdbeeM888wytW7dmyJAhRY4zZMgQPv74Y7vv8eeffzJq1CiSk5ORJImtW7fi7+9PRkYGbm5uvPnmm/Tp0wej0TbV4O233wYsC26GDRtWGR/ZakxYPWb0a4pGpaCkimoyGWhUCqcsUA0i8AmCUIVq167Nr7/+WmXHNxqNtGrVikuXLt2T5rdKpdKmpmVBcrmcsDBLJ/Xg4LtJ3Vu2bCEqKoqNGzfajF+8eDEJCQns37/f7vH++9//8vnnn5OWlkZWVpY1NcTT0xOZTMaBAwcIDg4mNjbW+poePXqgVCqZN29ehep9OjImrB4bx4fxVLMAXJVy1ErbEKJWynFVynmqWQAbx4c5ZdADUatTEIQqNHToUCIjI62lsCqTXq+nefPmJCYmcuHCBZtgU1Xq1q1L//79WbJkid39u3bt4umnn2bMmDE2CfyjR4/m559/Ji0tzSYpvUuXLmRnZxMREeHwPdu0acO5c+esv/v4+DB16lTee+891Go1Op2Or/+7DkNwe6LiM/ll/yF6d+9Cy2C/Ku2Gnt+nMOpOFplagzVJf2g75+/ALgKfIAhVZtmyZbz55pt2F4RURG5uLqGhoWRnZxMVFUWNGjUq9fiONGrUiG7durFq1SqHY2QyGQMGDLCZ4tXr9Xh7ezN+/HgWLVpk3X7y5Ek6derE9evXqVu3bpFjRURE0KZNGwr/md64cSNNmjThieEvIW/RF3X9dijkcpsOEWqlHAmcvhv6/SCmOgVBqDKDBw8mJyfH4fRgeWRmZtKwYUO0Wi3R0dH3LOgBuLi42O1iUNjZs2eLvG7+/PksWbKE5ORk6/YOHTpQt25d68rPwkJDQ/n+++8ZO3YsQUFB1u0TJkzgeJoav+fmognphEzpUqQtktZoRmc082tkAiP+c4y1x2LK8EkfbuKOTxCEKuXq6sq6deuKLPAoj+TkZEJDQ1Gr1URFRZWrNFdFtG3blrp167Jt2za7+2NjY609CFNSUvD19bXZX6dOHRo0aMDBgwet29auXcsLL7xAdnY2arW62PePj4/n3//+N6ez3JFaD0Zrp1WQI87aDf1+EHd8giBUqaCgIH755ZcKH+f27ds0atQIT09PoqOj73nQg5Lv+A4ePIhGo8HX15e5c+cW2b9hwwYOHz7M0aNHrdvGjBmDh4eHdUVmcQIDA3nr4yWYW/QnbvtC4pa+yI3Ph3H720nkXb2b35d1bg+3lr/MjQVDSdj4LsasFPIMZj7YFUVEXNWnlzg7EfgEQahSLVq04MiRI3z//fccPny4XMeIjY2lSZMmBAQEcPny5RLvjKqKWq0uNvCdOHECPz8/hgwZwvr164vs79KlC927d2fEiBE221999dVStyNacjAard6A0rM6gaM+JnjqRny6P0/ST59gTE9AGxtB+qHv8B8yk+Ap61H6BJC8/VMAtEYTSw9Gl+ETP5xE4BMEoUokJSXRrl07du/ezeXLl3nxxRf57rvvynycK1eu0LRpUxo0aMCFCxeshZ7vB1dXV3Q6ncP9Fy9epE6dOsyZM4eEhAQuX75cZMymTZu4c+cOX3zxhXXbe++9h06nY8WKFcW+f3K2jkN/JSFTqfF5bDRKnwBkMjluIZ1Qegegi48m7+oJ3EK74eJfF5lChXeXEehuXsCQdgdJggOXk0jJdvwZHgUi8AmCUCW8vb3R6XTWFYlqtZoBAwaU6RgRERG0bNmSVq1acebMmWI7i98LarUavV7vcH9MTAxNmzalZs2a1gBYWPXq1Zk0aRLTpk2zHsvFxYVnnnnG7vRoQZtOxdndXqQbus3SDcs/G5Is+X753dAfZSLwCYJQJVxcXNi1a5f1WVxeXh49e/Ys9jV6vZ4lS5ZgNBo5ceIEHTp0oEuXLvzxxx/laspa2fLz5hxJSkqiffv2AIwdO5adO3faHbdgwQJcXV154YUXrNu+/PJLbt26ZfP8r7Co+MwSu6GrG7QnN+p39InXMRt0ZBzdAMiQjJbzdrZu6PfD/f83SRCEh1bdunWtFUt8fHxK7BO3e/duJk6cSK9evfjHP/7Bk08+yW+//eYUQQ9Ao9EUe8eXm5tL9+7dAXjnnXfIzs7m0KFDRcbJ5XK+/vprNmzYwPXr1wGoWbMm7dq14/XXX3d4/NJ0Q9fUa4NPt1Ekbf2QW8teQuldA5mrBoWnn/V1iRmVm1f5oHGOf5sEQXho9e3bl5YtW5aqssrXX38NwJEjR6hVq1aV1/ksKzc3N4eB78qVK0iSRNOmTa1jmzdv7nD6cvjw4TRt2pRBgwZZty1atIjTp09z+/Ztu68pbTd0z/b9qfXP/xA8eS1uTbqC2YTKv551/687tvLzzz9bfy8umD+MROATBKHKffbV19Ts/X9M2XiGcatPMGXjGZYfumqzyCIzM5N9+/ZZf4+Liyvxmde9ptFoihSGznfo0CHc3Nxs7k4nTZrEkSNHbNoPFbRlyxbOnz/PTz/9BEDXrl2pVasWEydOtDu+NN3QJaMefVIMkiRhzEgkZfeXeHZ4BoXaMuWsxIw+KYYBAwbwyiuvsHHjRtzc3Dh27FjZv5AHlEhgFwShypy7mc6Sg9Ec+isJwOb5VOGSWss/nMby5ctRqVR4eXkxZMgQJk+eXOWFp8ti1qxZrFixgoSEhCL7XnnlFXbv3m1TNNpsNuPq6sp///tfRo8ebfeYQ4YM4eDBgyQlJSGXy1mxYgUTJkwgJyenyArW5GwdXT/5jZyUeG4tGwcKFTL53T55vn0m4NawI/Hfv4Mx/Q4yFw0eLZ/Ap/vz1nGuSjnrhjfgicfCbFpGNW/enAsXLhQ5v+RsHZtOxREVn0mm1oiXWklooFeV1gGtaiLwCYJQJdYei+GDXVFojaZiO3fLZOAil5G8dwWhyiS++uor2rRpUyXdBSrqo48+4rPPPiMlJaXIvvxne4VzFbt3705OTg6nTp2ye8z8LutTp07lo48+AiyNbSdMmMAnn3xSZHxldUM3Go24u7vbTHOePn2atm3bAmW7aHnQ6oCKqU5BECqdJehdIs9QfNADy8p7nUnCL/xlXl3wPW3btnXKoAeWgORoqjM2NpZmzZoV2T5t2jTOnj3r8Dmam5sb7733Hp999pn1Duzll19m+fLldsdXVjf0zz77rMg59e3bF7D8/zfiP8fYeykB3d81Pwt60OuAisAnCEKlOncznQ92RZFnsP1jaUi+Sfy66dxY+By3lr9M7uU/bPbrTTh9SS03NzdMJpPdfcnJyXTs2LHI9r59+6JWq/n8888dHvftt9+mevXqDB8+HLDcWebk5LB27doiYyurG/rw4cP517/+Rfv27fH09AQgISGBQW8sKNNFS57BxAe7Lj1QwU9MdQqCUKnsTcVJZhO3//Mqnm374tnhGbQ3LpC0+X2CXlyMyreWdVzBqThn9MMPPzB27Fjy8vJstpvNZhQKBVeuXCEkJKTI6wYPHsz58+eJjnZcLuzAgQP07t2b48eP06FDB/r378/Fixet6Q6FlWUqWa1UMKNfaLEFqo1GI9M/+5of02qRceYXcs7vR58Ug3vTx6nef6plTHoCt5a/hEx1t2ScV9gQfLqORKNSsHF8mDWwOjNxxycIQqXJL6lV+A+xIeUmpuxUPDsOQiZXoKnXGtdazci58JvNOGcvqeXh4WH3ji8yMhKZTGY36IGlJNm1a9dsWhIV1rNnT8LCwnjuuecAWLJkCbGxsZw8edLu+MLd0AvfAJa1G7pSqSS9VmdQqFB6+OHdZTgercLtjg2eupE6/95EnX9vwqfrSODBqgMqAp8gCJXGUUkt+yT0SbFFtjpzSS1PT0+7qQmHDx/Gzc3N4etatWqFr68v77//frHH37x5M7GxsaxYsYK6devSsmVLJk+e7Pi4tX1YPqYDf7zdC7erB/BJu0zv0BoMblOLqeGN+ePtXiwf06FUd2EFL1rcmnTBrfE/kGuKLzhQkLNftBQkAp8gCJXGXkktAJVvbRRu3mT+uRnJZCTv+mm0Ny5Yy2gV5MwltTw9PYt0Qwc4depUiQ1xhw4daq1i40hQUBAvv/wyU6dOxWg0snDhQo4dO0ZiYmKxr8tNSyRi4wLiNn3IyrEdWTi8Df/s3rBM6QZluWi5tfRF4paMJXnnF5hyM6zbnfmipSAR+ARBqDSFS2rlkymU+A+ZSd7Vk8R9+TyZx7fi3rQbCs/qDo5jqMrTLDdHge/SpUvWBrSOvPvuuyQmJtrt2FDQkiVLkMvljB8/nl69ehEQEFBsGTNJkqw1P9PT023yCMvC0UVLQXI3LwLHLqTWa6sIeuELJH0uyTs+s+535ouWgkTgEwSh0hQsqVWYS436BI7+mOAp6wkYPhdjejyuQY0dHEdVVadYId7e3nYD340bN0pMtK9ZsyZ169Zl9uzZxY5TKBR8+eWXrF69mri4ON555x02b97sMI3ixx9/5M8//wRAJpOxatWqUn4aW44uWgqSu2hwDWqETK5A4V4N3/BX0V4/g1mXW+A4znnRUpAIfIIgVJqCJbUK0ydeRzLqMRu0ZPy5BWN2Gh4tnygyTq2UExrkWdWnWi75RbYLP+dLSUmxm8pQ2AsvvOCwY0PhcQ0aNGDw4MFMmjQJpVLJvHnz7I6dOXOmdcGNJEnWeqdlVdxFi0P56ZYFLgac9aKlIBH4BEGoNEPb13a4L+fCAeK+fJ64xWPQxp4jYMRcZMqifyQlYGg7x8e5n/JLiBVMZzCbzWi1Wnr06FHi69966y1ycnI4ePBgiWM3b97MqVOn2Lt3L//3f//H4sWL7Y47evSotdbnZ599xhtvvFHyB7Gj4EWLZDYhGfVgNoFkRjLqkcwmdLcvY0iJQ5LMmPIySd27Atc6LZGr3QHnvmgpSOTxCYJQqSqrpJazkslk3Lp1i5o1awKWMl8dOnRwWIi6sFatWuHv78/+/ftLHNu/f39OnDjB1atX8fb2ZuPGjQwdOrTIuP3799OnTx8MhvJPM+bXAdUZzaQf+Z6Mo+tt9nt3HYnKrzZph77DnJuO3MUNdb02VOs5DoVHNcBSB/SPt3s5fQ3P+9vOWBCEh86EHiEcuZJMnsF+hZPiFCyp5axkMhmZmZnWwHfkyBFrs93SmDx5MhMmTMBsNpfYZ3DDhg34+vry+eef07t3b6ZPn2438F24cKHYdIrSqO7hyuON/dl7KQGfx0bj85j9otruzR63u10mg55N/J0+6IGY6hQEoZJVVkktZyWTycjKurty8fTp0yWmMhQ0btw4zGaz3XJkhXl4eDBt2jTmzZvH/PnziY6OtttB4a+//sLb27vU5+BIZdUBdXYi8AmCUOnGhNVjRr+maFQKSqo3LZOBRqVgRr+mJVYXcQZyudwm8EVFRVG/fv0yvb5Lly588cUXpRo/Z84cvL29mT17NqGhoXZ79cXGxpYp+DrysF+05BOBTxCEKlG4pJa60GrPspbUchaFA9/Nmzdp0aJFmY4xffp0zp07h1arLXGsTCbju+++Y8eOHUycOJEjR46QkpLCnj17SE1NBeD27dvUqlWrhCOVzsN80ZJPPOMTBKHK5JfUSsnWsel0HFF3ssjUGvBSqwgN8mRouwevmalCoSA7O9v6e2pqKp07dy7TMZ566ik0Gg0LFy5k2rRpJY7v27cv7dq1Y8GCBSgUCvz9/QFLDt+QIUNISkqiW7duZfsgxRgTVo9WtX1YejCaA5eTkGFJTs+X34+vZxN/XusR8sDc6eUTgU8QhCrn5+HKP7s3vN+nUSkKBj6j0YhOpytVKkNhTz75JN98802pAp8kSTz99NM2tT69vb2ti2oyMjJo3Nh+MYDyehgvWvKJwCcIglAGCoWCnJwcAE6cOIFcLicwMLDMx3n//fdp1aoViYmJJT6fW7p0aZEC11qt1tpHLzc3t8zTraX1MF205BPP+ARBEMpAqVRaA9/vv/9uDT5l1aJFC/z8/Jg7d26JY1944QVeeeUVNBqNdZtOp7N2hDeZTLRp06Zc5/EoEoFPEAShDFQqFbm5ltqUZ86cISAgoNzHGjp0KD/88EOJ49zd3Vm2bBn79u3Dx+fu87T4+HhORETh1XkIc/ZcZ9zqE0zZeIblh64+EO2B7hdRuUUQBKEM6tSpw+DBg1m0aBEdOnTA39+f3bt3l+tY8fHxBAUFERkZSdOmTUv1Gq1WS7NmzajeuD3unZ7lptETvV6PXHX3eVv+4pMeTfx57fEQWgc/WItPqpq44xMEQSiDgnd8cXFxtGzZstzHCgwMLFXHhoLUajVvfL2d9PYvEGP0wijJbIIeWFZg6oxmfo1MYMR/jrH2WEy5z/FhJAKfIAhCGahUKmuR6rS0tDKnMhQ2bty4Mt0xrj0Ww5dHbqI3U2I9VEmCPIOJD3ZdEsGvABH4BEEQysDFxYW8vDz0ej16vZ7HH7dfu7K03nzzTXJyckpVtPrczXTeeG8+1/4zmdhPB5H880K749J/X0/sx/3JizkLQJ7BzAe7ooiIS6/QuT4sROATBEEohU2bNtGgQQOioqLYsmULarUagNmzZ5f7GR+ARqOhZcuWfPDBByWOXXIwGrNbNby7DMejVbjdMYa0O+Re/h2Fh6/Ndq3RxNKD0eU+z4eJCHyCIAilEBISws2bN62tf/LXBS5fvpwNGzZU6NiTJ0/m999/L7a1UXK2jkN/JeHWuAtujf+BXONld1zqr8uo1uMFkNumaUsSHLicJFZ7IgKfIAhCqbRp04YBAwYgK1TA0s/Pz2GT2NJ68cUXAVizZo3DMZtOxZV4nJyo35EpVGga2u8GLwM2nS75OA87EfgEQRBKacGCBchkMmvwk8vl/PjjjxVuCVSajg1R8ZnojI7vCM26XNIPrcb3ifEOx2iNZqLuZDnc/6gQgU8QBKGU6tevT/369fHw8EAul9OuXbsKL27JN2PGDCIiIhx2bMjUGot9ffrv63Bv3gulT/EJ9Zna8ndpf1iIWp2CIAilkJytY9OpOJq88CHeqZmk3LlJv4HhpGTrKqVYc3h4OBqNhgULFjBjxowi+73Uxf+51saew5SVQtaZnQCYczNJ3vYxXmFD8Q6727XdS62q8Lk+6ETgEwRBKMa5m+ksORjNob+SANAZ3cHVHeoFsfFiFhsu/lZpFVL69OnDypUr7Qa+0EAvXJXxaPUGMJssP5IZyagHuYKAkR+AyWQdf2f1VKr1/n9oGrS3blMr5YQGla+26MNElCwTBEFwYO2xGD7YFYXWaCo2WVwmA7VSwYx+oRVqyHrx4kVatGhBQkJCkY4Nydk6un7yGwkH1pBxdL3NPu+uI/F5bLTNtril4/DrNxlNvbvFq12Vcv54u9cD206osojAJwiCYIcl6F0iz+B4QUlhGpW8wt3Ia9SowbBhw1iyZEmRfePXnGTvpYQSK7bYI5PBU80CWD6mQ7nP7WEhAp8gCEIh526mM+I/x8jN05Ly61K0MWcxa7NR+gRS7fGxaBpagkdezFlSf12OKTMJl5qNqf70VDyrB7FxfFi5u5K/9tprbNq0icTERIfnlWcw2Xll8TQqRYXO62EiVnUKgiAUsuRgtGV602xC6VmdwFEfEzx1Iz7dnyfpp08wpidgys0gaeuH+HQfQ/CU9bgGNiLpp08qXCFlzpw5JCUlcfHixSL7Wgf7MKNfKBpV2f50W+5EQ0XQ+5sIfIIgCAXkV0iRJJC7qPF5bDRKnwBkMjluIZ1Qegegi48m96//4VK9Du6h3ZApXfDuNgpD4nX0yTcrVCGlRo0a1KtXz2HHhjFh9ZjRrykalQKpmEovYJne1KgUFZ5+fdiIwCcIglBAcRVSTDlpGFJv4eJfB0NSLKoa9a375C5qlD6B6JNuVLhCyksvvcQvv/zicP+YsHpsHB9GXvSfqOSW1ZoFqZVyXJVynmoWwMbxYSLoFSLSGQRBEApwVCFFMhlJ3v4ZHi17o/ILxmzQonCzrdgid3VH0udVuELKG2+8wbvvvsvevXsJD7dfjLpFTS+StnzA0djb/BaTS9SdLDK1BrzUKkKDPBnarvYjv3rTERH4BEEQCrBXIUWSzCT/vAAUSnzDXwFArlJj1uXajDPrc5G5aP4+TvkrpKjValq1asWHH37oMPBdvXoVmUxGozpBNKpT7rd6JImpTkEQhAIKV0iRJImUXYsx5aTjP3g6MoVlv8q/LobE69ZxZr0WY1o8Lv51/j5OxSqkvP766xw9etRhx4Zz587h4uJSofd4VInAJwiCUIClQsrdP42pe5ZgSLlJjaHvIlfdnTp0a/wP9Mmx5EQdRTLqyTi6HlWNeqj8giulQsrYsWMBWL16td39kZGReHh4VOg9HlUij08QBKGA/AopOqMZY0Yit5aNA4UKmVxhHePbZwIezXsWyONLxCXIksen9AmotAopPXv2JDU1lXPnzhXZN3bsWP744w+uXLlSofd4FInAJwiCUIizVEjZv38/4eHhpKenExERQceOHTl+/DgbN27kl19+QaFQ8M0339C5c2cx7VkGYqpTEAShkAk9QlArFSUPtEOtVPBaj5AKn4MkSXh6eqJQKKhRowbdu3cnIiKCuLg4vv76a65evcq1a9fo3r07u3fvrvD7PUpE4BMEQSjEGSqkfPfdd3Tu3Bmj0YhOp8PV1ZVatWoxaNAg692d0WikdevWDBgwoMLv9ygRgU8QBMGOghVS/m647lBVVEgZOXIkffr0Qa1WA2AwGAgMDESj0TBkyBAAXFxcWLduHXK5+FNeFuLbEgRBcCC/QspTzSwLVu5lhRQXFxd27NjB008/bf09P8C9+uqrAPzf//0fzZo1q7T3fFSIxS2CIAilkJKtY9PpuHteIcVsNtO8eXOuXbuGTmep/6nVatFoNGRlZYmUhnIQgU8QBMHJ5eTkEBwcTOTVG2yLSCDydganz0fSoXVzQgO9GNZelCcrCxH4BEEQnNy5m+ks3n+Z36+mAtjUElUr5UhAjyb+vPZ4CK2DReuhkojAJwiC4MQsneCjLP0Bi/lrLZNZUilm9AsV3RhKIIpUC4IgOClL0LtEnqH4vnsAkgR5BhMf7LoEIIJfMcQdnyAIghM6dzOd55Yd5tbOr9DGnMWszUbpE0i1x8eiaWipCmM2aEn77Vtyo35HMhtx8a9P4JhP0KgUbBwfJjquOyDu+ARBEJzQkoPRaPUGlJ7VCRz1MQpvf/KuniTpp0+oOe4rlD4BpP7yFZLZRM2XlyFXe6D/u1uE1mhi6cHoSimb9jASgU8QBMHJJGfrOPRXEjKVGp/HRlu3u4V0QukdgC4+GsmkJ/fKn9SesBq5qxsAroGWUmmSBAcuJ5GSrROrPe0QCeyCIAhOZtOpOLvbTTlpGFJv4eJfB93tv1B61yD9yPfcXDSK2ysnkBN11DpWBmw6bf84jzoR+ARBEJxMVHymTcoCgGQykrz9Mzxa9kblF4wpKwVDUixyVzdqT1yNb/grpOxciCH5JgBao5moO1n34/Sdngh8giAITiZTa7T5XZLMJP+8ABRKfMNfAUCmdAG5Eu+uI5ApVKjrtERdpyV5108XOI7hnp73g0IEPkEQBCfjpb67/EKSJFJ2LcaUk47/4OnIFJZ9qhr1ir6wUDVtL7WqKk/zgSUCnyAIgpMJDfTC9e+C2Kl7lmBIuUmNoe8iV91dqKIOboHSy5+M//2AZDahjYtEe+M8mgbtLPuVckKDPO/L+Ts7kccnCILgZJKzdXT95DdyUuK5tWwcKFTI5Hcb4/r2mYBH857ok2JJ2b0YQ1IMSq8a+HR/HrcmXQBwVcr54+1eYlWnHSLwCYIgOKHxa06y91JCsWXKHJHJ4KlmASKPzwEx1SkIguCEJvQIQa1UlDzQDrVSwWs9Qir5jB4eIvAJgiA4odbBPszoF4pGVbY/0xqVnBn9QkW5smKIyi2CIAhOKr/QtOjOULnEMz5BEAQnFxGXztKD0Ry4nIQMS3J6vvx+fD2b+PNajxBxp1cKIvAJgiA8IFKydWw6HUfUnSwytQa81CpCgzwZ2k50YC8LEfgEQRCER4pY3CIIgiA8UkTgEwRBEB4pIvAJgiAIjxQR+ARBEIRHigh8giAIwiNFBD5BEAThkSICnyAIgvBIEYFPEARBeKSIwCcIgiA8UkTgEwRBEB4pIvAJgiAIjxQR+ARBEIRHigh8giAIwiNFBD5BEAThkSICnyAIgvBIEYFPEARBeKSIwCcIgiA8UkTgEwRBEB4pIvAJgiAIjxQR+ARBEIRHigh8giAIwiPl/wNhWhQpYVv2hgAAAABJRU5ErkJggg==\n" }, "metadata": {} } @@ -704,27 +706,27 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 65, "metadata": { + "id": "dADiexlAioGH", "colab": { "base_uri": "https://localhost:8080/", - "height": 594, + "height": 0, "referenced_widgets": [ - "b4e7f31985a947149eaa55ebfcbc08d6", - "8cec30d3ca6e4a4a8d470b4ca91d98d8", - "460ce510fadb4e6db542f3d7f4e2c818", - "9001cd5ee75749d99c3e34cbd5c0f8ae" + "1ddf2f5b422441a9870919423b6f7ac4", + "e7663e8764454712a9474a09d1d0a7d3", + "01765451e1854b5ba6f7d83600638586", + "02684995c4504c0cb1c66d1de9af67a3" ] }, - "id": "dADiexlAioGH", - "outputId": "2e1440c9-7821-4862-89c6-808a996d262e" + "outputId": "482c9bbb-da19-42d4-923a-4cb1afe447e7" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ - "Data(y=[25], edge_index=[2, 346], x=[25, 64], edge_weight=[346])\n" + "Data(y=[36], edge_index=[2, 556], x=[36, 64], edge_weight=[556])\n" ] }, { @@ -736,7 +738,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "b4e7f31985a947149eaa55ebfcbc08d6" + "model_id": "1ddf2f5b422441a9870919423b6f7ac4" } }, "metadata": {} @@ -775,7 +777,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "460ce510fadb4e6db542f3d7f4e2c818" + "model_id": "01765451e1854b5ba6f7d83600638586" } }, "metadata": {} @@ -809,7 +811,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:00 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHomo' Graph\n" + "[2022/08/05 20:42:54 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHomo' Graph\n", + "INFO:adbpyg_adapter:Created ArangoDB 'FakeHomo' Graph\n" ] }, { @@ -819,12 +822,12 @@ "\n", "--------------------\n", "URL: https://tutorials.arangodb.cloud:8529\n", - "Username: TUTy0d4nq3jcidztw4rf5nyy\n", - "Password: TUTg7njua0hhwpfr1u2m2b2zc\n", - "Database: TUTc7mc78w0qlchle9za0opmc\n", + "Username: TUTctbabijgogsqfi4r0hj59\n", + "Password: TUTkpfg3sjmx88qu3aoi90ucs\n", + "Database: TUT6uidw6608c3fel9fgotpk5\n", "--------------------\n", "\n", - "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUTc7mc78w0qlchle9za0opmc/_admin/aardvark/index.html#graph/FakeHomo\n", + "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUT6uidw6608c3fel9fgotpk5/_admin/aardvark/index.html#graph/FakeHomo\n", "\n", "View the original graph below:\n", "\n" @@ -836,7 +839,7 @@ "text/plain": [ "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3gVRdvG793Tk5yEFNJIgTQSICH0EggtVJFeBCkiCgFRKYogAvKCIp8IiFJUVDCAdGkGQUrovfdOCCFAOiknyck59/dH3uxLSCGhKbC/69rrJLMzszO75+y9zzPPzAokCRkZGRkZmVcE8Z9ugIyMjIyMzPNEFj4ZGRkZmVcKWfhkZGRkZF4pZOGTkZGRkXmlkIVPRkZGRuaVQhY+GRkZGZlXCln4ZGRkZGReKWThk5GRkZF5pZCFT0ZGRkbmlUIWPhkZGRmZVwpZ+GRkZGRkXilk4ZORkZGReaWQhU9GRkZG5pVCFj4ZGRkZmVcKWfhkZGRkZF4pZOGTkZGRkXmlkIVPRkZGRuaVQhY+GRkZGZlXCln4ZGRkZGReKWThk5GRkZF5pZCFT0ZGRkbmlUIWPhkZGRmZVwrlP90AmedPQno2Vh29hQt37uN+Vi6stUr4O1ujey032Ftp/unmycjIyDxTBJL8pxsh83w4GZOCOVFXsPNSPAAgO9cs7dMqRRBA08rlMbSJD6q7l/uHWikjIyPzbJGF7xVh8YEb+CLyArJyTSjpigsCoFUqMK6dP/rUr/jc2icjIyPzvJBdna8AeaJ3Hgaj+ZF5ScBgNOGLyPMAIIufjIzMS4ds8b3knIxJwRs/HYDBaCqQfmfJGGTfvghBVAAAFHp7VBj0Q4E8OpUCywfVR5Cb7PaUkZF5eZAtvpecOVFXkJVrKnKfXatw6Ku3LrZsVq4Jc6OuYH6f2s+qeTIyMjLPHXk6w0tMQno2dl6KL3FMryRIYMfFeCSmZz/dhsnIyMj8g8jC9xKz6uitEvenRC1CzLe9cSfiY2RFnyoyjwBg1bGS65GRkZF5kZBdnS8xF+7cLzBl4UFsmw2Ayt4dgkKFjPO7cG/1ZLgMmA2VrUuBfFm5ZlyIS5P+T01NxalTp9C4ceNn2nYZGRmZZ4Vs8b3E3M/KLXafxrUyRI0FBKUKVoEtoKkQAMPVI0XmjY1PwrfffovatWvDwcEBTZo0gdFofFbNlpGRkXmmyBbfS4y1tgyXVxAAFD0YuP2vP7HyzxkF0rZu3YrmzZtDo5FXepGRkXmxkC2+lxh/Z2tolIUvsTkrHYZrR8HcHNBsQvrZHciOOQOdV61CeUXmIif+RqH0119/HVqtFhYWFvD29ka7du3wn//8BwcPHoTZ/Oj5gjIyMjL/FPI8vpeYhPRshEzbXmicz5SZinsrPocx6RYgiFDZu6Fc4z7QVapRqA6NUsTy3r7o0Lo5bt26BZLQaDQwGo0gCVtbW1hbW0MQBKSkpCA1NRVmsxl6vR5ubm6oWrUqQkJC0K5dO/j5+T2vrsvIyMgUiyx8LzmDIo7g7/N3H2tKA81mZF05CKfL6+Hq6orjx4/j3r17WLZsGbp3745du3Zh8eLF2LVrF65fvw6TyQQnJycEBATA1dUVmZmZuHDhAm7duoW0tDSIoohy5crB09MT1atXR2hoKNq2bQtnZ+en33EZGRmZYpCF7yXFZDIhMjISY76eh+xGQ5DLsnu1zcYs3F0yBjl3rkhp9vb2uHPnDpTKwuOHR44cwW+//YYdO3bg8uXLyM7Ohr29PWrUqIHXX38dVapUwb59+3Dw4EFcuHABcXFxMBgMUCqVcHBwgJeXF2rWrImmTZuidevWsLKyeqJzICMjI1MUsvC9RMTExGDp0qXYuHEjDh06hJycHDg7O2Pa6n34IvI8sk2lv9TmnCyk7VqElCMbCqSHhIRg165dEMVHC+nly5fx66+/YsuWLTh//jwyMzNhY2ODwMBAtGvXDv3794e9vT127NiBbdu24ciRI7h8+TLi4+ORk5MDjUYDR0dH+Pn5oW7duggLC0NoaGiRoisjIyNTWmThe4mYPn06PvnkEym4RBRFHDt2DEajEa2G/gfWTQZAUKlLfjsDAJiMSPj7R6Sf2FRgn0qlgiAIsLCwwIIFC9C1a9cyte/27dtYtGgR/vzzT5w+fRr379+HpaUl/P390bp1a7z99tvw9vYGAKSkpGDz5s3YsWMHTpw4gWvXriEpKQkmkwkWFhaoUKECAgICUL9+fbRp0wbVq1cvlRjLyMjIyML3EmEymVCpUiXExMQAAIKCgtCxY0dMnjwZANBt0EjYN+6Fv8/GASRMgkIqq1WKMGRlQXH3PKb1b4EeYfWLPMY777yDtLQ0rFixAlWrVsWaNWvg6+v7WO1NSUlBREQE1q1bhxMnTiAxMREajQa+vr5o3rw5+vfvj5o1axYoc/PmTWzatAm7d+/G6dOncfPmTaSmpgIArK2t4e7ujsDAQDRq1Ajt2rVDxYoVH6ttMjIyLy+y8L0kmM1mtGjRArt374azszNu374NKysrpKenI/8SR0ZGomXLlrB2rADvFr0R1q0/kjOzsHH1SrSqVw0XIn/F8QO7UaVKFVy7dg1ZWVlS/VWqVMHEiRPRt29fuLu7IyIiAoMHD8aZM2fQtWtXREREQKvVPlEfDAYDVqxYgVWrVuHIkSO4e/culEolKlasiCZNmqBPnz5o3LhxIcvObDbj3Llz2LRpE/bt24dz584hNjYWGRkZUCgUsLW1RcWKFREcHIymTZuibdu2sLOze6K2ysjIvMBQ5oUnNTWVlSpVoqWlJU+ePMnY2FhaWVkReTPSCYAKhYJ79+7liBEjCIDu7u4kye3btxMAVSoVW7ZsSQAUBIEKhUIq6+LiQoVCwTfeeIN3796lj48P1Wo1ly9fztWrV9PW1pYajYbTp09/qv0yGo1ctWoVe/bsSXd3d4qiSFEU6enpyV69enHdunU0mUwllt+5cyc/++wztmrVip6entRqtVJ/XV1d2bhxY44YMYIbNmygwWB4qu2XkZH5dyIL3wvOhQsXaG1tzQoVKjA+Pl5Kv3v3LnU6nSRearWac+bMkdJUKhWTk5M5atQoKY+FhYX0t1KppFar5aJFi6hUKtm2bVsqlUp27NiRJBkeHk5BENizZ08ajUaOHj2aSqWSrq6u3Llz5zPpq8lk4tatW/nWW2/R29ubSqWSgiDQxcWFHTt2ZERERKnEKyMjg+vWrePw4cPZqFEjuri4UKVSEQC1Wi0rVqzI1q1bc8KECdyzZ0+J4iojI/PiIQvfC0xkZCRVKhXr169Po9FYYN+qVaskEcu3ch4UNr1ez+XLl9PHx6eAZSgIAgVBYJs2baQ6N2zYQEEQOGzYMKpUKrZp04Yk+ddff1Gn07FChQq8fv06k5OTGRYWRkEQ2LBhQ965c+eZn4NDhw5x2LBhrFKlCjUaDQHQwcGBrVq14pw5c5iamlrquuLj47lo0SIOHDiQtWrVor29PUVRJABaWVmxcuXK7NKlC6dPn86zZ88+w17JyMg8S2The0GZOXMmBUFg//79C+3Lzs6mpaUldTodW7VqRTJPIN5//306OjpK4jZgwAAKgkClUkkADAsL46RJkzhhwgRqtdoCYvrNN99QEATOmjWLarWaTZs2pclkYmpqKqtXr06FQsEff/xROlbFihWpUCg4ZMiQ52oxnT9/np988glr1KghCb2NjQ0bN27MadOm8e7du2Wu88qVK/zuu+/Ys2dPVq1aldbW1tI5tLW1ZfXq1dm3b1/++OOPjI2NfQa9kpGReZrIwvcCMnDgQAqCUOyYWocOHajVaqlQKJicnFxgX8OGDRkaGsq4uDgmJCTwxo0bzMrKoiAIPHToEMk8l6JOp+Onn35a6LhKpZJr166lRqNhw4YNJVEbO3ZsIUtx3rx5tLCwoF6v56JFi572aSgVMTExnDx5Mhs0aEBra2sCoKWlJevUqcPx48fz2rVrj1WvyWTi4cOHOWXKFLZv357e3t6S0CoUCjo6OrJ+/focMmQIV6xYUSbLU0ZG5tkiC98LhNFoZMOGDalUKvnnn38WmScqKkoa0/vggw8K7Xd0dOTo0aMLpTs4OHDs2LHS/6NGjaKlpWUha61Ro0a0srLigQMHqNPpWLNmTSnPvn37qNfraW9vz9OnT0ttfuuttyiKIn19faX0f4rExETOmjWLzZs3p52dneQKDgwM5IgRI3jy5Mknqj87O5tbt27lJ598wubNm9Pd3V1ywarVarq5ubFZs2YcPXo0t2zZwuzs7KfUMxkZmdIiC98LQmJiIt3d3anX63nu3Lki85hMJtrZ2dHNzY1WVlZFuhgVCgW3bdtWKL1Ro0Zs3Lix9L/RaKRarebUqVMLHcPT05Pu7u68ePEiLS0tWbVqVcnKMxgMbNiwIUVR5P/93/9J5aKjo1mrVi0KgsD27dszLS3tsc7D0yYjI4M///wz27VrRycnJwqCQJVKRT8/P7777rvcvXv3U3HVpqamcuXKlRw6dCgbNGhAJycnycVsYWFBb29vvvbaa5w8eTIPHTokB9TIyDxDZOF7ATh9+jQtLS3p4eFRyHX5IAMGDKBWq6UoilywYEGh/deuXSOAQoEwJDlmzBiWL1++QFp4eDhtbGwK5U1OTqZer2eDBg148+ZN6vV6+vn5MScnR8ozbdo0iqLIkJCQApGWkZGRLF++PFUqFSdOnFia7j9XjEYjV65cyW7dutHNzY2iKFKhULBixYp88803uXHjxqcqSrGxsVywYAH79evH4OBg2traUhRFCoJAa2trVqlShT169OC3337LK1euPLXjysi8ysjC9y9n7dq1VCqVDA0NLfGGe+LECQqCQH9/f3p6ehaZZ/bs2bSysipy34EDBygIQoFjGAwGKpVKfvfdd4XyX7hwgSqViv3792dcXBzLlSvHSpUqFRC506dP097ennq9nvv37y9Q/vPPP6dKpWL58uUZGRlZ0in4RzGZTNy8eTP79etHLy8vaQqFq6srO3fuzKVLlz4Td+XZs2f5zTffsGvXrvT395fmZYqiSHt7e9aqVYsDBgzgwoULHytgR0bmVUYWvn8xU6dOpSAIHDx48CPzVqhQgdWqVaMgCNy3b1+Rebp168aAgIAi95lMpgIBLvn07duX9vb2RZb566+/KAgCp02bxvj4eNrZ2dHd3Z0ZGRlSHqPRyDZt2lAQhAJjiCSZlpbG9u3bUxAE1qpVi9HR0Y/s57+B/fv3c+jQoQwICKBarSYAli9fnq1bt+b8+fOfmRvXZDJx7969nDhxItu0acNKlSpJU1WUSiWdnZ0ZEhLCDz74gGvXri1wHWRkZP6HLHz/Uvr27UtRFDl79uxH5h09ejRVKhU9PDwYEhJSbD5/f3/27Nmz2P3ly5fnmDFjCqSlpqZSoVBw4cKFRZaZPXs2BUHg2rVrmZyczPLly9PZ2blQFOMPP/xAhULBoKCgQvtOnz5NPz8/iqLI/v37F+mK/Tdz5swZfvzxxwwODpYWCChXrhybNGnC//u//3vmFpnBYOCff/7JkSNHMjQ0lK6urtKEfI1GQw8PD7Zs2ZLjxo1jVFTUC3d+ZWSeNrLw/cswGo2sXbs2VSoVt2zZ8sj8N27coCiK7N27N0VRZFxcXLF5LS0tOWfOnGL3N2rUiI0aNSqU3rVrV7q4uBRbLjw8nEqlkqdPn2ZaWhpdXFxYvnz5QuOR165do6urK3U6HTdv3lyonkWLFlGv19PCwoLz5s0r9nj/dm7cuMFJkyaxfv361Ov10gT4unXrcuLEibxx48ZzaUdiYiKXLFnCQYMGsU6dOnRwcJCWorO0tKSfnx87duzIadOm8eTJk3JAjcwrgyx8/yLu3r1LFxcX2tjY8NKlS6UqU7lyZQYEBFCv1/Ott94qNl92djYBlOhOHDt2bKEAF5JMSEigKIpctWpVsWWbNGlCS0tLxsfHMyMjgx4eHrSzsyuwjBqZ567r2bMnBUFgeHh4oXpMJhOHDh1KhUJBT0/PQq7XF5H4+Hh+8803bNq0KW1tbQmAOp2O1atX58iRI5/7FI8bN25w7ty57N27NwMDA2ljYyNNyLexsWFgYCB79+7NefPmPTeRlpF5nsjC9y/h6NGjtLCwoJeXV6knO0+fPp0KhYIDBw6kTqcrMchiy5YtVCqVJdZ36NChQgEu+bRt25YeHh7FljWZTKxUqRJdXV1pNBqZnZ1NLy8v2tjY8Pbt24XyL1u2jGq1mj4+PkW6AuPi4hgSEkJBENiiRYsSo1lfNNLS0vjTTz+xbdu2dHR0lOb4+fv7Mzw8nHv27HnubTKZTIw6cJQ9P/+JweEzWbH/V3TqNJrW9bpQZWXL8uXLs27duhw0aBCXLl3KpKSk595GGZmnhSx8/wJWrFhBhULBsLCwUrub4uPjqVQq+fHHH1OpVPKbb74pMf+oUaPo7OxcYp78AJcDBw4U2nfr1i0KgsC//vqr2PKpqam0trZmnTp1SOa5bStXrky9Xl+kpRkXF0dvb2+q1WquXLmyyDqjoqLo6uoq9fVldMdlZ2dz2bJl7Nq1KytUqCC9HaNSpUrs27cvIyMjn2m/T9xM5ru/HabfZ5H0+yySnmM2SlvlzyLp8+lGNhqziI06vEkPDw9pQn7+Gy6aNGnCUaNGMTIyUn7DhcwLgfw+vn+YSZMmYdKkSRg2bBhmz55d6nJ16tTBvXv3UKVKFZw4cQJxcXEl5g8NDQVJ7N69u8R8jo6OGDhwIKZOnVpoX9OmTXH79m1cunSp2PJXrlxBlSpV0L17dyxZsgS5ubmoWbMmrl69ilOnTsHb2xuJiYkoV64cFIq8F+GGh4fjxx9/RM+ePbFkyZIi36T+9ddfY/z48dLb37t06VJiP15kzGYzNm/ejN9//x179uzBzZs3YTab4erqinr16qFHjx7o3Lkz1Gr1Ex9r8YEb+CLyArJyTSjpTiAIgFapwLh2/uhTvyLS09OxdetWbN++HceOHcPVq1eRkJCA3Nxc6HQ6ODs7w9/fH/Xq1UOrVq1Qr169Iq+rjMw/wj8svK803bp1oyiKnD9/fpnKLVq0iKIo8o8//qAgCKUKgnF2dubIkSMfma9x48bFRoZeuXKFgiA80hW3detWiqLIKVOmkMyzJGvVqkWdTsf169dTr9cXilZ98E0PxY0rGQwGdu/enYIgMDAwkJcvX35kf14W9uzZw/DwcPr7+1OtVlMQBDo6OrJt27b86aefSpxCcfLkSZrN5kLpEfuv0398QQvvUZv/+EhG7L9e7LHu3LnDhQsXcsCAAaxZsybt7OykN1zo9Xr6+/uza9eunDFjBs+fP/80To2MTJmRhe8fIDs7m0FBQVSr1dyxY0eZymZkZFCr1Uo3wZo1a5aqnFKpLNFNmc/YsWPp4OBQ7P569eqxWrVqj6xnzpw5FARBCogxmUysUaOG9PqjKlWqFCqTnJzMwMBAKpXKIleeyefSpUvSnMUePXq8ku6106dPc+TIkaxevbo0l8/W1pZNmzblN998IwUVJSUlURAEvv7668zMzJTKn7iZTP/xm2jbcjDVzj6EQknLai0kgasQ/nPea6pUWmmzafzmf8VvE0/GlG3M9eLFi5w1axa7d+/OKlWqSAuGi6JIW1tbBgcHs1+/flywYEGRY8IyMk8T2dX5nLl9+zZq1KgBo9GI48ePw9PTs0zlW7ZsiZMnT2Lu3Lno0aMHrl69ikqVKpVY5tatW3B3d0d2dvYj3WOHDx9GvXr1kJubW6Rr6syZMwgKCsKxY8cQHBxcYl3vv/8+5s2bhyNHjsDW1hY1a9ZEUlISAECtVuP8+fPw8vKS8iekZ2PV0Vv4fdNOnL96Ay525TD4jdfRs44H7K00hepfvXo13nnnHRgMBnzxxRcYNWpUie15mYmOjsavv/6KTZs24dy5c0hPT4der4erqyuuX78OQRDg6+uLv//+G87OzhgUcQR/n7+LjAv7AEGA4fox0JgDh/YjAAC5KXcRO38gPEavgyAqChxLEIDWVZwwv0/tJ2qz2WzG0aNH8ddff+HgwYM4f/484uLiYDAYoFQqYW9vDy8vL9SoUQPNmzdH69atYWVl9UTHlJEBAFn4niOHDx9GaGgoPDw8cPz4cVhYWJSpfGRkJNq3b4+dO3eiU6dOaN68OVauXPnIcvPmzcPHH3+M9PT0R+Y1m81QqVTYu3cv6tevX2Se4OBgKJVKHDly5JH1hYWFYf/+/Vi5ciWGDh2Ke/fuITs7G2azGQMHDsSCBQtwMiYFc6KuYOeleABAdq5ZKs/cbKjVGjQPcMLQJj6o7l6uUHs/+eQTzJw5E05OTli2bBkaN278yHa97Ny7dw8RERGYOXMmYmNjpXSFQoHREyZjVU515Jj+99NP3hUB0/2EUgkfAGiUIvZ90rzIB5InJScnBzt27MC2bdtw+PBhXLlyBffu3UNOTg40Gg0cHR3h6+uLunXrIiwsDKGhoVCpVE+9HTIvL7LwPScWL16M/v37o02bNtiwYUOZB/pzc3Nhb2+PVq1aoWrVqpg6dSqSk5NLJZ69evXCsWPHcPHixVIdy9HREQMGDMC0adOK3J9vFZ4/fx6VK1cusS6z2Qw/Pz9kZGQgOjoaN27cwOrVqzF16lRkZmZi+tqD+OFQ/CODKwBCp1JKwRUPk5SUhO7du2PHjh0ICQnB6tWr4ejoWKr+vswEBATg+vXrEEURZrMZVlZWKB/aG0b/VsilIOUrTvgUVnaAIEBbsQZsmw2AwsIGAKBVihjR0g+DQ72fW19SUlKwefNmREVF4fjx47h+/ToSExNhMplgYWEBV1dX+Pv7o0GDBmjdujVq1KghB9TIFIksfM+BTz/9FF999RVGjRqFr7/++rHqeOONNxAZGYmYmBg4Ojpi7Nix+Pzzz0tVtmrVqggICMCqVatKlT80NBRmsxl79uwpNk9AQAAcHBweGSUKAOnp6XB3d4eXlxeOHj0qpQ+d8Tv+TtDD+MAN+FFoVSI+axdQpPgBwKFDh9CjRw/cunULgwcPxnffffdK3/zmzp0LS0tLhISEwNvbG4IgYPjy41h74naBfA8LnznHAGPiLaidvGA23EfSlnkw5xjg1HOyVKZzcAXM7BkMk8mETZs2YcaMGTAYDNi/f/9z7WNMTAw2bdqEPXv24NSpU4iOjkZqaioAQK/Xw93dHdWqVUOjRo3w2muvPXJoQOblRxa+Z4jZbEbnzp2xceNG/Pzzz3jrrbceq579+/cjJCQE69evx8KFC7Fjxw7Ex8eX+oau1+sxZcoUfPjhh6XKP27cOPz444+Ij48vNk9UVBSaN2+OGzduwMPD45F1Xr9+Hf7+/ujYsSNWrFiBkzEpeOOnA7h7YC0yTm9DTvwNWAY0kW68OQk3kbhxBnKT86ZpqJ19YNtyMNQOHlArgFXhIQhyK1fs8ebOnYuPPvoISqUSc+fORZ8+fUrV91eBtxcdxvYL9wqkPSx8D2NKT8at7/vCfcQKiJo8L0MldTqM277DiRMnYDabYTAYEBAQgHPnzj3zPpSGs2fPYtOmTdi3bx/OnTuH2NhYpKenQxRF2NraomLFiggODkaTJk3Qtm1bODg4/NNNLpb88e8Ld+7jflYurLVK+Dtbo3stt2fibn7ZkYXvGWEwGFCrVi1cu3YN27dvR8OGDR+rHrPZDGdnZwQGBmLBggXw9vbGqlWrSj2PLTc3FyqVClevXi0QSFISR44cQd26dYsNcMnHy8sLPj4+2LJlS6nqjYqKQosWLTBhwgTEer1WYnCFOSsd5qwMKGwcAZqRduxPpJ/cAteB34NmMzzEZOye2q/E4+Xk5ODdd9/F4sWL4ePjgzVr1qBq1aqlauvLTGksvocxZSTj1nd94T58OUStJQCgXPIlnPpxFB6+hYiiCLVaDZ1OB71ej3LlysHe3h7Ozs6oUKECPDw84OXlBV9fX3h5eUGpVD6bjhZBbm4uDhw4gC1btuDQoUO4ePEi7ty5g6ysLKhUKjg4OMDb2xu1atVC8+bNERYWVuax+KdJSePfWqUIAmhauXyR498yxSML3zPg5s2bqFmzJgRBwPHjx+Hm5vbYdb333nv4+eefkZCQgNDQUGRlZZXpiToqKgphYWHIzc0tdZn8AJc9e/agQYMGxebbsGEDOnbsiDt37pR6PO3HH3/E0JGfoOIHESWOMT0IzSakH9+E5B2/wuOj1XlpuTkot3M6dm/dBGtr6xKPGR0dja5du+LYsWNo3749li5d+spEB37//fc4deoUqlWrBh8fH3h7e2Px0btYfjYNOea8cwuzCSl7lsKUlgj7tu8DogI5d65A1FhCaecKc1Y6kjbPgykzBc698xY2yB/je7OmE8aNG4effvoJBoMBXbt2xZgxY3D16lVcv34dMTExuH37Nu7du4ekpCSkpqYiPT0dWVlZyM3NBUkIgiAJpZWVlSSUTk5OklBWqlQJvr6+8PHxeSoT9x8mMzMT27Ztw/bt23H06FFcuXIFCQkJMBqN0Gq1cHJyQuXKlVG3bl20atUKDRo0eOaC/biLC8g8Gln4njJ79uxBWFgYfHx8cOTIEWi12seu68KFC6hatSp+/vlnuLq6ok2bNtJNrLSMHTsWv/zyC+7evVumYzs5OeGtt94qNsAlHzc3N9SqVQvr1q0rdd2vfTQTp+EJUfU/F01xwndzZk8wxwCQsGn8JsqFvAEAUCsEZB5cgaS9K7Bu3TrY2Njg008/RZ06dYpcdQYANm3ahH79+uH+/fsYN24cJkyYUOo2v6gMHDgQv/zyCxQKBUjmPdTo7VBhyC+gqETK7iVI3ft7gTI2Ib2gsndD8s7fYM5Mgai2gLZiMGybvQ2FlS2AwlGdZ8+exdtvv42uXbti9OjRpW5fZmYmLl26hCtXrhQSyoSEhAJCaTQaJaFUqVSSUNrY2EhC6erqCg8PD1SsWBG+vr7w8/N7ot9gQkIC/vrrL0RFReHkyZO4fv06kpOTYTabYWlpiQoVKqBKlSpo2LAh2rZti6pVq0IQSj9mXRx5onceBqP50Zn/i04lYlwJ498y/0MWvqfIzz//jEGDBqFDhw5YvXr1EwdVVKpUCfb29jhy5AhcXFwQHByMTQuyVVwAACAASURBVJs2lamOZs2aITs7G/v27StTuSZNmiA3Nxd79+4tMd+yZcvw5ptvSsuQlYayutrMOVnIOLMNCmtHWPjUkdI7BDnj5PyR2LVrF5RKJXJzc9G9e3esWLGi2GOTxKRJk/Dll1+iXLlyiIiIQOvWrUvV7hcJs9mMtWvXYuTIkYiOji6036nrZ9D51sfj/Pif1jy+xyErKwtXr17F5cuXce3aNcTExCA2Nhb37t1DYmIiUlJSkJaWhqysLOTk5EhCqVQqodPpYGlpKQmlo6MjXFxcJIvSx8cHfn5+pfIGXLt2DZGRkdi7dy/OnDmDmzdvIi0tDQBgY2MDDw8PBAYGIjQ0FG3btoW7u3uhOtq3bw83Nzd8++230Gj+9xB4MiYFPebtQuyf3yPrxgmYs9KhLOcM2yb9ofMueM5T9vyO1D1L4PjGFOgqBkOnUmD5oPoljn/LAM/Puf6SM2rUKMycORPjxo3D5MmTH13gEXz++ee4desWDh48iBkzZiAhIQG///77ows+xKVLl9CtW7cyl2vUqBF++OGHR+Z744038OGHH2LIkCGlbt/9rNK7XQFAVGthVaMtbn37JjTvzoPCMu9HvXzNetzbtQsAJFfuypUrIYoiBEGQtvz/H/zU6XRITk5GmzZtoFQqYWdnB5VKBYVCAaVSCYVCIf394KZSqQp8qtVq6VOlUkmfGo0GarUaarVa+luj0RTatFqt9KnT6aDRaGBhYSF9arVaqNXqUj1EkcS6deswc+ZMHDhwACaTqdjpJqkHVsLSpw5MQuE5eo88jjEHuaciceeOG5ycnJ6KhVNatFotqlatWuqx2pycHFy/fh2XL1/G9evXER0djdjYWNy9exdXrlzBkSNHkJ6eDoPBgJycHJjNeRZW/jXMtyjt7OwkoXRzc0PFihVRt25d9O3bFzY2eVM8zGYzTpw4gc2bN2P//v04ePAg/vjjDwwePBgKhQJ2dnbShPz69esjMjISKpUKUVFR2LBhA3x9fQEAc6KuICvHCKXeAc69v4LCpjwMV48gft00uL79PZTlnAAAxuQ4ZF7ckzfl5L9k5ZowN+rKP/JQ8iIhW3xPiNlsRrt27bB161ZERESgV69eT1zn7du34eHhgS+//BLDhw+HjY0NhgwZghkzZpS5LrVajdWrV+P1118vU7ljx46hdu3ajwxwAf47bjd0KO7fv1+qQIDHCa6g2YSYGd3h3OdrqJ3z5o51DnZFW9t4fPjhh4iOjobBYIAgCJgxYwYaNWqE7OxsZGVlITs7W7qx5VsC+ek3b97E0qVLkZycjCpVqiA0NBS5ubkwGo3IycmB0WgssOXvy/80mUzIzc1Fbm6u9LfJZCqwmc1m6fPBLd/1yLylA6UNQKGAkQfJF/T8vwFI9QB5wSX5FnD+jbworGq0hX2LdwFlGcbMcrORtX8p7u7NG2vNDwjx9PREhw4doNfrJTF/WNgf3nQ6nbQ9zwCXksjNzUV0dDQuXbpUSCgTEhKQnJyMtLQ0ZGZmFhBKpVIJjUYjWZR2dnYoX748XFxc4OzsjJycHMTGxkpzWePi4gqMu4uiiO7du2Ps51+ix5KLBYJY8rn98zDYhPSCpX8IAODu8gmwrv06EjfPg327D6CrmLeS0rNcXOBlQRa+JyA9PR01a9bErVu3sHPnTtSpU+fRhUpBUFAQsrKycOnSJQwYMACrV69GSkpKmV2nd+7cgYuLCwwGw2ONcygUCuzatQshISGPzGtnZ4cuXbpgwYIFj8w7f+dVzNx6Cdm55mKDK7KiT0Ghs4bKsSJozEbKrghkXtyLCuELICjVBSZQ51s6I0aMgI2NDU6dOoVevXohIiKi1Ods0aJFGDZsGMxmM2bOnIlBgwaVqtzzIDc3F1lZWTAYDDAYDMjKysKmTZuwcOFCnDlzBiaTCZUqVZKCmNauXYukpCTodDrp2mdlZRWqNzg4GKJfEyS4h0JQqgChhHNlNgPmXOD4GkRvW1xotyAIsLa2LpWwPyjwxfGgxV6U5f7gplAopM+Ht3zr/XGt9get96Isd7VajfT0dMTHx0vu1sTERCQnJyMlJQX3798vYFGaTCapfw+fA6VSiYAuHyDbL6yQ8JkyknFr7ttwfXs2VPbuyLiwBxlndsCx23jcmvt2AeH7JxYXeNH4dzxmvSCQxJAhQzBmzBiQRM2aNaHRaHDt2jU4Ozs/lWPMnTsXZ8+exZUrV3D79m389ttv+OWXXx5rvHDjxo3Q6XSPPbjv4OCAdevWlUr4xo0bh7Fjx2Lu3LmPjLrrVssNM7fmvdoode+yAsEVGWd35AVXlPdE0t8/wJSWAEGphsbVD449JkH4r3VizM1FJd7F2bN5gmBvb4+FCxeiUaNG2LJlC7p06YJdu3Zhz549pVoPtX///ujTpw+GDRuGIUOGYOrUqVi5ciVq1/7nXUZKpRJWVlbYvn07ZsyYgQMHDiA3NxfVq1fHnDlz0KdPH0ycOBE//PADMjIy4OHhgfv370On0+GDDz7ATz/9hOzs7AI32nLlyiEsLAzTp09HqzcycDzbEXr/BlApFMh64KaroAkE4G2RhW8GtkKQW2f06pWLZcuWFWhjly5dSr1AwsOQhNFolIQ9X9wNBoNkrT9ovRe15eTkFLkVZbnnW+vZ2dmFrPaiLPYHLfd86z1f1IsT+Px+ldTnhzGZTMi1ciokejTlImH9dFgFtoDK3h3m7Eyk7FwEp55Tiqw7K9eMC3Fpj3UtXhVki68M/P3332jXrh3s7e2RlJSEatWq4cCBA08tvDolJQVOTk744IMP8PXXX6NRo0a4ffs2rl279lj19enTBwcPHsTly5cfq3zTpk1hNBofGeAC5LnaypUrhwEDBuDbb78tMg9JpKWl4ezZsxj5xwXcUTg+XnAFAKvUqzgz70MIggCdTgdRFJGZmYm7d+/CwcEBKSkpCA0Nxfnz5zF//nwMHDiw1PXfuXMHXbt2xf79+9GiRQusXLmy1IE7T5v169dj5syZ2L9/P3JzcxEUFITw8HC8/fbbuHPnDt5//31s3LgRGo0GVapUwalTp6BSqTB+/HgcO3YMK1asQKtWrTBlyhTUrVsXJKV5dg+L4a34FGw8l4ALcWm4n2WEtVaF3+dPh58yCbu35q2MEhISggMHDqBFixbIzMwEAPj4+OD69esIDg5GVFTUKzNVpCyYzWZkZWUhKysLmZmZaNu2Lc6cOSPtd3d3R6dOnXC1QkucTfnfQy5pRsL6r2HOzoRj1/EQFEokbVsAUWOJco3yhlUetvgAoIW/I37u/3Q8UC8jr7zwlWVFhBYtWmD79u0AAHt7e8TFxT3VxXEbNWqEa9eu4fbt29JqLQcPHnxsF2pQUBC8vLywdu3axyo/fvx4zJs3DwkJCaXKP2nSJHz11VdIS0srMGZTt25dXLx4Eenp6dITcY0WnZBe/x3kmMreLgVMWDGoAb6dOApLliyRxlmqV6+OEydOFMj7ySef4Ouvv0bbtm2xbt26Mo0lRUVFoXfv3oiPj8fIkSMxderU57L82YYNGzBjxgzs378fRqMR1atXx+DBgzFw4EAolUrs3bsXH374IY4dOya9nHbz5s0wmUz4+OOP0bhxY3Tv3h0mkwm///47zGYzunbtipCQEMTHxxc7DzQjI6PQGK1KpQJJmEwmqFQqREREoEePHnB2dkZycjJMJhPc3NwQGRmJsLAwpKWlITIyEqGhoc/8PL1opKenIyoqCnv37sXSpUtx8+bNQnncuo+Dwjtv7ixJJEZ+i9zUu3Ds/rk0/ef2L+/DlJYI/Pe7aM68D1FjAev63WBTPy+QLX85OZmieWUXMTwZk4JBEUcQMm07Zm69hLUnbmP7hXtYe+I2Zm29hIbTtmPw4iM4GZMCIG/JrZ07d0rlk5OTS71WZmlYtWoV9u3bh8jISAB5C0s3btz4icYNo6Ojn+hNBZ07d0ZSUlKJARIPMn78eAiCgIkTJxZI9/T0RHp6uuQOcnBwgJB8E4lbf4K6jN9ArVJE1r4lqO3liKNHj8LV1RUKhQKCIOD06dOwsbHBZ599JgUOTJs2Dbt27cKuXbvg4uJSpsn/+W+c/+KLL/Dtt9/CwcEBf/zxR9kaXEo2btyI5s2bQ6vVolOnTkhJScGsWbOQnZ2NY8eOYfDgwVi0aBE8PDykazpq1ChkZGRgw4YNGDhwIBITE3Hy5Em0bt0azZo1Q2JiIi5evIhOnTrh7bffRlRUFA4ePIgOHToU2YaH395x584dSfQAwGg0YsCAAfjyyy/xySef4P3338e9e/eQmZmJVq1a4eLFiwgLC0PTpk3LNJfvZcJsNuPMmTP47rvv0K9fP9SuXRtOTk5Qq9XQ6/Xo0KEDvv76a8TExBQqGxQUBH9nPdSKvIClpM1zYEyMgWO3CQXmvDr1+gKuA+fAdcB3cB3wHRRWdrBrMwz6mq8ByPuN+Lvon0+HX1Se6G1+Lyh5b57exIpjS37bdMWxeS/d/G3fdfr4+BAAlUol69Spw0mTJj21N4AbDAZaWFiwf//+JMmffvqJoigyLi7uses0mUwE8MRvuRZF8ZFvXH+Qjz76iJaWljSZTCTJy5cv08/PT3oBLQAqFAoCYO/evekU0o0+n25gxUe9/fuT9fT8eA2rdx3GEydOUBCEvBel/vfT2tqaBoOB77//PnU6HdVqNfv168fk5LwXpmZkZLBBgwYURZHTp08v83kwGAzs1q2b9Pb3K1eulLmOh9m4cSObNWtGjUZDURQZHBzMuXPn0mg0FjjuyJEjqdfrqVQq2alTJ86ZM4eOjo5UKBR86623aDAYuH79elpZWdHGxoZbt24lSb7zzjsUBIEzZ86U6jOZTHR1daWDg0OBayIIAq9du1agfWvWrKGVlVWBfBqNhi4uLszKypLypaam0tnZmY6OjkxOTuavv/5KpVLJwMBApqamPvF5+jeSnJzMNWvW8KOPPmLLli3p5eVFS0tLCoJAQRCo0WhoZWVFCwsLKpVKAqBaraaPjw+7devG+fPnFziv+VuVmvXoNWY9Kwz5JS9NoSrwMmD710cV+m0orB3p+MYU6X+/zyKZkJb16E68wrxyrs7HWRFBJRDmo6swqW8YevTo8dSXTGrfvj327dsnuRRtbGzQs2fPUkVIFsfevXsRGhoqPa0/Lk5OTujXr1+p3yqRm5sLS0tLTJgwARcvXsTixYtRrVo12NjYFHjbg0KhgMlkgk6nw5/7T+PNL36DpW9dmM0mmPC/uWX56xFmXTuKO9sXIefOFWg0Gnh5eeH8+fMA8oI/tm/fLllC+ZGZX331FZKSktCiRQv88MMPqFSpEqZOnYrPPvsMISEh2LJlS5kDfy5evIiuXbvi3Llz6NGjBxYuXFimOiIjI/HNN99g7969MBqNCAwMxKBBgzBo0KACbthbt25h2LBh+PPPP6HT6TB48GA0btwYw4YNQ2xsLDp16oRff/0VSqUSnTt3xt9//42ePXtKkaxNmzbF/v378ccff6B9+/ZSve+88w4WL16MO3fuIDw8HMuXL5euxblz5xAQECDlHT58OGbPni2NAwqCAD8/P5w5c6aQyzgzMxOVK1eGwWDAhQsXkJGRgYYNGyI5ORkbNmxAixYtynSe/w3kz8uLiorCkSNHcOHCBcTExCAlJQW5ublQq9UoV64cLC0tQRIZGRm4f/8+srOzodVq4e7ujho1aqBVq1bo1KkT7O3tAeRd2wkTJuDXX38tdEyNRgOv/l/BYOf7wi0u8ELxz+ru8+XEzWT6j99U6InJ7cPfqfOtT0GlocK6PB1e/6hQHv/xkTwZk/zU27Rt2zYKgsBt27aRpGSxPPjU/zh89tlndHBweOL2NWnShA0aNChTmWbNmhEAraysuHTpUpJkUlKS9OT74NavXz/q9Xqq1Wq++fZgerUbxOHLjrPXvF107PgR67/1GRPSstivX78C5fLrUigUFEWRtWrVosFgKNSWVatW0cvLi4IgMDg4mHv27OHJkydpZ2dHa2trHjp06LHOy4oVK2hjY0OtVssZM2aUmDcyMpLNmzenVqulKIqsXr0658yZU+Q13r17N2vVqkVBEOju7s4FCxZwz5499PX1pSAIbNWqFe/evUuSXL58OXU6He3t7SWrPDU1lZUqVaKlpSVPnz5doO6oqCgKgsBVq1bRaDRSFEVaWFjQZDLx0KFDNJvNBfJ/9913HDx4MF1dXdmwYUOuXr2aoigyIyOjyH4aDAZ6eXnRxsaGt2/fpslkYvfu3SkIAj/88MNSn9vnTXx8PJcvX87hw4ezefPm9PT0pIWFhWQJW1tb08/Pjy1btmS7du3YuHFjent7U6vVEgB1Oh39/PzYs2dP/vzzz0xKSip0jOzsbE6ZMoWenp4EQBcXF3bq1KlIq69lz4H0+mRdyR6QYjb/8ZueyX3qZeOVEr53fztcpHvTIiCUFv6N6T5yJZ3enEZBY0GXgXMKuT0HRxx+qu0xmUy0tbVl+/btSZKJiYlUKBScPXv2E9fdokUL1q1b94nrGT9+PO3t7UuV99KlS/T395fcPbNmzSJJxsbG0s7Ojo6OjrS0tJR+4FqtVrrB2NnZURAE6vV6qb59+/ZRFEWOHj2av/76a5E3iTZt2vDy5cu0s7OjnZ0dL126VGTbDh06xDp16lAQBHp6evK3335jy5YtKYoix48f/1jnxmQyceTIkVQoFKxQoQJ3794t7XtY7IKCgvj9998X+0Dz448/0s3NjYIgsHbt2ty3bx9PnjzJoKAgCoLAkJAQ3rhxgySZlpbG0NBQCoLAAQMGSG7lK1eu0MbGhq6uroyPjy9Qf1ZWFvV6PTt06EAyzyUNgF988cUj+zl8+HA6OjqSJK2trTlixIhi8+bk5LBy5cq0srJidHQ0SXLJkiVUqVQMCAhgYmLiI4/3LDAajTxw4ACnTZvG7t27MzAwkHZ2dpLbXaPR0NXVlQ0aNOA777zDGTNmcPLkyezWrRu9vb2p0WgkkatcuTJ79erFhQsXSq704li1ahVr165NURRpaWnJ7t278+TJkxw4cGCRD4J6vZ4KhYKeLfrQ8+M1ZRS9SEbsv/58TugLzisjfPFpWfT7LLLQl8V95CpCVNJ10A9SmmXVZrSu361Q3qftO+/fvz8tLCwkS6Vly5Z0dXV9KnW7ublxyJAhT1zP8ePHKQiCdHMtiuzsbL755psUBIFBQUG8ceMG+/btS3t7e54+fZo6nY7+/v40GAzcvn17gXG+/E0URSn9wfGjiIgICoLA9957r9BNwsbGRspnMBhYp04dKpVKLl++vNi2RkdH87XXXqMoirS1teXrr79OhULBGjVqPPZ4VGJiomTl2tjYSGN2QUFB/O6774oVO4PBwBEjRtDKyopKpZKdO3dmbGwsr1y5wvr161MQBNaoUYNnzpyRyixcuJAajYZOTk48cuSIlL5jxw6q1WrWrl27yOOFhYXR1taWRqORJpOJKpWKCoWixOuaz6lTpygIArOzs/nhhx8WOO9FYTQaGRgYSAsLC2ksNCYmhh4eHtRqtYyMjHzkMR+XuLg4Ll68mO+99x5DQ0Pp7u5OnU4nfcfKlSvHgIAAduzYkZ9//jm3bdvGmJgYzp07l126dKGXl5ckchYWFvT392fv3r25aNGiUn8/Tp8+zY4dO1Kn01GhULBBgwbcsGEDs7OzGR4eTpVKRRsbG86YMYNt2rQp8oEOALt8MrNMsQiy6JWeV0b45kVdKVL4XN76loJSUyCtXLO3qfOuUyhv5c8iOX9nwaCGgwcPct26dWVuz9GjRykIAlesWEGSPHnyJAVBkAITnhS1Ws3Vq1c/lbpEUSxgzTzIL7/8QgsLC+r1ei5btkxKv3//PkVRpCiKbNq0KU0mE9PS0qjX6xkWFsYPPvigkPjlP/E+fKyxY8dKQSz5W4cOHahWqzlgwIACeYcNG0ZBEDh8+PAS+5SWlsZ3332XGo2GarWaOp2OOp2uzOf/r7/+YosWLajVaikIAlUqFQVB4JAhQ4oVlZs3b7JDhw5UKBS0trbmxx9/zOzsbMbGxrJFixYUBIH+/v48cOCAVCYxMZH16tWjKIocNmxYgbrzg6F69uxZ5PEWLVpEQRB48OBBkuSXX34puZlLi1qt5tKlS5menk5RFLlmzZoS85tMJtauXZtarZbnzp2T0vr06UNBEBgeHl7qYz9MTk4Od+3axcmTJ7Nz586sWrUqbW1tpYcnrVZLNzc3NmrUiOHh4Vy4cKFkfcbFxXHOnDns3LlzIZELCAhgnz59uHjxYt6/f79MbUpKSpIsY0EQ6O3tzenTp9NoNNJoNPKDDz6gWq2mXq/n9OnTeejQIZYvX546nY5Vq1YtUvjS09N5MiaZgyMO03vsBlYcvbbgQ/uo1fQd9ycHRxyW3Ztl5JURvg+XHSvyacnpza8oWpYrkGbXZhg17tWKzD982XHm5ORwwYIFdHZ2ltwfZcXFxYUhISHS/5UrV2atWrWeSl/j4+OlH87TwMnJiR999FGBtAsXLtDf35+iKPLdd98tdJNfuHChdBPKJygoiE5OTpJFMnXqVIqiWEAARVHklClTCrWhZcuWBMCRI0dKluGSJUsoCEIBwSXJZcuWUalUsl69eszOzi6xbyaTiZMnT2a5cuWkNuRH1xbHX3/9xbCwMMmNGRgYyNmzZ0vH+v7776nT6Whtbc3FixdL5Xbv3s2aNWtSEAR6eHjwl19+IZkXIdixY0eKokhPT09u2bKlwPHmzp1LlUpFNze3QuN2o0aNoiAInDhxYpFtvXfvHlUqFT/44AMpLd+9/Cg33YP4+/uzU6dOJMnQ0FBWrVr1kWVMJhMbNWpEtVrN48ePS+krV66kWq2mr68v7927V2z56Oho/vLLLxw8eDBDQkJYoUIFaVxNoVDQ1taW1apVY5cuXThlyhTu3r27gLUbGxvL2bNns2PHjqxYsSLVajUB0NLSklWqVGG/fv24dOlSpqWllfo8PNy/OXPmSO59Ozs7hoeHS2OwRqORo0aNokajoaWlJb/88ksajUa+++67FASBzZo1Y0ZGBk+dOlVI9Ly9vQscx9bZnZ6t3+bwZcf5+teRtH9tJG3qdWWlgCDm5uY+VvtfZV4Z4Ruw8FCRQlaUxWdbjMXnOWYjXd/4T6EvqSAI7NSpEwcOHMjRo0fz66+/5qJFi7h582aePn2aiYmJBYTho48+olqtlm48y5cvpyAI0hjOk7Jw4cICgvOkNG3alPXr1yeZ59bs1asXBUFg9erVi2zz5MmTKQgCR4wYQVEUuWrVKg4bNoxKpbJAfnt7e7711ls0m82sXr06AwIC+N5770kBMQ9iMpmkcZl8t2qTJk2KrJfME2ZbW1va29uXeurB4sWLaW9vL435bN68Wdq3efPmQmL37bffFius2dnZ7Nu3L0VRpJOTE52cnCgIAuvUqcN9+/aRzJti0bdvXyoUCjo7O3PlypUF6rh79y6Dg4MpimKhBw+TycTXXnuNCoWiyPOVT9WqVVmxYkXp/7lz5xIAQ0NDS3VO8hk6dChdXFxIkkeOHKEgCIyJiSlV2bCwMKpUqgIWbFxcHL28vKhSqThp0iROnDiRHTp0oL+/P21sbCTrTafT0cPDQ7rWixcvLnKaT0xMDGfNmsUOHTrQ09OzgMhVrVqV/fv357Jly4oNzCkL27ZtY5MmTahUKqnRaNi2bdsCQVImk4ljxoyRxrA///xzmkwmHj9+nE5OTtRqtdLD2oEDB6hSqdikSRPq9XrpnjJo0CCpvvHjx0tTdkjyP/8peA/K/w3JlJ5XRviKs/jKMsbnOWYjXbuOLdYn/6AQPuyae3gsK3+cxtPTk6Io0t7enq1bt+Ybb7zBIUOGcPz48Zw9ezaXLVvGnTt38vLly8zMzCxVX/v3708vL6+ndu7Gjx9POzs7LliwgBYWFrS2ti52HO3dd9+lKIqcP38+SbJt27Z0cHCgIAgFyqxcuZKiKErjJtbW1vzyyy9LbIfBYGD58uXp6+tLlUpFANy2bRurV69ewJJ8MH/NmjWpVCq5atWqUvd3zZo10o1TpVJRpVJJYjdr1qxHWpH5xx4+fLhkXQFgq1atmJ6eTqPRyKFDh1KpVNLW1pYLFiwoVH769OlUKpX08vIqFLBjMBhYpUoVarVayX1ZFJ9//jkVCkWBhwI7OzsCkNyPpeXw4cMUBEE6x25ubuzWrVupyzdr1oyiKLJdu3asX78+XVxcJDdj/u8hKCiI3bt357Rp03jo0KFiXcXR0dGcOXMm27dvT09PT+m7YGVlxcDAQA4YMIArVqx4KiKXz40bN9inTx/q9XrpoS8iIqJAG00mEydMmECdTketVstPP/2UJpOJJpOJQ4YMoSAIbNy4sWRhbtu2jUqlku3bt+fEiRMpiiJHjBhBtVotDYH8+eefkpWrUqkYFxdXaF6sTqcr9GAkUzKvjPAVN8aXF9XZmBYBoXQfuYpOff6vyKhOzzEb6TvuTzYdMqVIoWvXrh1HjBjBWbNm8csvv2R4eDg7dOjAevXq0dfXlw4ODtIge1ECqdPpaGlpSSsrK2niq1arpVqtpiiKBYRUFEWqVCpaWlrS1taWrq6u9PHxYXBwMBs3bky9Xs8KFSpw+PDhnDx5Mn/44QeuXbuWBw8eZExMTJmnSqxZs0Zq7+DBg4u8IZlMJrZp04YKhYIbNmyQ0g8fPkwAbNu2bYH8Xl5ebN26Ncm8EHwAjI2NfWRbYmNjqdVqpfB+BwcHpqam0srKSqrvYcLDwykIAkeNGvXI+v/++2+2atWq0LWys7PjN998w/Xr1xcIvnmY6OhoKWDG2tqao0ePZnZ2Njds2CCNQykUClpZWRU5kT4mJoYBAQFUKBRFui9jY2NZvnx52tvbl2hxnT17lqIoSpG1ZJ4LGAB9fHweeR6KQqlUSuPGM2fOpFqtLvBdyMjIYGRkJD/99FO2C0z34wAAIABJREFUa9eOfn5+tLa2lr67+S7t4OBgDh8+nCtXrmRiYiLXrVtHjUbDSpUqFbLmbty4wenTp/O1116jh4dHIZEbOHAgV61aVeRUliclIyODEyZMoJubGwGwQoUKHDduXCFBNZlMnDJlCi0tLanRaPjxxx9Lv7HTp09LIh8RESGVWbduHUVRZO/evbl+/XoKgsAffviBJKWpIHfv3i3wPbSysuKMGTMkIczf8qNDH16AQKZ4XhnhKy6qs7Tz+DzHbKTHR2uosLApFJRha2vLoKAgWltbSz9wZ2dnNmnShGPGjOHu3btpMpk4bdo0KhQKxsbG8u7du4yMjKRCoWBoaCj79+/PVq1asUaNGvT09KSdnZ3kVssXHZVKRb1ez/Lly9PDw4N+fn4MDAxkzZo1WbduXdarV49169aVLEg3Nzfa29vTyspKEtAH261QKKQVJhwcHOju7k5/f3/WqlWLzZs3Z8eOHenl5SXlHzJkCDdt2sSTJ08yISFBuukZjUZWr16dWq2Whw//b8pH/iohFhYW9PX1ldIPHDhQwLU7f/78Mo2THjp0iAqFQurTmDFjeOjQoRJXZVm8eDEVCgUbNmxYyGLbunWrJHb/z957h0VxdmHjZ2a2wbIsS+8gHRVEAVGwF4oiiiVi16gRjV1ERY1ijC1GrAlGY0mMIWqMXWOJURM11lhjrMGosSMgICzL/fuDd56XYRdEk/f3fV/MfV17KdPnmZnnPOc859w3z/OoW7cuMjIyUFxcjJ07d0KpVMLc3Jy1X9OmTY062kOHDiEkJISVS6xZs0bSDnPnzoVarYZMJgPP87C1tcXevXsxfvx4zJkzBwCQnp4OQRAQEBDAkjEq4uTJk1CpVAgICKjWmzEYDHB0dERERIRkuYuLC4jotZKxAMDX1xddunTB5cuXsWTJEvA8Dzc3Nzg4ODCDJJPJYGdnh/r166Nnz57IyMjA2bNn2bvSt29f8DxvdA2PHj2Cp6cnY7Bxc3NjHbpGo0FwcDAGDRqEzZs3/0+MnAiDwYD169ezZ6nRaNCzZ0+TRkV8rmId6ujRoyWDypEjR4LneTRu3FiSEbpu3TrwPI8hQ4bg2rVrkMvlGDRokNHxnz9/jpkzZ8LFxYUNkiMjIyXfMc/zcHd3x507d/43DfIPxRvF3PLOF6do368P6LXuGCAvRT4dfL+n0apNmzZRly5diKicueTw4cO0c+dOpozw+PFjxnfp6OhI8fHxFBMTQ1988QX99NNPLyWBLi0tpVu3btHVq1fpxo0bTBzz/v379PjxY3r27Bnl5+fTixcvSK/XEwDiOI6peGs0GiaM6ejoSM7OzmRlZUUajYaUSiUVFxfTo0eP6MmTJ/T06VPKycmh3377jalCaLVays3NZZyYpaWlJmVVNBoNmZmZkbm5OanVarp79y7l5eVRq1ataP/+/dS3b19q0KABLVq0iGQyGe3cuZNcXFyoa9eudO/ePSOC6erw1VdfUc+e5c9CEAS6d+8erV27liZOnEg///yzSTmhS5cuUVRUFCkUCsrIyKAvvviCDh8+TMXFxRQYGEgDBw6kd99914iZ5+nTp9SoUSOJyoUgCJSQkECRkZG0cOFCunfvHoWHh9P7Hy6km7BnpOcP/vidTu3fSrln99A7/XrSggULqLCwkJKSkmj37t3EcRzJ5XJycHCgP//8kz744AOTPJcbNmygnj17UnR0NO3YsaNasux+/frRxo0b6cGDB6TRlHM2fvfddxQbG0vW1tb05MmTl7ZvXl4eI1Q+d+4cXb9+nbKzs6m0tJQ4jmNk1nq9nkaNGkVRUVHUsmVLsrS0fOmxhw4dSsuXL6cePXrQ06dP6eLFi3T//n0qLS0luVxOer2efHx8aP78+RQXF0cKheKVyORfB2fOnKGpU6fSgQMHyGAwUGRkJE2ZMoXatm1rcvtFixbRtGnTqLCwkAYPHkwZGRnsvfn1118pOjqaHj58SJmZmTRgwAC23/Lly2no0KE0fvx4mjZtGrm6upKXlxedOnWqymsLDQ0lW1tbWr16NRUVFdHz589pzpw5dOLECUpOTqb09HQjntV/UT3eKMN37o9nlLTiOBXpX53GiyvT073Px1PJ/etG6wRBoLi4OJo3b56E8qki6tSpQ/fu3aPIyEi6dOkS3bt3j/R6PcnlcvL09KTg4GBq0aIFderUiVxdXV/5+kScPHmSGjZsSKdPn6Zr167RzZs36fbt23Tv3j0mlJmbm0sFBQX04sULRmkmCAJTy87Pzye9Xk8eHh4UExNDHh4e9OWXXxLP83T8+HFSq9VEVP6BR0REkFKppFmzZlFBQQEzoMeOHaPz589T7dq1ieM4unbtGqMoe/78OfE8byRIKpfLmfCnSqUic3NzsrCwII1GQ1qtlqysrMjGxoZsbGzIwcGBvv/+e9qwYQPJZDIKCwujY8eOUUxMDB09epT+/PNPI3mc77//nmbNmkXff/89ASA3NzcaPXo0DR8+vFoaOr1eT/Xr16fLly8zWR9PT0+6desWASAbGxua99nXdDxPS4euPiIikmiq8WWlJFMoqKW/HQ1r7kP13KwIAIWEhND58+fLt+F5unHjBnl6ehqdf8aMGTR9+nQaNWoUZWRkVPv89+/fT9HR0bRlyxYJGbWvry/duHGD5syZwwyrSKh88OBBOnnyJP3666/0xx9/UE5ODjNCOp2O3N3dqXbt2mRjY0MZGRmk1+tJJpPRvXv3yNXV9aUKIteuXaNNmzbRoUOH6OLFi/TgwQNGIu7u7k7t2rWj9u3bU3R0NCkUCtqzZw8lJiaSnZ0dffbtftp4Oc9ku4p0di0qtOur4OHDhzR9+nTasGEDPX36lHx9fWnEiBGUnJxcpYrHxx9/TFOmTKH8/HwaMGAALV68WEJZN378eFqwYAGFhYXRd999J5Gzmj9/PqWmptKMGTNoypQpFBwcTPfv36c7d+5U+/5ptVqaPHmyZEC0aNEimjp1Kt27d480Go0R3dy/qB5vlOEjej2uTr6slN7rUJfS3mpKf/75p2SdTqej3Nxc1ok7OzvTsGHDaPz48exlXrNmDQ0cOJAuX75M/v7+RFSufl1cXEypqal04MABOnv2LN2+fZueP39OMpmMHBwcKCAggCIjI6lDhw4UGhpaI0mc9PR0Wrx4cY1G9UREAOjhw4d08eJFmjhxIp06dYqsra2pbt26lJ+fTzk5OZSXl0d5eXmss+I4jgRBoNLSUpLJZOTr68u8SRcXF+I4jjIyMmjcuHE0e/ZskslkdOnSJQoKCqLGjRvTvXv36NatW0REVFJSQiqVitavX09arZYePHhADx8+pMePHzNvtqKSdWFhIRUWFjIR0eLiYsn9iMrWPM+TTqcjjuOosLCQioqKCABpNBoKCAigwsJCunTpErVr146GDx9OTk5O5OrqStbW1kbt/Oeff1KLFi3o+vXrEmM9ZMgQSkhIoNHLvqEXge2IFxRMKsYUOI5IJRNocrsAenpiG40aNUqyXi6X07Jly2jw4MFsWa9evSgrK4s+/vhjGjJkSLXP8sWLF2Rra0uxsbESUdi9e/dSTEwM4/C8desWPXz4kAoKCojjOLKwsCBHR0fy8fGhkJAQatKkCTVr1sykrp5MJqOtW7dS+/blSgDBwcGk1WrpyJEjRFTOZSoauUuXLtGDBw/IYDCQVqslb29vioiIoPj4eIqOjqZp06bR7NmzKTMz00jx/unTp9So93h6UbsdCXIlgbgatWvvRp6SdV9//TXp9Xrq3bs3EZVHTxYvXkyffPIJ3bhxg2xtbalHjx40bdo0sra2rvIcK1eupIkTJ9KzZ8+oT58+tGzZMomE07Vr16ht27Z07949Wrp0qdH9vPfeezRz5kzKyMigUaNGUa9evWjTpk107do1cnd3r/K8Iu/n77//LhFUPnPmDIWFhVFZWRk5OztTQkICZWZmVnmcfyHFG2f4iETjd4VelBpeEvYE8WUGKjmRRfePbKQJEybQ7NmzJV7Ks2fPyMzMjN5//31asmQJ5ebmso6zadOmNHnyZOrQoQMNHDiQli1bRkREu3fvpvbt29OlS5eMRmklJSV04MAB2r17N504cYKuX79OT58+JaJyI+vl5UXh4eEUGxtL0dHRRgTJsbGx9Pjx42pDJ5Xx6aef0ujRo0mhUNDq1aspMTHRaJvz589TSEgIvXjxgtasWUNDhw4lPz8/io2NpXv37tH9+/dZqPTPP/8kjivvqEQjpFAoqKSkhMrKysjT05P8/PzI0dGRioqK6JtvvqEDBw5QQEAA2dvbv7LmnYWFBRUUFJClpSXt2bOHNm7cSBkZGcTzPJWVlZFWqyVnZ2eytram58+fU0FBARUUFFBubi4TU60I0bDLZDJSKBTE8zwVFBQwD93Ozo7y8vKI4ziKfvd9+oW8qPQVFL4UPNGDPR9TwbnvyN/fn/z8/MjHx4du3LhBW7duJQ8PD8rKyqIRI0bQ2bNnaffu3S8leS4rK6Pw8HC6cuUKtW/fnq5evUp37tyh3NxcNmAxMzOj4OBgql27NkVERFCrVq3I19f3ldra29ubGjVqRF9++SX9+uuv9MEHH9CXX35Jjo6O9OjRIzIYDGRlZUXe3t7UuHFjio+Pp9atW1fpQc2cOZPee+89WrBgAY0ePZotf50Bqpmcp8ntApnx27RpE/Xq1Yusra3ps88+ow8++IB+/vlnksvlFB0dTe+//z4FBwdXe8zPP/+cUlJS6OnTp5SUlESZmZlGA4K0tDSaO3cuhYSE0N69exkZtYhRo0bRkiVL6LPPPqMBAwbQwoULaezYsfTdd99VGUoVsXnzZkpKSqKSkhLJ8rKyMhIEgbKzs2nq1Kn0ww8/UHZ2dg1b6l+8McktlSEyIvhN2QX/Skkv/lN2wXfyTjh0mQKlky/L6jJVplBZ9mXLli0ICAhg6cfiNqNGjWIT3A4ODmjXrl2Nr7WsrAxnz55Feno6oqOj4erqyo6tVqsREBCApKQkLF++HK6urhg8eHCNjnvx4kX4+vqC53kMGzbspfRVPM9j3Lhx4HkeAwcONLlN5SL1/Px8nD59GllZWaxdWrZsiUaNGsHX1xdKpRIcx0l4CwVBgFqthr29PXx9fREREYGEhAQkJydj1qxZyMrKwunTp1laeHZ2tmRfjuNYIsfLyhguXLgAS0tLODg4IDs7GwUFBbh69SoOHjyIgQMHQqvVgohgb2+PNm3aICYmBo0aNULdunXhVq8J3EZlQR3cFoKlHTiFGeT2tWDfbXp5jeigj6Fw9AGvVINXqqHyqAenQR+Xv2cpm9GySz/07NkTw4cPR1paGlq2bImpU6eydhIEQZIsBJQXpGdlZWHkyJFo0aIFPDw8jDL/AgICEB8fj6lTp+LTTz9l7+BfkQi6cOEC0tPT4eTkJCEdsLKygiAICAoKwt69e1+LXH3+/PngOI6Vs4hk8rq2Q6Bw9AEJMqjrtv5vktn4b2HuHwnB0h5EBIces4xImvfs2SPJfuQ4DqGhodXS2VXEV199BUdHR/A8j7feestk2928eZPVIi5btszkcQYMGACe51mN5sGDB8HzPObOnVuj6xgwYAA8PDxMrlOpVFi7di1jgfpfJv380/DGGj4Rj/NfIPPQdTh3mYQOH+7E6KyzyDx0HY/zX5gkkRV/TZo0wZMnT5iumYuLi4QB4urVq2jQoAHLdBNrlpydnSEIwt+iU3b37l188skn6NatG/z9/VnNmCAIcHNzQ0xMDN5//32cP39esl9FbbnQ0NAaFyKLBNPp6ekm17/77rsmi8kBoLS0FEqlEnZ2dmjSpAlb7uXlhT59+rC/Hzx4gEOHDmHlypWYMmXKS7NdTf3Cw8PRrVs31K5dG4IgYO3atbh69WqVnXJ+fj7q1q3LaN5GjhwJtVoNuVyO8PBwdO3aFY8fP5bsc/PmTfgPnA/X0RugjeoBl+TP4D5hG+y6vgdOYQaX5M/gNjrrP8u3wz11K3Rt3oHczrO8k56wDb4D5iEgIAAODg7sfqq7r4o/cXDg6OjIKK/CwsIwa9YsrFy5Etu3b8fp06cRGhoKhUKBVq1a1egZA+X0edOmTUPLli3h6OjIBhM6nQ7+/v4gIuzdu5cxhqSkpEjIxV8Hy5YtA8dxmDp1KiOTt0tMg13nybCoH2dk+HStB8Oh11wIap3E8HlO2oHIVGNC8969e9foOjZt2gRnZ2fwPI/ExESTSgsA8N577zGlDZGppTK6dOkCQRCwe/duAMCdO3egVCrRpUuXGrdLnTp1GGNOZbi4uGD48OEAADMzsyqN778wxhtv+IByKikiwrBhwyTLxWLfyr+mTZtKtps2bRpbJ45aS0pKoNFo0KVLF4wZM0ZSzySOzPv37/+XxGYrIycnB0SEdevWITk5GaGhodDpdOA4jqXQ16pVi3War1LULcoC1apVy+T6zZs3GxWpV8S0adOgUqmYDJNoHGUymaTu72U4fPgw2rVrx4y8t7c3+vfvjzlz5jCjIZPJUKdOHbi4uEjKQUTDolKpYG1tDQ8PD4SEhCA6OhqdO3dmzBlyuRwjRoxAUVER+vbty2ryVqxYgbt376JNmzYQ1FbwGP+tybIXuZ0nbDtNkpbCpG6FddtkCUuQ7+Sd6NCtp0nOUpFQWSz+l8vlSEhIwPTp0zF69Gj07dsXHTp0QLNmzaBUKiGXy+Hs7Axra2uo1WooFAqj6IQgCFCpVLC0tGQlMZ6ennBycoJOp2PeN/2nrtTb2xtdunSRSO0YDAbwPC/hNC0qKoIgCDX2psTn2KxZM5w5c4YtW7VqFQS1FWpVkuSxjOwuMXwVf4LGRmL4PCbugMf4b1ErMBihoaFwd3eHmZnZS2sXt27dCjc3N/A8jw4dOhipW4j4/fff4ePjA5lMJon0VEZ0dDRkMhnjnS0pKYGDgwMCAgJqRAwuwtzcvEqD1rhxY7Rs2RIAEBkZydiV/sXL8cYbPr1ez2rVnJycJNQ/IhdnxV/nzp3BcZyR1yOqUBMRHBwc0KFDB1haWkq8jKioKNax2NjYwMrKChzHwd/fHytWrHilD8IU1q9fD6VSabTcYDBg3bp10Ol0ICon5BU7WwsLC9SpUwd9+vTBmjVrjGRjDAYDWrVqBZlMht69e8Pa2tro+Ldv34ZcLpfQLFWGVqtlAwsvLy+0adOGsYG87L6PHDmC9u3bw9zcnBE4z5071yi0I1KlEf2X8iknJwdmZmZITEyUhF1FkoHGjRszI8rzfLVevviztLRE8qJvTNaFuo74AiTI4Tz4E7aMU6pBHA8iDtqmvSUkw5qGnY2OX7kmq6CggL139erVk9SUpaWlQSaTmazjEinW/P39ce3aNaxcuRKdO3eGj48PUwsXDb1YyykqqWu1WpiZmUEmk0kMaMVidCsrKzg6OjL1cTMzM8TGxqJHjx4YNmwYpk2bhiVLlmDDhg04cuQIbty4wZ5Zr1692HG6du2K+/fvAwCGLNwEt3Hf/CXDZ4pMvqp3bNeuXfDw8ADHcYiLi2PXYQozZ86EIAioW7dulQNWg8GAyMhIKJVKnD59mi1v3LgxtFrtK/GC5uXlgYiq9CgHDBjABqKZmZl/K03hPx1vZHJLRSxcuJAmT55MhYWFpFaraefOndS8eXMiKlcff/ToEQEgMzMz0uv1lJOTQ19++SUNHTqUVqxYQQMHDpQcb/bs2ZSWlkZERElJSfTVV18REdHdu3fJ3d2dVq9eTQ0aNKARI0bQ4cOHycLCgmxtben27dusLGLOnDks+/NVMGjQINq/fz/9/vvvbNmLFy+od+/etHnzZgoNDaWtW7eSs7MzERFlZ2fT1q1b6YcffqALFy7QnTt36MWLF6RUKsnJyYkCAwPp9OnTlJeXRz///DMRlWejlpaWsgSUsrIycnNzIysrK7p06ZLJ61q7di0NHDiQ8vLyyNzcnHbs2EEJCQk0aNAg2r59u1GmLBHRjz/+SHPmzKEffviBqXv379+fRo0aVaXieVlZGdnZ2VFpaSnl5eXR3r17qW3btnT48GFq0aIFLVu2jIYOHUplZWWUmZlJH3zwAf35558UERFBixcvZin5586do6ZNm5KZmRlL2xdhaWlJXbp0ITTuRwdvSmunYCilhxumkUznRDaxw6XXVvKCCi4eIMHSnsx9/pv6//zC9/Rk5wLJtsHBwcTzPPE8TxzHEcdxxPM8FRcX09WrV6moqIjs7OzIzc2Nzpw5Q35+fuTu7s624ziOnj59SidOnCCi8kxMMcFFoVCQpaUl2drakru7Ozk4OJBMJmPnE2s1BUGQ/M3zPJWWltLz589p37599OjRI2rSpAkVFRVRUVER5eTk0I0bN8jJyYkMBgOVlJRQaWkp6fV6Ki0tpbKyMpO1nxXh5+dHtQfOo7M50kSYnMNfkCHvMdnGjzHa586yfmQbP45UHtIklcQQF8roHlLluQ4cOEDvvPMO3bp1i1q3bk1r1qwhFxcXk9veuXOH2rRpQ9evX6fZs2fT+PHjTW5XWlpKYWFhdPXqVTp79iz7ht9991369NNP6fz5869UcrB27VpKTk6moqIik+s//vhjSk1NpefPn7Ps6JeVlvyLcrzRhu/FixdkY2NDer2e9Ho9ERF16NCBtm3bRkREERER5OTkRN9//z3FxsbSDz/8QPXq1aN9+/bR1KlTadasWbRjxw6Ki4tjxywrKyNbW1uWcm9ra0uXL1+mjh070oMHD+jGjRts27y8PJowYQJ9/vnnVFJSQoGBgfTs2TP6448/yM3NjRW6VpURVxmhoaHk4OBAu3btIqLyD2PcuHGkUqlo7dq1krquqpCfn0+7du2i7du309dff00Gg4EAkCAIZGNjQw8fPqTu3btTcnIyNWvWjDp06ECHDh2ie/fuVVm87ObmRqGhobRlyxa2zNXVlfLy8qhp06a0c+dOIio3dnPnzqWDBw9SYWEh+fn5MWNnZmZWozbYuHEjvfXWWyQIApWVldG1a9fI29ubpk+fTunp6dSjRw/aunUr6fV66tSpEy1evJgcHR2NjvPs2TPy8vKinJwcIiKKj4+n1atXk62tLRERvb32JH1/5SHbHiijx9s+pLLiQrLvMpU4wfiZAWV0Z1Evch78CQnq8vquousn6OGmGWwblUpFcXFxBIDKyspY+5eVlbHf/fv36fLly1RWVkYKhYICAgLo8ePHlJ+fT0VFRczIibCzs2PkAkTEjFDF44rdQMV14vqKfwOgFy9eUG5uLtna2kqWP3v2jARBILVabbRP+f1Lj1EZCoWC6o9aTvcFO8ny1zF8rQPs6bN+xgbg8OHDNGjQILp+/To1b96c1q5dW205wbx58ygtLY18fX1p3759VdbYlpSUUN26den+/ft04cIFVnqwZs0aevvtt2nDhg3UtWvXKs9jCklJSXTmzBm6evWqyfUXL16k4OBgRo7h6elJTZo0oXXr1r3Sed5I/P/iV/5fCoPBgJ07d2LIkCEQBAHDhw/Hhx9+aLTdypUrIQgC9u3bB47jmJBm//79IZPJJCGN5ORkqFQqFBQUYMGCBZIwUeUMvYrXkZmZCTc3N3Ach8DAQDRv3pwJWbZs2VLCbF8VdDodZsyYgQsXLsDLywuCIGDkyJGvHEK9fv06NBoNPDw8kJ+fD4PBgEOHDiE1NRVyuVwSKiUq534cMGAA1q9fb5S0c/DgQXAch3v37kmWf/XVVyAijBgxAvHx8Sz05u/vj1mzZv0lgmFfX18WvtZoNLhw4QLatWvHrjc1NRUlJSUm9zUYDEhLS4NKpWICseJ+Wq0W3t7eiI6ORvwHm/47fzdhO9RBbaB0DzIK01We5+NkCjj1X8SW2Xccj23btqF27doslDhgwACTyU8GgwFHjx5FamoqU5EQf1ZWVmjSpAkmTpzI5lEFQcC8efNeux2rgjjPV1k3cdmyZZDL5TXK7HRwcDAK8To7O6PFpNVG7fbKc3z/kQ+riKNHjzL5oCZNmryU1/LevXssOcqUTFZFFBQUwM3NDTqdThICPXXqFKPUex34+PigR48eVa43GAwgIly7dg0AMHToUDg6Or7Wud40vNGGT8RHH330UlVpa2tr9O/fH4mJidBqtezjFudRsrOzcfHiRXAch7Vr17L9CgoKJKnfLyNiPn78OFPftre3x1tvvYXatWszQuaxY8eanCcwGAxM44vjODRs2NDI2NQEx48fh1KpRGhoqMkOrFWrVoiIiGDcmO3atUN8fDxq1arFMldVKhW8vb3RqVMnODk5oUGDBpJj/PTTT2jTpg3r8Pz8/P6ysasIce6wYufq6emJNWvWwNrausokgHnz5kGtVkOlUiE1NRWrV69m5QwVfxzHod24BWyOzyIkFgpnf7iN3SjpfO27vw+n/ovgnroVbmM2QBPaAYKFNdxTNv+H+/UbTFq7H4cOHcLGjRsxY8YMdO3alRm1hg0b4p133kFkZCRsbGxYkpJ4Td27d8fevXvRrFkzxvz/6NEj9OvXjykE/NV546rg6upqxC9pMBigUqlYgld+fj527tyJyZMno0OHDqhduzZ0Op3JZB7xvWnQawJrV/fUrXBP2QzLRl2hrtMS7imb4Z669T9t9205d67GBvbdZ5Svm7AdHhN3wHviNjbHd/LkSdStWxccx6FRo0b47bffXnpvCxYsgEwmg6+vr0nO1IrIyclhslMV9Q2fPHkCc3NztGnT5lWblqEysbUpmJubM3WPq1evgoj+lozxfzr+NXwAxo4dC2dn52q3WbRoEeRyOXJzc6FWq1kKvqgTp9Vq4erqirCwMMl+y5cvhyAImDt3LvP+KmePmsLjx4/Rt29fKJVKlgLdr18/aLVaVoZQMRtywoQJzLi+SpZkRWzevBmCICA+Pr7KbaZPnw4rKytYWFggOjraaP2TJ0+wdu1a9O3bFz4+PpIsRaVSybIstdpysm9BEP5W+RiDwYAND6oCAAAgAElEQVQlS5YwWSH6T5anmP12+fJlCIKASZMmsX2WL18OS0tL8DwPJycnJkorXl/lDlqn08HBwwe+k3fCZeiq8uWCHJxcxX42HcbBttNEyKxdwclV4M0sYeYdBqe3l0hIz3kzS5ZtKRJcW1tbSyIFarUa/fr1w6lTp/D8+XOYm5sjKSlJct9Hjx5lWYk8z8PMzMwk8fHfhW7dusHX1xeFhYXYt28f0tPT2aCwYl2mTCaDra0tgoOD0aVLF0yZMgWjR49GUFCQ0WCiS5cu+HBJJnwm74THxB3QRvUwanttVI9yT+8/NXwVfy7Jn7F2DYtqgaCgIHAch7CwMFy8ePGl9/TgwQMEBweD53lMnz79pdv/+eef0Ol0cHNzk7zDBoMBHh4ecHd3f+2Bx/3790FEL02GcXd3x5AhQ9jfFhYWmD179mud803CGz3HJ6Jnz5509uxZ+vXXX6vcBgBZWVlRr169qHXr1tStWzc6c+YMhYSEUElJCdna2lJ+fj7dvXuXJY+UlpaSlZUV9ezZkz799FMqLCyk4OBgunHjBmk0Gjp//rxJbsaKKCsro4yMDJo/fz49ePCAwsPDqWfPnpSVlUUnTpwgpVJJgiBQQUEBKRQKKiwsfGXmEyKiJUuW0KhRo2jo0KGMYcYULl68SEFBQeTg4EB37typdv4xNDSUfvvtNyIiKiwsJK1WSxqNhgoLCxmlGsdxZG1tTV27dqW2bdtSXFychAqqpigsLKQJEybQqlWrSK/XU1xcHG3bto2aNm1Kp06dohcvXtCQIUPok08+oRUrVtA777xDDRo0oHPnzjG+Uo1GQxqNhl68eEE5OTkkl8vJ39+fLly4YHS+1atX01Gh7l8gPS8j4f4lurl2kmSxn58fde/enTp37kwhISH0888/07vvvktnzpwhDw8PUiqV9PTpU7p//77J59y8eXM6fPgwEZXTbFVOvnodlJSU0LFjx+inn36iX375hXHA5uXlEVF58oylpSU5OzuTq6sr7dmzhz766CNKTk4mnudp3bp1tGnTJjp16hQ9efKEzMzMyN/fX0JKLlLNeXt7k1WHVHpi5vJa7coREXf3PN36Io0EQaCsrKwaza0tXbqUxowZQ+7u7rR//36qVatWtdtnZ2dTUFAQOTo60sWLFyVcm7GxsXTkyBH6448/qqVBe9n1TJw48aXk002bNiWO49gzb9u2LT1+/JjOnj37Wud9Y/B/1u7+34E2bdqgcePGL91u1qxZUCgU0Ov1iIyMhIuLC4ByDTVx1F63bl02yhs2bBjMzc2NQoaffvopG9H379+/xtd54MABNGjQABzHwcnJCXXr1mWjaqJyMc+VK1e+8igzJSUFHMfViE1i2LBhICJ89dVXJtcfO3YMCQkJrNjd2dkZM2fONPLqrKysMGzYMMTFxYHjOLi6ujIvzdzcHH5+fujatSuWLVtWreTKzZs3ERcXx9Lrp0yZwtq7T58+0Gg0sLCwYIXXYgkJVZgbCwkJYTWb1tbWSExMxP79+2EwGLB48WIj76tDhw7lbDzpHyFg6u4q5/Sq+7mN24SQVgno378/YxixsbGBIAgwNzdHr169JGHx7OxsVqguivZWfs5iqFGn0zHWkYCAgBqJzur1ehw9ehTz5s1Djx49EBoaCgcHB/ZMBEGATqdDYGAg4uPjMXHiRHAch++//15ynOLiYri7u8PKygp2dnYshBkSEoKJEyfi+vX/lhlUnqcUf0HN4/9Su9r6hWLJkiVMoqu6ec5Hjx6hfv364HkeaWlpL20noDxqYGZmhnr16hl922lpaeB5vsr5/JoiISEBQUFBL91uyJAhcHd3Z3+vX78ecrn8L537TcC/hg9A/fr1qw3viTAYDFCr1UhJSUFOTg7kcjkmTpyIOnXqwN/fH9nZ2VCpVGjdujUePXoEQRCwZMkSk8cqKipinbFarcavv/5a4+udMWMGCxkqFAoMGjQITk5OcHZ2ZiwxnTp1wpUrV156rO7du4Pneaxfv/6l24pF6mq1GlFRUejQoQOOHTuG48ePo2PHjrCwsADHcfD19UVQUBDs7OxMHqegoABEhN9//x0GgwEajQYjR44EUB5u+vTTT5GUlISAgABmQOVyOVxcXNCmTRtMmzYNn3zyCQtl1apVC19++SU7/p07dzBr1iw0adJE0qGKBeqi8RD/7+3tjbFjxzIGm5KSEqSmpsLCwgJyuRzt27eHQqGAmZkZ9u7dCwBMjy6i1zj4TzWt81hl5zx2EyxC4lj4V1TUPnDgAIqLizFjxgw4OTmB4zj4+flh5cqVyM7OhkwmQ0pKCgYOHAilUgmVSoXk5GQ2qJg6dSqbZ71y5Qpu3rzJdOU6duyI/Px8nDx5EhkZGejTpw/Cw8MlSuji/KGfnx/i4uKQmpqKzZs3G9V2inBycsI777yD9evXIyEhAfb29uxZERHeffddo3dQHEyYqpEVnxEATFmzB75pr2b03Md9A992b7PBoKivKM5/VtZhzMzMhFwuh4eHh5HKfVU4ffo0FAoFIiMjjQYemzZtAsdxWLVqVY2OVR3c3d1rFKpesWIFzM3N2d9i4pH4nv4L0/jX8KG8oLqm8yGTJ0+GmZkZDAYDFi5cyPg7RSaSs2fPQiaTwdHRkXmE1WHt2rXMo+jWrVu12545cwaenp4QBAFjx45FcXExpk+fzkbO/v7+rGPz9PQEEcHNzQ2zZ882GpmKhbZyuRwHDx586XXevn2bzXeJ/3IcBzMzM2bsZsyYARsbG3h4eEAQhCqZLVatWiUptk1PT4dKpaoyG7CoqAjbtm1DcnIy3N3dJR6YpaUlAgMDERQUBA8PD+Y9WVpaolGjRmjevLnkmsVf/fr18eGHH0Iul7P52pycHPTp04ep26ekpLDOcuDAgex+9Ho99uzZw2jfLELi4DZuE9xTt1XbMXtOKueS9GjT26jDb9iwoYQ8ASinDouJiWFF5BqNBrdu3WLPLz09nXFlipmxzs7O8PLywtKlSzFgwAA0btzYiIFIo9HAx8cHbdu2xZgxY5CVlVVjBiG9Xo+NGzciMTGRGUyFQoE6depg9OjRbC7NxsZGMvdUVFQkoYJLSkrCb7/9ZtQOP/30E+Li4iCTyfDB14fhP3UXPF9m9FK3wSdtOzT120EulzPDK0ZBli5dCp1OB61Wi9OnT+PJkycICwsDz/MYP358je4bKCdSkMlkJue2r1y5AplMhqFDh9b4eNVBLpfXSDBYTGipaIT9/PyQmJj4t1zHPxX/Gj4AdnZ2mDp1ao22FcNJU6dOZRRhNjY2km2WLl0KIkKvXr1qdMyioiIWtjQzM5PQOAHlHlJCQgI4jkPjxo2NmBzy8/OZ4eM4jmUw3rx5E926dWMMHGJZRGFhIXx9faFWq2sUBjMYDHBycpIYFtHwTZs2TTIBX7GT1el0JkOiHTp0QN26dSXHNzMzqzLUVFBQwMLGMpkMjRs3Rnx8PBwdHSVUZOL/zc3N4e7uLuHAFH8pKSmIiIiApaUlnj17hl27doGIULduXfA8Dzs7OyxcuFCiLr9r1y4MGzYMDRo0YBmVgiDA0dERFhYW5c/NxR8u3afBa+I21ErdIu2YUzaj1oStGPLFSZz7IwfffPONkSGuju5rzJgx4HmeEW/XqlULU6ZMQWZmJgYPHgxfX18jejILCwt4eXmhVatWGDFiBNauXYvhw4dDJpPBwcEB+/bte+lzF5/Nli1b0LVrVzg7OzP6tICAAEbLZQppaWlQq9W4e/cuOnXqxGjfJk6ciJKSEvTv39/I6FVUchfDfH1GT0GjlM/gO3knfCZtrxTW/AbuKZsxcM1xnPsjBwMHDjTpRY4cORLFxcVo3bo1e3Zubm41evdF7Nq1i7HMVEZ+fj60Wq2R4v3r4saNGyAiIw+1KnAcJ0neGT9+vFGf9C+k+NfwoZx8efny5TXefuzYsVCr1WjUqBHrXCvy6fn6+qJWrVrgOA4ff/xxjY+blZXFOuqEhAQYDAZkZGRAqVTCxsaG1Q9WxsaNG6FQKACUz3m1b98egiDAwsICI0aMQEFBAdatW8fmiERPreJ8S1U4ceIEC2GJHqTYaTdv3txo+4ohLJVKhaysLKNtnJycGLmuiJSUFKjVasnI9ebNm2jRogXLEhSNrkKhgJ+fHwYMGIDvvvsOBoMBRUVFWLx4MYKDg6tMlzc3NwfP85g6dSrs7e3h6OiI0NBQtj4jIwPbt29HcnIy6tevz8KhMpkMLi4uiImJwaxZs3DlyhV8/vnnktCpOJ9lYeMI17b9Yd9xPDz7zsHwdSfhGTcIvJkldu7cCaB8oFNxACFmY1bmZLx58ybee+89EJWXfFRWYhAHSuHh4VAqlSxTVvTATXkMubm5bF61YcOGRvOnYm1rUlISXF1dWdv7+voiOTkZJ06cYNsWFxeD4zj88ssvRuf58ccfJfe3evVqAMDPP//MPMU6depAr9ejd2+pByyTyfD1119jwYIFICJkZmai54B34NiyN2zix8Kjz2y8lbETiZOWgTezhL29PfLz83H+/HlJuwqCgI8++ggKhQJubm6oX78+GyA0atSoxtnEGzduBM/zGDBggNE6g8GAwMBA2Nvb19hQvQyzZs16aXlVRajVakk/88cff4CI/lYe4H8a/jV8KCdKfpWYeElJCUsoOXfuHMaNGweFQoHc3FysX78ePM8jOzsbM2fOBMdx2LJlS42PXVxcjJCQEPbxiuGY6hJWkpOT4ebmJllWVFSE8ePHQ6vVgud5tG3bFrt374a5uTksLS2h0WhYqveOHTsk+548eRKJiYmSjn3QoEHMs1u3bh2IyovPK0P0+HQ6ncmie7He8Oeff5Ys1+v1UCgUGDZsGBITEyUdmEqlQsOGDZGWliaZM7p58yaGDx/OuBZVKhUL+7q5ueG7774DADx//hyOjo6wtbWFIAhGXqBYSiB2uq6uroiNjcXcuXNNDg5EZv6KHWzlY7Zq1Yo9s7CwMBZ2E+dS33rrLSiVSsbBKXpzFhYWbK60YrguKioKgwYNQmZmJi5fvgy9Xo9ly5axQn3xXZkzZw6uXr2K1q1bMw82IyPD6P05e/YsvL29QUSIiYlBz5494e7uziSHvL29MWjQIPz444+mX7r/wMHBAaNGjWJ/Z2VlsUGfRqOBq6sre+7h4eEgKp8DrEhyDZSXC4n3IYZCxQGMODjheV5SqiOSIHAcB2trazx9+pTJJhERmjVrBqA8AiO2Z0pKCi5fvgxbW1toNJqXEkOsWrUKPM9L7rEiunXrBqVSWWOFk5qgTZs2CA0NrfH2np6eRjJhOp2uxsk6byL+NXwAiKhG3o8IkY1ezJ4yGAxwdHRE06ZNYWVlJWFbSE5OhiAINWJeAcrDevHx8ZJOtG3bttUavvDwcLRt27bK9VlZWaxjValU2LBhAwBgz549iIiIYHVfHh4erNMVO76qtMM8PT1NzuHJZDJotdoqi+d3794NQRAAlBv5DRs2oHv37vDw8JDcs5WVFSZNmoRnz56xfUVvpH379izk6ODggKSkJLRr1w6CIMDBwYHdn4gXL15gzpw5rPOsaChED1JMohHnwIKCgtC3b198/vnnksJkoHy+s1WrVpKQb2Xv0snJiTH8u7m5SbZ1cHCQGDdxEKXT6VhI8/jx40hMTIRarX6pzpqdnR0bpIhzUOfOnUNOTg569erF2HZGjx6NgoICHDx4EP369YOnpye7Bo7jEBUVhUOHDr1SVnB8fDzq1KmD9PR0dv1xcXG4desWLl++DCLC+++/z9q6c+fORsfIz8+HtbU13NzcoFAooFAomFdYsX0qs8JUzLjlOA6WlpZ499134eXlhe3bt4PneVb4P3z4cKSnp4PneYSGhuLx48eIjY1lEQBTWLRoEZNKMoV58+aB5/kazZG/ChwdHVmyV03QokULREZGSpYlJCQgICDgb72ufxLeeMNXWFgIInolAc24uDjodDrIZDIsXrwYQLmXJH6clTuq9u3bQ6lUvtS4fvTRRyys+d1336G4uJh5C3K5HAcOHDC5n42NTbVzlF999RV4nkd0dDTzBKysrNC/f3906tSJdZpi5+Tj44OPP/64yiJ1AMjashOTPj+AUVlnMGDNCYzKOoM5W0/D2sndSLtOxIMHDxAUFCTxzORyOSwtLSVeU8UC3Pz8fMybNw/169eHXC6HIAioXbs2pk2bhgcPHmD48OGQy+XQ6XRYsWIFioqKsGnTJgwcOBDBwcFsDq6isXNxcWGeyPbt28FxHBYsWICzZ8+yjrtjx47w8vJinqdSqUStWrWQkJCA+fPno0GDBrCzs6syrFqVrp5cLkeTJk2QkZGBkydPMiOzbt068DyPfv36wdbWlhniyp5RZWzZsoU9z0GDBmHVqlXw8/NjJS/p6enYt28fgoODJQba1dUVffr0wf79+1FcXIzBgweD53l4eXkZzTFXhZycHERFRbEB1ZAhQyTzvbm5uawdrKysTHpFpaWl8PT0hKOjI0tiqjgIEQSBGUELCwscPnyY7Ttu3DhJe/M8zxKAxLR+IkJcXBzb58qVK3B2doZKpcLGjRuRmZkJQRAQGhoquXZR6aOqUoj9+/eD4zh89NFHNWqrV8GrGtNhw4ax91nEzp07IQjC/4y55/91vPGG78KFC+A4rsbb7927FxzH4eDBg+jbty+bRM7PzwfHcazOrzJCQ0Oh0WhMpoafPHkS7u7uEAQBqampRi/r9u3bWQfbpEkTo+PzPI9jx46ZvN4PP/wQHMdh7NixAMrTsRMSEiSZb76+vrhw4QLKysrg5eUFZ2dntq5Tp06SVO9fbudg8OflyvWVZXlE5fp3vjiJX27n4MyZMxg7dixCQkKY9A9ROWvLO++8g6ioKPA8D51Oh6lTp0Kv16Nv376wsrLC4MGD2RyTWq1G69atkZWVBYPBwPg0Rc8gLCwMQUFBzMjJ5XK4ubnB1dWVebMpKSm4desWeJ7H0qVLJVmnogL4zp07sXjxYvA8j59++ondc05ODtatW4eePXvC09OzxtJFIv+mnZ0devfuDZ7nq01i2bRpE3ieR69evVi28MvC5LVq1UK9evXA8zzruE+cOIHevXtLQtVKpRJt27bFu+++y5KCmjZtKkmKuHv3LqPLi4mJkXjbFVExlCqGti9duiTZJjk5WeLlVjWwjIiIgIWFBW7duoUePXpAEATY2dmxkLP4PMXjpKSksH0TExPZukaNGuHixYvw8/Nj85xDhgzB3r17IQiCpF7WYDBg0KBB4DgO7du3x+XLl+Hg4AC1Wo1Dhw5h/Pjx4DgOmZmZJq85OzsbCoXCiD3n78CZM2dqJNVVEWvWrIGZmZlkmcFggEwmeyXNzTcJb7zh27p1K0sMeRkMBgOsrKzQsWNHAOXGThAErFq1Ch07dmTzBt27dzfaV6/XS0a2QPncU/v27VmYqSrxS6A8LNi4cWMW+hHnOkR+UFMfyogRI8BxHMaNG4cuXbowMVwvLy9MnToVubm5WLlyJZsj8/LyglKpZN7X5MmTWQjS3d0dfdI/LU8vn/Ty9HK3cZtgUT8O9vb2iImJwYgRI5j3JJfL2flEY/bNN98gOjqaGS8rKysMGDAAFy5cAFAeAs7KykJoaKjEcxHrsBISErBw4UIcPXoUMTExVc5v9erVC1ZWVkhJSYFSqWQJDgMGDIBMJsOpU6fQsGFDVr9Xt25d2NjYSMJtHMfBwsICkZGRrMC74pykRqNBYGAgBg4cyAxep06dEBkZacRbWhk7duxgxxs8eDA4jsPkyZNNbisSgDs7O8PV1RUBAQHs+lxcXNCtWzds2bIF69evZ3yV9vb2mDRpErZt24bAwEBGir5nzx523P3798PR0REymQxpaWms/fbu3Ys6deqw5Jlvv/0WAGBra8sM0i+//MIScPz8/FBUVARzc3NMnz4dz58/l4TAu3TpAplMxrI+bWxssGrVKsyfP58NII8cOYKYmBio1Wo0a9YMqampbP/vv/8eu3btQs+ePeHs7IyNGzdCpVIxMglxwLZnzx7wPG9UsnTo0CFYWlrCysoKR44cQUJCAnuGFetCK6K4uBh2dnaoU6dOtc/xdZGWlvbKGZm///47iMioDwgKCkJMTMzfeXn/GLzxhm/x4sWsaPZl6NOnD9RqtSR7q1u3bmweYfv27di6dSs4jpNkv4nIz8+HjY0N/P39MXfuXCgUCtjZ2b1SYs3u3btZJxweHo6ZM2eazAATsyHFOruKxs4UTp48yYRqxdH1tm3bAJSrNTR7Ow3u4zZVb/Aq/fyn7sIXx27h6tWrkjkbIsLq1asxc+ZMBAUFQRAEyGQyBAcHY9asWWjXrh20Wi369u2L2rVrS0JfROXp/BkZGRJmkxMnTiAsLIzd68aNG03eZ1FRERQKBXr27Alzc3M4OjqiXr16sLOzMyqNUCqVSExMxPTp07F3714UFBQgPT0dcrkcp0+fhqWlJVNILyoqQnx8PPz9/TF79my0a9cOHh4eEs5QMew3f/78KsmPxdpQMXX+s88+A8/zaNOmDevYLly4gNGjR0tU1u3s7NC5c2ds3LixSu/qwYMHGDhwIDQaDXieR2RkJNasWYOmTZuy0GhFL2fWrFlsflCn07EB2rlz5yTHjY2NRXBwMAt7ymQySQZy586doVKpoFKp0KpVKwDAqFGjWCjT2toamZmZqFevHoKCgqDRaNC3b1+2f6NGjRjXqilcu3aNvbNvv/029Ho9GjZsCJVKxTzanTt3gud5ozq74uJixMTEgOM4+Pj4MCLw4OBgk99KeHg4rKys/lZ+2Ypo0qQJmjRp8sr7cRxnFKKeMWMGLC0t/65L+0fhjTd8qampNZLyEBn/K4cOnj59CiKSZFU2b94cjo6OJr2wHTt2sM5q0qRJrxWD1+v1aNasGetQxXOfPXsWnTt3Zh2ss7MzpkyZUiO29jt37pgM2b3//vs4k/0EdtHJUDj6gARZlRIx2iblqtr2STPZMp+07VA5+1cZDmzTpg3GjBmDXr16ITAwUBIStbe3R8OGDVlH3bdvX6MOZ+vWrazDql+/Po4ePcra6KeffsLcuXORlJSEBg0awN7eXmKIxHM1adIEkydPxtatW+Hq6go3NzfcvHkTcrlcUoSdm5vLCt7lcjkiIiLQrl07lkTg5+dnUkbm0aNHWLRoETufGLaWyWRwdnZGq1atMGXKFHz77bcQBAHp6emsWDo+Ph7ffPMNK8wWQ3tiiLFWrVoIDAx85Xdoy5YtLL3f2toaQ4YMQadOnSCTyaDRaJCSkoJRo0ZJlNrr1KljUs7n7bffZm3avn17ybpOnTpJvOF27doxA2lubs7myIHyMiBxOxcXFxbmtbW1rdLr/fbbb1mZipjFCZRHZ5o1awaFQsFkw8T5UFOJIw0aNGADiEOHDsHZ2RlmZmaSOdbBgwdDJpPVmOXldWBjY/Na2ZgajQaLFi2SLHvy5AmI6KUSTG8i3njD17dvX/j6+la7TcWszcoQQ1MODg5sWW5uLhQKBZtXA8q9PbF+KjQ0FIIgmAyJvgr27dtn5E0IgiD52GuKhw8fwsLCAg4ODli6dCnGjBmDwMBAWFhYwL7LFNh2mgi7zpNhUT/OpOFzHrICcjsPCBbWEsPnMWE7vPrONjJ6IielOP/k5eWFzp074+OPP8aDBw8QFhbGQq6JiYmSzEqDwYClS5fC3t6ehd06duyI8PBwODo6GlFw+fv7Syi4Hj16BJ1Oh6SkJDRr1kzCsJOTkwONRoPIyEhGQSUOdmJjY5kR7t27N4DyGipRhkej0VTJViNet5hdO3/+fOzatQsjR45ERESEhLfS0tISjo6OElo1GxsbmJmZQaFQ4PDhwwgNDWXhy927d7/Ss66InJwcDBs2jHGYBgcHw8nJiZ23du3aePDgAS5fvozAwEDwPI+ePXuiuLgY+fn57H6ISJJ4ImLhwoWS2kPRiLZr185o0CfWmYohZVFBw9QcdlFREfPU+vTpgzlz5kjYgERER0dDLpezAZFYkyd+mwaDAc2bN4dcLsfevXsREhICQRAwa9YsxswzevRorFix4pVLk14VYqnPq367AODt7S3xkkXY29u/Uobom4I33vDFxsYiPDy82m3GjBnD6vQqw97eHm3btmWhThGffPIJeJ7HzZs3JWFNcQR58OBB8DyPcePGvfI1nzt3Dt26dWMp/RWTLSwtLavkVqwKT58+RWBgIARBYKE7mUwGLy8vdO09AN4VGDOqEgVV1WoA+27TIFjaSw3ff7TTeDNLieETkwcqs9AcPXqUcVeKcy3nzp3DkiVL0LdvX8YeUtlz9PX1RXR0NMaOHYuvv/4a9+/fr/aeRbKA8+fPQyaTScRGL1++DJlMhv79+yM5ORlyuZwNcIiIbXv06FFwHIeCggKUlZWB4zg2J1kVsrOz2XG6du0Kg8GA7OxshIeHs+QoseOvGB4WQ3EihycRITY2VjLg+is4efIkAgIC2PlUKhWioqJga2sLnufRqlUrXL16FVlZWUzCSdx2ypQpsLa2Nump6PV6dOzYUfK8KnrRFSFy16pUKsZ3ee7cORCRRDh4+/btUKvV0Ol0rM5Qr9dDEASTnLMdO3aETCbDDz/8AKA8y5njOKSmpiI0NBQqlUry3GbPng1BEBASEsK+YyKSJNb8LyD2Ca+D1q1bm2SOSUpKgpeX11+9tH8c3njDFxYWJkl3rozr16+D53mTzC6zZ8+GTCZDbm4u2rZti1q1aknWiyrolZMERKxfvx4cx1XrJYg4d+4cunfvzvTOPD09MX78eBARDh48KAnhBQQEGNWeVcSlS5cwYcIEhIWFSdL9/fz8MHbsWJw9+1/16k9+uC7J3jRl+Gw7TYSZTwTTSats+LwnbkOrYR+AqDwlXexIxCQfkRZLzOLTaDSSQuSKxp3nedSvXx9r1qz5y0XD3t7eiIyMxLRp0yCXyyVttgVKT38AACAASURBVGvXLnBcuWJFYGAgu46KNYKdOnVi0YLLly/XOBvP1dWVJRRVNOJ16tRBZmamUTj34MGDrGSjYjiQqDxDNjo6Gunp6SYZVF6GjRs3wsvLCxzHoV69ejh48CDy8/Mxbtw4NnctJmWJ3nVFg+zk5ISffvoJrVu3RmhoKE6dOoVnz57BYDBg4sSJUKlUMDc3R48e5dp6Op2uymsRFe9PnTrFls2cORMKhQJt27bFixcvWDJYUlISSktLJfs3bdoU9erVM3lssSBeTOJZvXo1G2CYKjO6fv063NzcWHhZnKOsij3p78CoUaNeW0F99OjRJjVFjxw5Um1W7ZuKN9bwffHFF+jYsSMsLS3ZyM6UsfDx8UFwcLDR8qKiIiiVSpZldvv2bXAchwMHDiAvLw8xMTFGHoIpiKn0lYuuAeD8+fPo3r07E0b19PTEpEmT2HVu2bKFGdYWLVqguLgYsbGxzENYtmwZDAYDduzYwYRhxTkiW1tbtG7dGqNGjQLHcUhOTsahQ4eMPpBRWWckRqyy4XMbswEynRMTATVl+Dwm7oBj4gRJSFacx6nM/enk5ITmzZtj6NChSE1NZcttbW2xYMGCv7Uu6cSJE+A4DsePH4ejoyNLvBCxcOFCZoiJyomkK0Kj0TDB0sWLF8PCwsLkee7fv4+ZM2ciIiJCkqgTFRXFvPbKx66Ma9euwdzcnBlhkXzb2toa9evXZ8knYtF2REQERo4ciV27dhlRaRkMBsycORPW1tbgeR4xMTFVzgMdPnwYTZo0YXVyFUOvS5cuRfPmzRnhgVKphEKhgK+vL1OAT0tLw9OnT6HVauHm5obGjRvjUf4LfPLDdUkN6KK9l2Bh42hE9BAZGckSjRQKBbRaLfPcKkPMcs3LyzO5vn///qykpFatWiwEm56ebnJ7vV7PBoatW7dGUlIS+1b+FwgLC3ttxfb169dDqVSaXKdUKvHZZ5/9lUv7x+GNNXxLly6V1LIREcsA27FjB3JycjBr1iwIgmCS865nz57QarWSjrhp06awtbWFXC6Hvb09Dhw4gLS0NMjl8mrDj6NHjwbP8zhy5AguXLiApKQkZuw8PDwkxq4iRNLdimTYz549Y8erOJ/m6emJpKQkbNq0iXWE+fn5rEi9TZs2LIOvY8eO+Oijj7B9+3Z0X3awWsOnCe8EbZNe7O+qDJ9dl6kmE1wqzuloNBrY2trC3t6eGUQxM3XgwIFITU3FvHnzsHbtWuzZswcXLlzAkydP/pIxjIqKgpeXF3788UdwHIdDhw6xdbdv32aedPPmzcHzPBYuXAgAOHXqFDiOY+HvXr16Me/v0aNHmDt3LiIjI5nRtLS0RLNmzZCRkYEHDx6A53ls3rwZ8fHxrO5s6dKl1V7r77//zgY6Wq0WPXr0gI2NDaytrXH9+nUYDAYcP34cU6ZMQatWreDk5MQ8ZQsLCwQEBMDb25tJVw0ePPilCt8A8PXXX7P3SfxmRMo7KysrvP3220YyQ506dYJer4der4erqytcXV1x6tYj9M48VGUNqE/aDlYDCgBlZWWSb1QmkzEVlKqg1WqrDUmKRNYajQaPHj3C8uXLwXEcm6etiFatWkGtVuO7776DlZUVLC0tMX36dMjlcvj6+lZbfvQ60Gq1Jq+jJrh79y6ITBNxhIeHSxJ//sUbbPhyc3PZiE8QBJasUFZWxkaWPM/j/fffN9r3jz/+AM/zWLduHVt27NgxODg4gIiMyGxdXFyMKIUq4sKFCyzMJxq7iRMnVmssZ86cyUJNaWlpLPuRqDxbLjg4GLVq1WLG48MPPzQ6hqiZ9+mnnyIoKMjIGDk6OiJx3pZqDZ/cvhZ4M0vwaivwaisQx4NXWcCqRX/Jfjbtx5o0eDqdDg0aNEBsbCxatGjBPCCdTofGjRujfv36zDt0cnKClZUVzM3NWb1aRW9R1GDTarVwcHCAp6cn6tati0aNGiEmJgbdu3dHcnIypkyZgkWLFiErK4slsHz22WeIjo6Gvb09e55KpZKxyojqETzP4+zZs+jWrRubO8nJyYGLiwt0Oh1LSNFoNIiKisK8efNMdpCNGjWCt7c3M7Yir2v37t2rNOSiGohojJ88eYLi4mKEhoZCJpNVmXhx6NAhNn/G87xEuNjDwwPt2rXD7NmzjdQK8vPzWR2nhYUFW3/ixAm0atXKJEep+DMzM8Pjx48REhICrVaL5d9fRsDU3S+tARWlm744dgvp6emSwZtcLmffaVUYNGgQe4aV8ejRI9jY2DCve82aNQCAZcuWGX0jqampEASBhf31ej0Ls/bo0QOenp5QKpU1kg6qCYqLi0H0atSJlcHzvBEHLgBkZGRINPv+xRts+IDyjE5xMl3snJ48ecI6Fo7jEBsba0TBFRERAR8fHwDlBjQ6Ohocx6FFixZo0KCBkXLyL7/8Ao7jJLVlFy9eRI8ePSSenZhCXTnhQ4TBYMDu3bslyR9i2Klly5aYN2+ekXf6448/ShS+3377bURFRUky7czMzCT0W0qlEsuWLcOmTZsQn7oInqnfwj11K9xTNsOyUVeo67SEe8pmuKduheuo9XAd/gX7CRpb2HaaCLexGyWjeU3DzggODpZ4eOJAwVTnKUoLRUVFMR7HX375xaRRyMvLw5UrV3DgwAGsX78eGRkZSEtLw5AhQ9CtWzdER0cjIiICderUgYeHB+zt7WFpaQmVSmWShUU0qGJ7iErkcrkc1tbW+P/Ye++wKq61bfye2bM77E1vIkhTQKRasWMs2FsSBaPYO/YuUWM04lGTg7EllqMxRsWCjViTKHaNvVewI6AgIGWz9/P9wdnrMOwNYnK+7/29+ruvay5xZq01s9bMXs9aT7kfiURCEomEtFqtaBwdHR1p7ty5VWLF37JlCwEQMYocPnyYJaY150jVq1cvcnBwIHd3dxIEgdzc3Jg90BjsPnPmTFb+yJEjLFmvt7e3KBQnNzeXNm/eTAMHDmTCyfguHBwcROw948aNM9uHRYsWmcRnlj2MvJvf7j1Pvu+ZrNd7+h7ShHYgABQVFUXx8fGUmJhIjx49qnRc09PTieM4kZ2aqHSxqtVqycPDgwoKCmjmzJnEcf/JnmKMn/zuu+9oy5YtxHEcrV+/3qT9xMREksvl5OTkxAjG+/fv/7dV8Lt27aowxVNVodFoaNGiRSbn8/PzieM4k/jLjxkfteC7ePEiARDxXF6+fJn9mI2hAWVtCkePHmUux19//TWbwI1ljBRo5X94ffv2JaVSSZ999hkLFHd3d6fJkyeznZ1erycfHx+yt7en/Px8ysnJoVWrVlGHDh1EueeA0tgzjuNM8qqVlJRQSkoKxcXFUZs2bcjd3d1kcrKzs2MT2rZt22j69OnMZlTWliOTycjBzYvcJ+0kbePeJhObtnFvkwnLnKqzxuQk4pWlDBlz586lOnXq0OTJk2nq1KksTswogOrWrUs//vgjrV69moYNG0YtWrQQudcbFyouLi5Uv359io6Opn/84x904sQJkeff+6CgoICkUilNmDCBGjRoQEBpdgUHBwdGN2ZuR2z0wiyvMjd+O3K5nCwsLMjW1pZcXV2pVq1aFBYWRi1btmSCpmHDhhQfH09r166l5ORkOnToEDk5OZFarRY5eeTn55NEIqG4uDgWrGxvb0/Ozs5MXbl69WrieZ78/PzY99KoUaMqu8fr9XrasGED60/ZBYlGo6HAwECKiYmhfv36kZWVFQmCQIMHD6br169XKPx6DB5fmny3fPjLoBUkdwskTq4iwcqZ7LtNNynjNXUXWbq/P0OKj48PtW/fnv3/3r17pFaryd/fX6QKNO6ylyxZQkSlgtzY7/Jps8ri9evXFBYWRjzPU+/evVk4zt9JAzRo0CByc3P7y/WJSvsdFRVl9pqrq6tJBoePGRwRET5S6PV6SKVSvH37FgqFAgCwbds2fPrpp5BIJIiMjMTy5cvh6uqKhIQEDBw4EH5+fnB0dMTz58/x8uVLzJgxA7Nnzxa1GxISAolEgvPnz+PmzZv4+uuvkZycjOzsbCgUCsTGxmLKlCmwsbER1bt37x7WrFmDRYsWQa/Xg4igVCrh7e2Npk2b4tChQ3j06BGOHz8OrVaLmjVrYuHChTh9+jSuX7+Op0+fIi8vDzzPw9raGjVq1EBAQAAcHBxgMBhw9uxZpKSkiO4plUphZWUFFxcXcBwHb29vODs7QyaT4fDhw7hz5w48+n6Dt9be+CsfChkMKLh7GtyJ1UhPT8ebN28wevRobN68GYIgYOjQoViwYAFkMhmSk5Mxe/ZsnD9/HpaWlvj8888xf/582NnZwc/PD3Z2dti0aRNSUlJw/vx5XL9+HampqUhPT0dubi4MBgNkMhnrj7e3NwIDA9GoUSOEh4dDpVJV+JyzZs3C3LlzwXEctFotZDIZ0tPTodVqkZOTA6VSCQ8PD9y6dQv29vZIT0/H+PHjsXjxYmRmZsLe3h4FBQUQBAEvXrzA06dP8fz5c6SnpyMjIwMZGRl4/fo1Xr9+jWvXriE1NRUqlQqFhYXQarUoLi5GcXEx9Ho9DAYDey6e5yGTyaDX61FSUgKZTAYACA4OhkqlwqlTpwAAQ4YMwZUrV3Dy5EkUFxdDLpfj2LFjqF+/fpXek8FgQGRkJA4ePAiJRIL169cjOjoaAHD37l0kJSVh48aNuHbtGns+uVyOatWqQRAE3Llzh7Ull8tRVFQEnufx2dLDOP3kLcrOMmTQ49mPw2EZEgnLup1R+OgaMrZ/Bef+CZDaVCtbENyzq3i4YXqV+mDEsmXLMH78eBQUFODGjRuoV68eAgICcObMGfA8Lyr73XffYfz48Zg7dy7GjBkDOzs7FBUVYdWqVRgyZEil91m8eDGmTJkCHx8fFBcX48mTJ/j555/Rs2fP93peAAgMDISHhwd27dr13nWNaNeuHTIzM3H+/HmTa4MGDcL+/fvx5MmTv9z+B4X/YcH7P4KyXmWt5iTSmM0XaMUf9ygzt5DZLsoyNqxdu5YAUNOmTdlKtmXLlhWGDBjVWEZ7j5ubG02aNIkSExOJ4zhKSUkhvV5Phw4dooEDB1KtWrWYetXGxobCw8NJKpVSSEgIERHdvn2brK2tSSqVkr+/v4haTKPRkJ+fH7Vo0YI6dOhAbdu2pcDAQLKzs2O7KEEQyNbWlmrXrs2844z1yzoCxMfHM+cJlFm11whrTrVmvp+qynh4Tt1FLgENKSoqiqWBeZeHZl5eHk2ePJnRiPn7+9P06dOJ47hKnRsyMzNp586dNG3aNOrYsSP5+/uTjY2N2XHo1KkTTZ8+nZKSkigtLY3c3NyYCtbYb7VaTVOnThXZXQ4fPkwAWNbz5ORk+uWXXyr0qCuPe/fukUQioW+++YYePHhQoV0nPz+fca2Gh4eTRCKhJk2aEFCaZ65t27bUqFEjlonB+MyCIJiojjmOY45LVlZW5OTkRJ6enlSnTh1q3LgxYy0xfqtLly6lbdu20fHjx+nhw4e0evVqpgqPjo6m3NxcysrKovXr11Pfvn1NMmAApRk+fj913sSJxX3qXnIe+D1xUgW5TflPfKiiRghpwz83tflNTqLM3MIqja0Rer2epFIpcyxr2bJlparIFStWsN+ek5MTffnll8RxHIslrAypqalUo0YNkslkjCYwOjr6vVWfarVaxGLzVzBx4sQKwyGuXLnCYk7/f3xkO77Lj7Ox7I97OHonAwBQVPKflbVC4EEAhIw7+G5wJFqH1QQAvHz5Et7e3sjNzQVQupo9ePAgmjVrJmr75s2bmDdvHpKTk/H69WsIggAHBwdcvnwZdnZ2yMvLw5YtWzB16lRkZWUBKF3Nu7i4oH79+ujevTvatm2LY8eO4bfffsOJEydw8eJF0T2cnJyg1WohlUrx8OFDFBQUQCKRQKfTQSKRQKPRwNnZWbTTadKkCTQaDQCgffv2OHbsGJ49e4bbt2+jZcuWyM/Ph52dHVJSUuDi4gKtVmsybmlpaTj2zIA5e65BZ+CqPN4KKY8+tVWI69UCHMehRo0aiI+Px6efflrlNs6ePYtp06bh2LFjKCkpgYODA06fPg0PD48qtwEAeXl5OHXqFE6dOoXLly/j/PnzePHiBYqLi1kZjuNARLC3t0dmZiaUSiVu3rwJNzc3Vub27dvw9fUFADRr1gxnzpxBVFQUDh48+M7VtMFgQI0aNWBra8verZubG8LDw7F582azdQ4dOoTIyEgYDAZ0794dJ06cwPPnz3Hp0iWMGDECp0+fhqOjI0pKSqDT6XDr1i04OTnBYDCgU6dO2L9/P2bMmIGmTZvi+fPnyMjIwMuXL/Hq1Sukp6fj0KFDKCwsBMdxcHR0hF6vR2FhIduBlp0eOI6DVCqFVCqFXC6HUqmESqVCWlqaaBwBIDQ0FEG9JuDEG2vR7wwAijNS8WLDRFQfnwiOK/2e0jfPBCdVwKHHTFFZAQZMivTH0GZelY5teYSGhuLixYvo1KkTdu/e/c7yYWFhuHDhAoYMGYJVq1bhyy+/xNdff40NGzagT58+76w/ZswYLF26FIGBgbh9+zYcHBxw4sQJuLq6vrNuXl4eLC0t8fz5czg5OVWpf+awfft2REVFoaioyOx1tVqNefPmYezYsX/5Hh8M/mfl7v87/HTq4Xt7lRGRaJeHfztdGAwGIioNWo6Ojma8idWrV6eJEydSRkYGbd68mQBQaGgos+coFAry9/cnnuepadOmNG3aNPrkk0/Izc2N2eEEQSCNRsMcMMre25h3zdfXl8V0JSUl0atXr97Z/0WLFhHP86I4Kb1eT1FRUaLdQtn8ckZeQ4PBQDNmzCBt3Y5Uc+a+d2dnmFKancG2QVfWVkpKyt96fzqdjvr168fac3d3p8WLF1cpMFen01FiYiJ169aN2b5kMhl5enoyvsyDBw/SwoULGY1a2bE3ZmPw8PBg6WtatmxJQKm3qVwurxKx8LBhw0gul4u8db/66itSq9UV1tHr9aRQKJgnYpcuXRg3aZ06dZhmori4mGrVqkWWlpYiAuzZs2cTx3EiJxoiopkzZ7L+jRw5UnRt27Zt5OLiQjzPU/fu3SkzM5OePn1K586do127dtGPP/5I8+bNo3HjxlHfvn3N2jj9/f2p+z92mf0+3CYlkaB1JKsWMeQ2KYkcPv+KwAuk8AgxW37sZrG9/F3YtWsX2/VWhcVo/vz5xPM8zZo1S0RkPXXqVOI4ziwbjDmcPXuWrK2tSa1Wk5ubG0mlUpHnd0X46aefqqwxqAwZGRkEwCRu04hmzZq9k6XqY8FHIfhKhd77qep845Kp1dBZZg32TZo0EQm78ePH086dO2nIkCHk5+cn4oq0sLCgdu3aUZs2bahmzZqiAGZj5m+VSiViJtFoNIyay97engCIvPWIiFQqlVk2GXM4e/Ys8TxvNqnm8+fPRcwkRrUZx3GkUCjoyJEjFBYWRkApge/lx69p6E+l+fg8pohDHWrO3Ec1JieRXbdppYTW+E9m7KoQZVcF1apVo4iICOrWrRvJ5XISBIFat24tcuAwMsH07NmTjaNUKiVfX18aNWoUXbx4kXbv3k2CIFDz5s1FainjWJw9e5a+//574nmeDh48SN9//z0NGDCABEEgCwsLEZk2/u3MEh4eTv3796eEhAS6cOGCqF0jg8bmzZtF/SksLCSe51kmjPKYN28eyeVy5nwEgPz8/MyqR3U6HdWpU4dUKpXo+r59+0gqlVJwcDBdv36dCXUXFxeRun7Xrl1UvXp14nmeOnfuXKU4tTdv3oh4Rss+Y5t5Oyv8fTkPWEry6gHEKyxJ4RFC6totSB3Y2mzZAf8SZzqpTI1oTOg7bNgwsrW1rdRJhag0ZRHHcUzNaCSyNi4UJkyYQDzPV5jtozx0Oh117dqVOI4jX19f4jiOUdNVhN69ezMv8b8LiURS4SJzzZo1/xUB+yHggxd8lx69NutV5j51L9l1nkSCrStxUjkJVk7kGL1AdN1jchIlbEwiBwcHkx92mzZtKDIykqpVq8Y8Ia2trVkC1LJ2D2PsVFnbi/Fcq1atKDY2ljZu3MgouFatWkU8zzMvrISEBOI4jq0ejTE/ZdPyVISyQerlMW3aNJJIJOTp6cnuYXw+Kysrqlmzpshdf8iQIUREdPr0aapZJ5Qs63cn2w7j6bPvf6PmU9eSfdNeJLWwNhkr7t853/4bMHJsvn79mvR6Pa1bt46Fd8jlchZYLQgC+fj40LBhw0xSRBnZcgYPHiw6b6QpCwoKIi8vLyIqpTULCwsjImI2OeO463Q6ql69Ouunr68veXp6smcwPpOTkxPxPE8uLi4UHx9PKSkpolV5/fr1zfIs5ubmkkwmY7vwWrVq0YQJE4jjOOrXr5/Z8dHr9Yx/smxc3r1790Q7s9WrV4v6baRQi4yMZOE0xcXF9Oeff9Lq1atp/Pjx1LlzZwoJCSEXFxdSq9Vmw1CM/W7Tpg31Tthf5YWmvJov2bQdafZap3mJtHDhQubdXBHt2YoVKxgHJxHRqFGjyMbGxmxZolL7nDHbRlns379fRCIfGxtLPM+/F0H1zp07SaFQkLW1NfNCrsg+7ePj87cJ642wsrKib775xuw1nU5HHMcxftOPGR+84Bu84ZxZ1ZzD53NJorEnpy8WkduU3VRt5L+o2sh/idWeU/eSW9Rcs7s+o7t62cmkPPeiQqFgWapHjBhB//rXv9jH//z5c+bkUBZGd/XyNEqTJ08mnufpyJEjtG/fvirH/NSpU4ecnJxEKsETJ06Qk5MTyWQyWrx4MY0YMYLFIxnzzJUVzkY16KRJkyg4OJg4jqOAgACREFepVDRu3Dg6cOCAiIbMuLMtH97xd2Bvb08tWrSg6Ohocnd3J57nSSKRkKWlJXsfDRo0MJvn0Jh52+jCboRerydbW1vq3LkzIyjYtGkTC0/ZsWMHDRo0iJydnUX1jKlfjM4fZYXNkydP6JdffmFZ2318fMjKyooJMqlUSvb29lSjRg0CSsNq9u/fT1euXBFR3vXo0UOUYX3fvn0kk8koICDALPOKXq+n8PBwksvldPnyZdq7dy97j8bg/6SkJFq/fj1b1Dk6OlJoaCi5u7uzoP2y79bZ2ZmCg4OpY8eONHbsWPrhhx/ozJkz5Ovra0Kmbfw7cvxis84txh2f28QdVH3CNrJqOYAkWkdym2hmhzhpJ1nW7y76nsrHyRKVOmZxHCeiB8zKyiKO41hmhrIoKCggW1tbs3SERER//PEHCYLAkk6PGDGCeJ4XEdG/C2/evKEGDRoQx5UmABYEwazDjEKhYMH0fxe+vr6VClFPT8//K5nj/7fhgxZ8GbmFFf7w5NV8ySYy9p0r0eoTd5hkFih7CIJA9vb2FB4eTkOHDqUff/xRlK9r+/btxPO8WbXRnDlzSBAEtsLu27cv8TxfoTdZVFQUCYJAffr0MZmAzWH48OEklUqZsM3Pz2fsExEREfT48WOqXbs2SaVS2rJlC6un1+tp0KBBZvsbFBREycnJIuEmkUjo7du3RFQaMF/eNslxnFlGiapCr9fT77//Tv369SMPDw82ubq7u1NMTAz9/vvvIlXSnj17WFJarVZLQ4cOpfT0dGratKkoe31ZTJs2jWQyGfN669WrF1lbW5Ner2fk4A4ODiaJTI8cOcLiPW1sbMjGxka0m9u4caPZyTcrK4t27dpF06dPp86dOzM+yvLjrdFoSKlUkoeHB23fvp19R2lpacwObC4jRHp6uij2kOM4ql69OlPRlz1vbW1Nfn5+9Mknn9DgwYNpyZIldOTIEcrOzq70vTRv3pwEQRCxDhkFuqWlZaW/P0397sTL1cRJFaTwDCOXoT+YLVdzZjItX7PBxI5oXKTs2LGDefya84r09/enVq1amZwPDQ0lGxsbRpRuDqdOnSKpVMq0JYMHDyae5987DVRCQgIJgkA2NjbEcRx17tyZfa8vX74kAP81U0CHDh2YN7g5xMbGVshs8zHhgxZ85TMLMOP65F0EXiCr5v1IsHImiaUtWYZ2oOoTtpsKvgnbTVacAGjFihVVdll2dnam7t27m73m7u5OYWFhFBERQYIgMPb4imAkBW7YsGGl5bZv3y5ii1m5ciUpFAqysbGhw4cPU0pKCqlUKnJxcakwG7gxYajxGDZsGNWrV8+sestobzx//jwBpe7sQCn1WJs2bUij0VQ6yZTH8ePHadCgQeTl5cWosdzd3Sk6OpoOHjxI1tbW7wzIzc3NpYkTJzIbFMdxtGDBApNyWVlZJAgCxcfHs3Nv374lmUxGs2fPpqKiIiboy49VXFwc2draMoJkhULBHF0yMzNJJpPRiBEjKn3O1atXs/YbNGhAKSkpNH36dAL+Q0Zta2srYhRSq9VkZ2fHzllZWZGdnR0pFAqTtE3GXVLbtm0ZeUGNGjWI4zhq27bte7nenzlzhqKiotjzqtVqat++PXOGqVGjBvsGcnJyKtS4VOmYvJsaT/0XHT9+nDZt2kRqtZpkMhnt3r2bJk+eTP7+/qyvDg4ONGLECLp+/broedeuXUuCIIj6GBMTU2FWhvK4cOECyWQyatq0Ken1eoqJiTEJd6oKHj16xL5lmUxGjo6OdO/ePVq+fPl/lU5s2rRplQo2o7r+fVOXfWj4oAVf+cwCxqPayPWlKjgnb6o2agO5xv5M8mp+pGn0mdnyIzeepS+//FK0k1m3bl2Vn+Onn34inufNruqM7DFSqbRKlEJ6vZ4kEgkpFIoKCYbT0tJY9vB79+6Rr68v89DU6/U0a9Ys4jiOunTpYnbSy8nJYTFj9vb2ojgvS0tL6tatm4l9x7iq1uv1rB8ymYysrKxIp9ORjY0NNW7cuMJ+nTt3joYNG0Y+Pj4kCALbofTq1Yv27dtn8pyLFy8mqVRaoQebEffv3yetVkt2dnbUuHFjxrv56aefsowEERERZlO6xMXFkUwmo4KCAubFWd5OU3aFvWrVKqYefflydQAAIABJREFUnDVrFgUGBlbIxlFUVESTJ08mS0tL5qADlGa8P3z4MFlbW5OXlxfZ2NiQQqEgV1dXkV3NaMeUyWQV8mVKpVLq168f4+kEQI0aNWIaiXPnzjFquIocWYqKimjVqlUUHh7OhKqRZq+sZmLevHlUp04dRu+nUqlo6dKldPjiXfKcYt67853HpB0kc/JmHKzG7B3GdETGbAtffvklff7554woW6lUUsOGDWnRokX0+vVrkslktHTpUiIiWr58OXEcR/v27av0uymLa9eukUKhoHr16pFer6fo6GiSSCT0+++/V7kNIyZMmEBAKfepRCKhoKAgql37/dlpKsKuXbtIKpVWWkaj0dBXX331X7vn/0Z80IKv/7/Omv1BuY4tDTWw7TDuP44uXaeR1MHTbHlzmQWMK+iYmBiKi4uj1atX09GjRyvk2bS3tzehE8rKyiJnZ2eSyWQkl8vfuSMKCwtjGa8VCgU5OjqauPPr9XpydnYmf39/Gjp0KPE8T3Xq1KHU1FQqKChgwdBGjsKyKCgooH79+rFsAdWrVydHR0fiOI4aNGggCsvYt28fE8AVCR/jruDWrVt09epV4nme7aouXrxIo0aNIl9fX0Y4Xa1aNerZsyclJSW9cxei1+vJ0tKy0uzSxjyFYWFhjM5Mp9PRN998w5xSjJNl2awMZe9hZWVFUVFR5OzsTFqt1sS+VJ4mauzYsWwXwvM83bt3j1GP6fV6+vPPPyk8PJzZJZ2dncnd3Z2NbdnDSFRQv359Gj16NC1fvpxOnz5t9jvZtWuXqG6jRo0oODjYREUolUrJ1dWVGjVqRDExMTR//nxycXEhlUrF1NGpqakUGxvL1MoKhYIaNWpEK1asYJnIy3sU6/V6FuZTXFxMPj4+LKlxl4mL3tur2m3CdlqXco95NQOljkJGB6/u3buL8usZkZ+fT8uWLaOmTZsyD2qpVEpqtZoWLlxIPM9XmIaoMhjTQgUGBlJJSQl99tlnJJFI/pKjyIULF0QEE9WqVfuv5cszEplXNpe0a9fOrJ30Y8IHLfgq2vG5T91LEks7keCz7za9QsEXNvKfTEVkPNq0aUP169cnb29vsre3J5VKJYqBk0gkpFKpyN7enry9vZnXXP/+/WnOnDm0aNEiUqlUVL16dcrJySEbGxtq37497d69m3lPlke3bt1E6kWO4ygkJITy8vKYja1du3akUCgYgbLRaH7lyhWysrIiGxsbln7JCJ1OR6NHjyapVMpiCI32y169eom4REeNGiUah4pi0IwxRbVq1aK6devStWvXmOrUuKNzcnKibt26UWJi4l/64c+ePZvkcrnZukbeys8++6zC+rdv32a7GKMtp7wTzsaNG1lfDx8+bJKVw9LSktmWsrKyaP/+/SyjgfE9GSff8uNWs2ZNioiIoIEDB9I//vEPlqy17KHVat85Dvv372ftC4LAeCmN34dxB/7ZZ58xz82IiAjy8vJiGT3KH3K5nAIDA2nZsmVUWFjKnGLsv7lM60Sl30efPn1E4TlGNWNV42jdp+6h6hO2kVfb0nCCX3/9lVQqFRvHpk2bUsuWLUkQhCrFht67d4+++OILUd98fHwoNjZWZIuvClJTU1l6J51OR926dSNBEExyCFYFer2ePv30U7ZAsrOzM8mO8VfxLlXstm3bTNS/Hxs+aMFXkY3Pfepe0ob3IpmTD7mO3kiuYzeT3NXfLGVSRTa+yj6a9PR0Onr0KK1evZri4uIoJiaG2rZtSxKJhCwsLEycP4wff/kVe9euXWn48OH0zTff0JYtW2j+/PnMpqNUKmnbtm0kl8upRo0a5OzsTMOHD2eTbbdu3diqLyEhgXiep2bNmol2Z3q9nuLi4kihUJBSqaTQ0FA2YXXt2rXCndzVq1dFsVtlWf+NmDZtGkmlUmbrM9phrK2tycLC4r9CnaTX61m6oLIwuvx/+eWXldZfuHAhCYJAGRkZtHr1aqpVqxYTyNOnT2fjZ1RHnjx5kho2bEhSqZTatm3LPFvlcrkoo4M5GxtQmuG+MhtuXl4eK2vcLVeWxLigoID8/f1L1fYyGW3cuJHq1q3L2jCXUmvkyJHE8zwLQg8KCmILEaMQdHZ2Jl9fX5EHqvG7sLKyom7dutGsWbMoOTlZlPTVYDBQmzZtREK+7CLOGAPqPmkn1ZgsjgGt9e8cfTGrT5DMqTRAv0OHDnTnzh2KiIgghUJBe/fuZW3PmjWr0ndbFjqdjnieJ0tLS9q3bx/16NGDLe5UKhWFh4dTQkJClXITPn36lLRaLXl6elJhYSF16tSJBEGgc+fOVfl5jEhNTWXfjzHc6e/SlhER2djYVKrKNJpL3kfd+6HhgxZ8lXmVuU1KIouQ9sTJ1cSrrcgyrBO5TdxRZa9OnufJy8uLhg0bVuV0H4sXL2YpbTp27EhEpR/h9u3bRfyZHMdRs2bNKCgoiNzc3FgsUPk4QI1GY7ITlUgkNHbsWNqxYwdduXKF8WOWnwQXLVpEFhYWJJVKydPTk2XuVigUFBkZ+c6+vHjxQnTfsLAwGjduHAUFBbFJWxAEat++PXl6elKtWrWIqHSy1mg01LZt2/d8m+YxadIkUqvVpNfrSa/XU4cOHYjnefr5558rrZefn09yuZwmT55Mer2erl27Rhs2bKCRI0eyEInyCxKe51k2CRsbG5YIeO3atXTlyhXS6XTUv39/s0wmU6dOrVJ/yo6nUqlkC6zs7Gy2qyciWrBgAROwnTp1YpnK/f396fTp0zRx4kTiOI6GDh3K6ly4cIH69u3Lgu/lcjm1adOGEhMT2X3KBrsbBf+tW7dIJpNR9erVqUuXLlSnTh2ytbVlwlAikTDPUKPgNT5b+UXJ5cuXiVdqyKP9YBq7+SIN+NdZGrv5Iq08eo9xcpYdb7lcTlOmTKGUlBSqU6cOKZVK6tOnD/E8T2FhYVUKsm/evDnzNC2L3Nxc+u677yg8PJyNiaOjI/Xs2ZP2799f4eI2IyODpcrKz8+nyMhIkkql7x2yEx8fTxqNhvLy8pg2hOM4atWq1Ttt1xVBp9ORj48PNW7cmBISEky0O0b4+flR586d/9I9PgR80IKPqOI4virZGSbvJrtu08yu3jmOIzs7O+aiLJfLKSQkhGbPnl1hepLvvvuOANM4pIcPH1JISAj78QmCUKEwlcvlZGNjQ3v27KGEhASKjo42eTZzRNNyuZy0Wi1ZWVmxydzoPm9jY0NTpkyhDh06kIWFRZV+dElJSaKdgPGoU6cOrV69mmxsbNhkf+fOHeI4jqlfTp8+TRzH0YoVK97nVZqFTqcjuVxOc+bMIX9/f1IoFCaqp0ePHtGOHTtozpw5FB0dTY0bN2bqM+Pzc1xppndHR0cKCAigdu3aUfv27UWZxTUaDWVlZdHmzZuJ4ziaPn26aDJNTk5m41/+nZR952VJ0vv/6ywjSb/18Al7Fo1Gw7xB9Xo9BQQEUEREBD169IjZ/qysrFicWK1atUxUf4mJiSSRSEitVjOVrpubGw0bNoyGDx8uykdXFg8ePGCZ3a9cuUL29vbk4+NjVhDk5+fTkSNH6Ouvv2aTd3nPUo1GQ97e3tSyZUs2NhUFoT9//lw0bhYWFrR7927y9vYW0bHduHGD3N3dSSqV0rffflvh9zFu3DiSSCR08uRJ4jiOjhw5UmHZW7duUWxsLPn4+DAbrK+vL40fP545Qhnx+vVrlhYqJyeHWrVqRTKZzGxoSUVo06YNhYaGsv+vWLGCeTBrtVq6cuVKldsiKv3+jAtrYwxuRaFRM2bMqPAdfAz44AVfZcwt7zq8pu1m1FtlD0tLS1HMlSAIVLt2bQoNDWUebxqNhlq2bEmrVq2igoICmjRpEnEcR61btzZrlzIYDLRhwwbGlGIUCuUnSa8+cyl2xW56/iqX2WzKC2Sj2iQoKIgyMjLo2rVrNGnSJKbKKpuB28bGhqnyyq60jawT7u7uFBQURE2aNKHAwEDmjFNWJbdy5UoaOXIkO2fMml7WZhEREUHu7u7s/9OnTyeJRPK3Mk4TlU5ARo9II2emr68v2dnZid6RMc6uZs2abFcSExNDycnJFTokEZXuKK2srGjIkCGsrYCAAHJzcyNLS0uqWbMmpaamsmcQBIHmzJlDOTk5tHr1atGOPOV6Gg3eUEr3Vl4TUWtmMnlN20PhU9aRunqpfS4vL4+ISj0Ry5MCGLO3e3t702+//cae98mTJzRx4kTy9vZmk5/Rk7X8jmT+/PnEcRwtXrzYpN8FBQXMm1ej0bxTNb1lyxbieZ4J67dv39LgwYNJq9XSkiVL6IsvvhCxABkPtVpNNWrUoGbNmtGQIUMoOjqaCR2FQkE+Pj4s/tDce5o5cybxPE/+/v6M+ciITZs2ibg2g4KCqGnTppX2wwi9Xk+7d++mrl27MgcbtVpNTZs2pWXLllF+fj7l5uaSs7Mz2dvbU1ZWFjVv3pzkcnmVbXXOzs4mlGpPnz5l5gGO48zSDFaEN2/eiBZq5Xlhy8KosSk/Zh8LPnjBR/TXuTp/OvWQBg4caHa3B5RyHdauXVukDlMqldS6dWsaPHgwo44yXqtfvz7t2bOHlEolTZkyxeyz5uTkkIeHBzVs/3mFk6TXtD3kNnEHOX/6JdVr25OAUptc2Y8eAG3dupUOHTrEnC2MtqiIiAiRYV+v15O1tTW1a9eOcnNz6c8//6RVq1ZRmzZtyNHRUcTiIZVKRYLPuMNRKpWi3SRQaqeMi4ujtWvXmsQVEhGFhISQk5NThSqloqIiOnv2LK1atYpiY2OpQ4cOFBQURM7OziKHB+NhbW1NDRs2pM8//5zi4uJoy5YtdO/ePZP2fXx8GA3Zu+Du7k69e/cmIqLPP/+cLC0tqVmzZiLPTeMCQC6Xk4uLC7148YLVNxgMFB8fT9q6Hclr2u4qkaS7TdhO1vU6EVFpgHP58QZAHh4edODAASIiOnToEHXp0oUFp9va2lKPHj2Yu31RURE1bNiQBEEw4Qr99ttvTRhPjGjSpAmzWZZN1lwe69evJ47jaPz48aLzt27dIqDUw/Cbb74x6UNCQgKtXLmSBg8eTE2bNiV3d3fRbrlsQtxevXrRt99+S2fPnjVZNKamplKtWrVIIpHQ7NmziajUDi2RSETZ4zdv3kwSieQvOVLl5OTQwoULqUGDBkyAOzs7U8+ePZnt+vnz59S4cWNSKBRVcpypzAll6tSpbBzCw8OrrPo8fvw4+17Cw8MrLWtra0uTJk2qUrsfGj6atEQbT6diXvItFJboUVmPOQB6XSEM57dh5z/Go2bNmnBzc8ObN28AlKYSateuHX7//XcUFRXBYDDAzs4OLVu2xIULF3D//n1IJBLo9Xqo1WrI5XJkZ2ejc+fOuH79Oh48eACDwQAiwsCBAxEbG4vAwEDRM6w9dgfzf70NPcdX/qwcYNAVoVctOVrXkKN169Zmy0kkEnAch549e+L777+Hra2t6HqfPn2wY8cOxMXFYd++fbhy5Qpyc3Oh0WgQHByMLl26YMCAAbCysmJ1pkyZgoSEBLi7u2PdunW4f/8+Hjx4gMePH2PTpk14+/Ytu7dMJmNJVsueM46NXC6HtbU19Ho9iouLUVRUhOLiYhgMBvA8D6VSCSsrKzg4OMDNzQ1eXl7w9/dHVlYWpk2bhrZt28LOzg7JycnIzMyseMAArFmzBkOGDEFaWto7U8ZkZ2fD2toaV69eRUBAAN6+fQtra2tERkbizz//NElDZGdnh6ysLPj4+ODcuXMsHdTG06n4et9NFJZLz1MZDMWFGB/hgTl9WiE7O1t0rVGjRujRowc2bdqEq1evQq/Xw8fHB927d0dsbGyFqW3Gjh2LhIQEjBw5EkuXLmXnV6xYgZEjR2LmzJn46quvAADR0dFITEzExYsXcerUKQwdOhStW7dGcnKyKJnrjz/+iKFDh2LatGmYN2+eyT0VCgVWrVqF4OBgTJ48GQcPHmTXYmJisG7dOlF5Pz8/1KlTBxMmTEBERAT0ej2Kiorg5uaG7Oxs5OXlwWAwsG/GxcUFPj4+CAoKQlpaGn788UdUr14dmZmZCAsLw9GjR0Xtq1QqzJ49G5MnT67imzCP69evY/ny5Thw4AAePnzIvtWhQ4fi1KlTuH37Nq5evQovL/PplK5cuYLg4GCUlJSYJMc14urVq2jevDlev34NlUqFlJQUhIaG4tmzZ0hPT0dISIjZerGxsVi6dCm+//57jBw5ssI+dO/eHdevX8ft27fffwD+t+N/WPD+P0XZzALlE6tWn7CdPKbupqE/naPwTr2ZeqxJkyYUFxdHPM/TH3/8wTgzfXx8aMSIEaRQKNiqWK1W0+jRo2ngwIEmbuJarZZ69epFV65cYTFXPM+zOKnQ0FCaPXs2fX/gynvvTmvO3Ee2DbqKuDVRZtU8duxY5pJuxOvXr+nbb7+l4OBgkQq3cePGFB8f/06ngZiYGFKr1RQcHGxyrXr16tSxY0cRPZaHhwd5eHiIdkll/xYEge2ayvfBmBHBycmJatWqReHh4SyLQuPGjWnr1q104sQJkkgklXIe6nQ6UqvVJuTUFWHGjBksnECn0zFaMwDUsWNHxmNpjHks26fAwEAqLCysUNWurt2CJGpr4mRKEqxdyCZytBmP4m0iVXvZcVOr1RQREUEbN258L7f0rVu3kiAIVLduXVGs19q1a4njOJo4cSJNmzaN8cIaYQx2d3d3Z0HqRmLzyjwIAwICqEOHDuz/AKhDhw704MEDs7FmarWa5s6dSxYWFlSzZk0qKiqiRo0akYODA+vn8+fPKTExkSZNmkTt27cnX19fsra2NrGt2tjYUNeuXSkuLo727t1L2dnZ1L17d5HK/b8BvV5PW7duNSGm53mevvnmG7P9jIuLq5RAu2zbvXr1Yu2W9cKuKFavqKiIpFLpO8M9jOEpH2NYw0cl+IzI/LfdzKHzRAoavYLCRiWQQ/Moevmm1Gvuhx9+EE2+HMfRqVOnWP20tDQKCAggnudp1KhRNG7cOJLJZCSVSkkqlTICa41GwwLGeZ5nKhILCwumKgsKCqJly5bRJ598QjbeIVR9wjaybj20dMKTCKQOaMUmQttOE4iTKv5zCKU2LKeY78hr2m6qVifcrA2FqFRVs3TpUmrZsiWzQ6rVapJIJOTt7V2hQ4455ObmUqNGjUgul5O9vT21bt2a/P39ycHBQWRXk0qlIlWvpaUl1a5dm1QqlSizhDGGsHy2Cb1eT6mpqXTw4EFavnw5TZ48maKjo8nR0ZGpNq2trUkul4uEgkwmY6md/P39qVmzZtSzZ0+WMmrbtm1048aNd6qPPD09qVOnTtS7d2+WwXz06NGk1WqpZ89SFbORUKB9+/YmqnBbW1vq+c8DZtWbzgOXMVJml8EriFdbkVPMdybOVU6ffsm+RWtra4qIiKA1a9ZU+V2Zw507dxivaFkbq9EmBoDWr19vUi8rK4vc3d1JpVLRqFGjqmSDGjt2LDk6OhJR6e8GQIVu9AUFBUxtHBwczBhacnNzSalUmhBAmEO7du1IJpNRq1atmL3byspKpDbFv22k7du3p0mTJtHWrVtF6um/Cr1eT8HBwaRQKGj8+PHs924kZ4iOjmbCqFmzZu9URZbFgQMHTFTe5sJViEr9AjpNTqD+P/whcp4yl8leKpVWOd/gh4SPRtVZHkeOHMEnn3wCpVKJoqIibNq0CZ9//jkA4Ny5c2jVqhVyc3PBcRz27NmDDh06mLTxww8/IDY2FhqNBps3b8a2bdvw448/oqSkhJVp164dli9fjn379iEhIQF3794Fz/MwGP6j9rKzs8P58+cx71gGDt1IR/7tkwDHoeDhBZCuGHYdx5ntQ96Vw8g5uRkuQ38EB0L+nVPISloAiUQiegYrKytkZ2dDpVLB398fHTt2xMCBAzFz5kxs3boVmZmZUKlUAICSkhJcuXIFFy9exI0bN3Dv3j08fvwY6enpyMnJQUFBgejZ5XI5goKC4O7uDh8fHwiCgLlz56K4uBiCIAAA7t+/j5YtW+Lx48fgOA4cx+Hrr7/GtGnTWDt+fn4oKCjAgwcPKlT9lJSUoHHjxrh48SJ+/fVXtGrVSnT95cuXcHJywtSpU+Ho6Ii0tDQ8e/YML168wLNnz3D37l0olUro9XrodDoQETiOg0wmg1KphKWlJaysrGBvbw+JRIJDhw6x8RszZgxmzpwJQRDw008/oV+/fuB5HhzHoXbt2rh69SpTg3fs2BFKpRI3HjzGtuIglFDlWet1WU+QvmkarD8ZArVfU/FFvQ6D7FMxdvggWFhYVNrO+6CwsBBNmzbFpUuX8Msvv6Bnz55ITk5Ghw4dwHEcBgwYgNWrV5vUMxgM8PPzw507d/DZZ59hy5Ytld7HqNIrLCxEXFwcFi5cCJ1Ox76Nsvj2228xfvx4NG7cGMeOHRN9B8nJyejYsSP27duHyMhIs/f66quvMGfOHKSkpCA8PBzZ2dno2LEjTp48iQEDBiAhIQFnz55F586dYWNjAzs7Ozx9+hSvX79GUVEReJ6HhYUF7O3tUaNGDfj5+aFu3bpo1qwZPDw8qjSuBoMB4eHhuHz5Ms6cOYOoqCg8ePAAPXr0wPHjx5GWlgZBEGAwGFCvXj1s27YN1apVq1LbCxYsEP1mBEHAmzdvoFQqAQCXH2dj2R/3cPROBgCgbOZ7hcCDALSoZY8Rzb0RVL3UbBESEgJbW1scPny4Ss/woeCjFHxEhNDQUFy6dAkA4OjoiBcvXrDrhYWFUKvV8PX1xf3799GpUyckJiaabSsvLw89evTAoUOH0KhRI5w9exbW1tZ49eoVlEolFAoFsrKyEBYWhuXLl8PV1RXVq1dn9i4A4DgOSmsHuAxbA10ZM9DrYz9B/yazQsH3YtM0KNzqwKpJFABA4AF+dxzuXrsoKmdpaYnLly/D3d0dDx8+xPnz53HgwAGsW7cOPj4+KC4uxuvXr5Gfnw+9Xg+e56FQKKDVauHo6AhXV1d4e3vDz88PISEhCAoKQmhoKF68eIGgoCAcOXKE3Wv48OHYs2ePif0LAOLi4jBv3jwmcG7fvg0fHx8AQGZmJlxdXdG7d28Tuw8AvHr1CkFBQXjz5g3Onz/P6pVH+/btcf36daSlpYnOh4SEoLCwEDdv3mTnCgsLcffuXdy5cwcPHjzAo0eP8Oeff+LSpUsoKCgAACiVSpSUlECn0wEotfHKZDIUFhYCAFxdXeHh4YGUlJTSdyAIcHV1xQ8//ID7Mg98e/iuaAIqi6wDy5F/9QiopAgyRy84Ri8AL1OKC+l1mNaxDoY2K7UVPXnyBPHx8fDw8MD48ePNtvs+GDVqFJYvX47evXtj69at6NevH7p3747OnTujV69e2Lhxo6i88R22b98eycnJiImJwdq1ayu9h0wmw4YNGzBr1izcu3dP9O0bcfz4cTRr1kw0tuXRu3dv7N69GxkZGWyhZsTevXvRuXNnLFu2DMOHDxdd27x5MwYMGACVSoVdu3bhwIED+Pbbb5Gbm8vKlJSU4OLFizhx4gQuXbqE27dv48mTJ8jKykJBQQE4joNKpYKdnR3c3Nzg6+uL0NBQNGnSBP7+/iIhbTAYEBERgVOnTuHYsWOIiYnBs2fPcPv2bdjZ2SExMRFRUVHQaDR48+YNNBoN6tWrhz59+iAqKgoymcyk70QEBwcHExt2w4YNcerUqar7MHCAQpBgRntf9GlYA/Hx8fj6669FY/Ex4KMUfEeOHEHnzp2ZA4aNjQ3S09NFq9ATJ06gXr16OH78OD755BOsWbMG/fv3r7DNGTNmYP78+eB5HuvXr0fXrl0xdOhQbNmyBRqNBlqtFmlpafD09ETPnj0RGRmJZ8+eISoqCjzPQ9uwJzSNewMSKWuzMsFXkvMST1cOgsvQHyC1KnVm4AwlKLmwE89++0m0KwNKhavxVcvlchQXF0OpVCI8PBweHh7w8/NDUFAQwsLCoNVq3zmG7u7uKCgoQL169bBv3z523t/fH76+vtixY4fZeg8fPkTz5s3x+PFjAKVOMgsWLAAA7N69G127dkVSUhI6d+7M6ty8eRP169eHra0tLl++XOnzPXv2DK6urvj111/Rtm1bAMDOnTvRo0cP3LhxA76+viZ1DAYDvvvuOyxYsACZmZlo0aIFHjx4gODgYCQlJQEonRhfvXqFGzdu4NatWxgxYgSICPXq1UNxcTEuX75s0q5TtymQ12pqcr4syKBH0dNbKHx0FdqGPcFJTHdCXYOcMSRQgdmzZ2PPnj3Q6XTo2rUrtm3bVmnbVcWyZcswatQoaDQaZGRkQCaT4bfffkObNm3QpUsXbN++HQAwadIkLF68GOvWrUO/fv2wd+9edO/eHQEBATh58iQUCoXZ9v38/ODr64tff/0VlpaWyMjIEF3/9ddf0alTJ2g0GoSFhbGddnkYDAY4OTmhZs2aOH78ODt///59+Pn5oU+fPhUK4bdv36Jbt244dOgQunXrhqSkJOzatQsdO3Z85/gYDAbcunULx48fx4ULF3Dz5k08evQIGRkZePv2LYgICoUCtra2cHV1Rc2aNREcHIytW7fi/Pnz+OOPPzBgwAC8fPkSd+7cwZ07d9C8eXPodDq8evUKK1euxM6dO3H9+nUUFxejWrVqiIiIwPDhw9GwYUMApTveTz/9FNOnT0dubi6OHj2KM2fOgIjQb+6POFNcDQW6qjtPKaU8ZrT3Q2d/G2i1Wty6dQu1atWqcv3/7fgoBd/o0aOxbNkyJggkEgn+/PNPBAUFmS0/ZcoULF68GDdv3jS701i8eDEmTZqEMWPGID8/H6tXr0ZoaCj27t0LhUKBgQMHIikpCXZ2dnBycsK1a9dgZ2eHmTNn4vTp0/j111/h0GUyCp3qiNqtTPBln/gFhamX4RS9QHQ+7+pvyNq3RHTOqOoMDg5GTEwMNm3ahAsXLmDmzJngOA4GgwE6nQ4GgwFPhbBVAAAgAElEQVQlJSXQ6/XsX+NRUlIiur5z504AgK2tLcLCwqDX62EwGHDw4EH4+fnB3t6enTMYDKK/DQYD7t69K/L8rFatGgRBwMuXL5GXl8fUPwUFBXj16hWkUimsrKxApXZp5hlr7v+FhYUgIshkMtY3juMgkUgAgJUDYLJA+G/Co188DM61q1Q2a//3kNq5QVO3s8m1gntn8XLbV6JzEokEFhYWEAQBgiBAKpVCJpOxQy6XQy6XQ6FQQKFQQKlUQqVSQaVSQalUQq1Ws/pffvklLCwskJ+fD4lEgsTERNSuXRs3b95Eu3bt0KZNG3h6emL58uX4+eef0atXL/YcDx8+RL169UBEOH/+vFmV4IgRI5CUlITnz58jMjISycnJ7FpiYiJ69eqFmJgYJCUlYfTo0Zg9e3aF43Tt2jUEBQVh6dKlGDFiBAoLC1GtWjW4u7vjwoUL7xzn5ORk9OrVC/n5+fDx8cGtW7feWeddSEtLQ0pKCs6dO4cbN24gLS0N6enpzAMVAKytrZGfnw8iQkhICO7evYunT58yNaUR58+fx8qVK3Ho0CE8fvwYUqkUfn5+yM3NxYMHD6BSqfDzzz+ja9euAIDlm/fhn9c4ZJzdjfyrR1CckQq1X3PRnGHQFeL1b2vx9tZxkKEEMnsPOPWJh1IqwZYhDdG2nh+6deuG5cuX/+2x+N+Cj1LwAcD333+P0aNHY8yYMfjuu+/eWb5u3bp49OgRnj17JtoZjhkzBkuXLsWSJUswduxYAKU7lI4dOyItLQ1xcXGYNWsWMjMzERMTg+TkZFSrVg0+Pj44fvw4OI5DcXExHD+dBYVXPdE9KxN8T1cNhrbRZ7AIFIcwFNw/h5eJc0zKS6VS6HQ69q9arYZCoWA2N6O9quy/5f8ue9y8eZNNvl5eXuB5nu18wsPDIQgCJBIJeJ6HRCIx+/euXbtAREz15efnh/DwcGzZsgWCICAoKAhHjx5FQEAAOnfuDIlEwto1Tvhl/zYer169woQJEzB37lycPXsW+/fvx7Zt26BWqyEIArKysrBkyRKcPHkSarUaX3zxBUaPHg2VSgWJRIJVq1ZhyZIlTAsgk8mYKuvAgQOIjIyEIAhYsmQJxowZg/Xr1+OLL75gY21hYQEnJycUh/UG59Hgnd8WAGQlJ4CTymHTeqjJNXp4BoNqS7F48WIUFhaiqKgIzZs3R7du3ZCXl4f8/Hy8ffuWHQUFBSgoKGBlyx7FxcXQ6XTQ6XQoKSlhoRIymYwtaiqCcfFQ9j0KggCe5/HmzRuUlJTA2dkZ1tbWTPgqFAoUFRXh9OnTAICWLVuidu3aUKlUuH37Nnbv3o2IiAjExMSgb9++WLFiBerVqwetVgutVguNRmOi+ouLi8OCBQuYGeLp06d48uRJhTvO8iguLkbz5s1x+vRptGnTBrt27apy3ffFy5cv0b17d5w8eRJhYWG4dOmSyP4uCAK0Wi2cnZ3h5eWFOnXqoH79+mjatCksLCywZcsW/PTTTzhw4ACrw/M8+vbtizVr1mDYzxdw6GY68m9V7BeQuWcRyKCHTeth4BUWKH75EHInb3Ac0NbfEfkH/omUlBSkpqb+XxmD/y/ioxR8JSUl0Gq1ICKMHTsW8+fPf2edt2/fwsnJCY0aNWIfYbdu3bBnzx5s3rwZPXv2NKkTHx+PmTNnwtnZGXv37kVgYCCePXuGmJgYHD58GDKZDEVFRQAA247jYREQIapfkeArfHIDL7fEwXXUT+DlYluHuR2fIAhsQiMiaDQanDhxAgEBAe/sd0WQyWSws7NDu3btmHrpyy+/xLJly5CVlVWlNpYvX47Y2FhMmTIF33zzDYBSR5+ffvoJkZGRICLEx8f/pZirRo0aITs7G3fv3sWSJUsQGxuLU6dOYfTo0bhw4QLc3Nwwb948REdHm9T18/ODp6enSIULlH4DDg4OaNOmDXbu3Ilbt24hOjoaV65cYTbAsnBq+QVUDXpCD4novD4/G4Vpl6H0rg9OkKEw9RIyds6HXefJUPmIBSVnKEHWHxvQ1o3Hs2fPcPnyZeTn56Nu3bo4d+7ce49LWTRo0AA3b95EamoqbGxs2Plhw4bhhx9+wIQJE/Ds2TNs2rQJgiCgdu3aWLJkCfLy8pCbm4v8/Hz2b35+Pvbs2YObN2+idu3a8Pb2RmFhITvOnDkDAPD09ERJSQlev36N3NxcyOVythgrKiqCRCIR7eRFY1FmEVZ2vDUaDRQKBaRSqWjna27XazzUajWWLl3KFn6DBg1CixYtYGlpyUwTxn8tLS0rdLiqKgYMGID169dj06ZN6N27N5RKJYv1O3PmDK5evYp79+7h+fPnyM7Ohk6ng0QigaWlJdRqNZ4+fWoyFo7u3rCM/g7F+v+MU/k5Q5f1GM/Xj4fryPUmcwUAyAUey9raoE2zRigsLDRrX/wQYWpQ+AgwYsQIcBz3Xl5yKpUKR44cQcOGDbFo0SJs3boVly9fxtGjR9G4cWOzdaZMmYKBAweiU6dOCA4OZjaIxo0b47fffmNOHl5eXniZkQoqKQInyEEGPWA8yAAqKQZ4CTi+dALNv3oEqprhJh+yQuAxbHBvHMi/gBMnTjAVn1arRUlJCXJycgAAb968QZ06pWpVpVIJNzc3REREoH79+qhbty78/PyYWrAiGFetZVU1Bw8eNAnGrwwjRozA7NmzcefOHaSmpiIiIgL3799Hu3btWJmwsLAqt1cWq1evRkBAAJycnGBlZQV3d3c8fvwYoaGhOHHiBBo1amS2XlFREW7fvo0VK1aIzt+5cwft2rVDcXExsy/5+vqaeOgabakzZ87EmCkz0Tj+N+jLO7dwHHIv/oqsA8sBMkDQOsC61WAToQeULlTyrx7GtrNvROcjIiJMyr4PunfvjkuXLuHatWsioQcAK1euRJMmTdC3b18QEfbt2wdPT0+EhoZi8uTJOHv2rFlBEB8fjx9++AHDhw9H9erVRcHuUqkUJSUluH//Pr766ivMnj0bixYtwoQJEwAAc+bMQUJCgsmiyWAwoKCgADk5OcjOzsabN2+Ql5eHtWvX4pdffkFgYCCio6NNdr5ld72FhYXIzc1lO17jIQgC+3fFihVYuXIl87g0qs7Lw6gFKbvzLatuNid8jYLXzc2NqYkNBgNq1aqF2NhYWFtbo1WrVujSpQsTvDKZDGlpabh58ya2bt1q8hwcx8G7dR+85DiURjeYR9GzOxC0DshO+Rn513+HxMIa2sZRUPuWzlkcgPsGO8jlcqxbtw5Dh5pqHD5EfHSC7+XLl1izZg1WrFiBWbNmvVfdevXqYebMmZg0aRJUKhWuXbtWoXehEXZ2djh16hQSExPRt29fbNy4ETzPY86cOZgxYwbu37+PL774Ag8uH4FV0z4AgJwTm5Fz4hfWRv7136Ft3BtWTaNBJcXIv3Uc9t2mmdyrsKgIyyZ8AWcbSzg7O+Px48cgIiQnJ0MmkyE0NBTr1q1DcnIytm7dinr16uHhw4e4e/euyWQvCAIsLS1ha2sLFxcXeHp6MgeYkJAQtiIvK/hu3LiBuLi49xrTf/7zn+jTpw+WLVuGS5cuwd3dHa9evQJQOll26NABL1++ZCwoVYXRSzc9PR0DBgxAZGQkUlJS4ObmVmm977//HjKZDPv378esWbNw+/ZtZGZmsh2zg4MD8vLyWHl3d3fY2Njg4sVST9r4+Hg8efIECxYsgJWVFYpSi0AudcCVERQSldbENmsOHAD56/swFLwxubZw4UIcPHgQ/fv3x5AhQ95LVTdu3Djs2rULx44dq/D7TUxMZJ6MMTExOHfuHK5evYqgoCAEBQXh4sWLZkMShgwZgpCQELRo0QKenp64cOECbGxsGLOJ0UFm5cqVGDJkCKt34sQJeHp6mrTH8zzUajXUajVcXFwAlHqAbtmyBT169MCOHTvQsmVL1KtXz6Tuu5CWloYaNWrg+vXryM3NRYcOHfD69WusWLECAwcOZOVKSkqQl5eHnJwc5OTk4M2bN8jNzWVHXl7eO1XO+fn5sLGxQVZWFnJzc6FSqZCdnY2FCxdCo9GI7Ol6vV5ktzYHiUSCtzKrCj2GjdDnZkGXkQZVzXC4jlqPoqe38DJxDmR2bpDaVUdhiQG3nuciJCQEGzZs+GgE30en6mzZsiXu37+PR48ewdnZGf3796+SqhMo9RgMDAxksTPp6elVmnAKCwsRFRWFpKQk2NraIjMzEz4+Phg4cCB4nkdaWhr27NmDt2F9oPJpKJokqwoyGCC8uI60n2eK7DRGTz13d3d4eXmx3UqnTp1w8OBB3LhxA15eXv+HvO+Oiura237OmQozwNCrVFFEQZq9gQUECyoaNSpqNJYY7Bo09thi7MZeYo3GjgVbIliuGgs2sBcQLHTpZZj5fX9wZ1+OA4p532+tm7zPWrOUU/fZZ5/9K/vZ+8G7d++wadMmHDt2DImJiSgrK2OGT6lUori4GDk5OSgsLBSMUSiVStStWxd2dnaIjY3FypUr0aFDBz2K98fg6OgIJycnJCUlQSqV4tSpU+jXrx+ePHkCoJIYkJGRUW1H+yFycnIwduxY7Nmzh0Vft2/fho+Pj96xpaWlOHXqFM6cOYMbN27gxYsXbMzLysoK7u7u8PT0xOvXrxkhQ+e9GxkZ4dmzZ4xAY2pqysgMVRm0Uht32EUuAfESvft/CjrywfjIXoiLi2PbdRFHRUUFu5ebmxsiIiIwadIkWFlZ1XjNVatWYcKECdi7dy+bt/ohQkJCEBcXh0uXLsHLywstWrTAw4cPcejQITRu3BiNGjWCnZ0d7t+/D4mk+ufKycmBn58fMjMzERcXh2bNKqNZnuexe/du9O/fX3B8nTp10K1bt08SLN68eQM3NzeEhobi8OHD6NixIxISEmrdPj6Es7MzmjRpggMHDkCr1WLChAn4+eef4evri9OnT8PCwuKzr/kxjBo1Cnv37kVBQQGWLVuGxYsXQyKR4NmzZ5DL5cjNzcXjx49x48YN3L59G8+ePcONGzeqneLhNHAR4PBxQlz+9aPIjd8Ox8mHWMYo48BcyJ19YNwkHADQwcMK/kU3MHnyZEY4+6fjf5a4/pvh5s2buHDhAvbu3fvpgz+ALrqztLREVlYWxGKx3gTq6rB9+3aYmZkhLi4OJ06cQGZmJhYtWoSnT58iOjoaU6dOxdq1a5GbmwuXkieAVn+sqDbgtGqknd2qR07Iz8+Hvb09srKyBGy648ePw8vLC76+vsjKyoKNjQ1mzZqFmzdvorS0FHfv3sWgQYMgFovx8OFDpKSkwNLSEqNGjcKWLVvAcRwUCgUaN24MBwcHRuefNm0avL292XqcZmZmqFevHgIDAzF06FAWqeTm5rKyjBs3DpcvX4aNjQ1evXoFX19fPH78mDkkubm5UCgUgvmCHyIpKQmBgYGwsLDA0aNHwfM8cnJy4OHhgW+//RYZGRnYsmUL+vfvjwYNGkChUMDAwAB9+/bFyZMnIRaLERUVxaLxgIAAJCYmYvPmzThz5gyUSiWuXr2KkpISWFpasjlnQGVnvnr1apbyrOpLdvRzR+mVXyHhPs+/rKSbe8DbQYVTp04JHCwigq2tLaKiohAQEACe5/Hy5UssX74c1tbWsLa2xuDBg5GYmCi45uHDhzFhwgT8+OOP1Ro9rVaLwMBAxMfH49q1a2jWrBkMDQ1x9+5dREZGIjw8HOvXr8eTJ0+Qnp4ODw+PGufcmZmZ4cWLF2jbtq0grfz999/rGT2gMjKvmuKuDhUVFfD394ejoyObyhEbG4uKigpERER89NyaMHLkSDaWy/M8Vq1ahcTERGRlZcHW1rZWxLeaUF5ejocPH+L48eP46aefMGjQIOzatQtqtRpyuRwTJ05EZmYmY3dyHAczMzO0aNECY8eOxS+//ILLly9XW8disRhy8afblMTKWX8jJ1xQwVguwVdffYXS0lLcvHnzrz7u3wv/a2vA/A3g6upKLVq0YH/b2NjQtGnTPnne77//TmKxmNq1a8fWtUtMTCSRSFSjEnRKSgp5eXkRz/M0cuRIwXp46enpAokW3ZJoycnJpPQNJffpnyefVHfacVL6hOotV4Z/r1eou4dCoaABAwYwKRK1Wk3Ozs5kbW1d47p/RJVLMcXGxlLv3r0FChA8z1NoaCilp6dTSEgI+fr6snMyMjIoNjaWFi5cSJGRkdS6dWtyc3MjlUol0MDTLcPE8zyZmprS5MmTafv27ZSYmEgajYbS0tKYWjYACg8PFyw1FhsbSx4eHsRxHHl4eLC1KDt06EBhYWFseTPd/VxcXKhPnz60YcMGtkzbjRs3BHXG8zw1aNCAZs+eTWPHjiWxWCxYTk2pVNKaNWsEdbRv375q6x//Xqe0UiHkFDl/4l06R58gj5mnaNfVl4Lrr1mzhgBQkyZNKC0tja0Vam5uTosXL6bly5ezepBKpUzbUalUUufOnZkI8pgxY2p8x7pl6GrSlPvll19IJBJR27Zt6e3btwIx1o/BxMSEgEp1kOqWHXv9+jXh3yoOH0OrVq3I2NhYTyn9woULesoftUVZWRmJRCLav3+/3r4ZM2aQSCSiBg0aUEpKCqWmplJcXBxt27aNZs6cSV988QU1bdqUnJycSKVS6YlF1/TjOI4MDQ1JoVAQAHJwcGCyWXFxcZSdnU3Pnj2jRYsWUUhICKs/vW+7VV+qO123vF0MOU4+TMbNe5OiYRA5Tj5cuW3KURKrbMmkzQBynBpD1gOXECc1ILuv1zM5rA0XKpetc3R0pMjIyM+uw78j/s8Yvh07dhDP84IOrDaGT3fegAED9PatXbuWOI6jy5cvs20ajYbGjh1LPM+Th4eHYC3EoqIi+vLLL4nneTIzMyOZTEYGBgZUp04d4nmexo4dSy1btqS6oUNr1Uk6Tj1GLlOP0vrfk6hFixbVfhy6NQrFYjG5ubkxbTE3NzdavXo15eXlkbm5OdWrV6/Wi9UuWLCADA0NmW6f7mN2cnKiLVu21EpCRadWruvMdSKmFhYWZGBgwNaMlEgkZGpqKlA1l0gkFBoaSubm5qzj8Pf3Fxg5ExMTpiPIcRxT875+/ToREd26dYsiIyP1pJx0z2JsbExbt24lnudp48aNgvfLcRzTXHvy5Am5u7t/tKMbMmQIEVUukh4wfiO5Rh8j1+gY4fucfJhco4+T25DFdOdVjl59aTQakslkNGPGDLatoKCAhg4dygzdpEmTKDMzk6ZNm0YODg5sPVZdx8lxHDVt2pQ2bNggeEcajYb8/PzIwMCAHj169NH3du/ePTI2NiZra2u6f/8+WVlZkY2NDeXl5VVb5rZt2wrqVSQS0dSpU2nZsmX09OlT6tKlC4WFhZFMJqPk5GTSarXV3jcqKopEIhElJSVVu3/48OEkk8koNzf3o+XXIS8vj27cuEG//fYbOTk5kaWlJXXv3p18fHzIwcGBjI2NSSqV6klfVddWdLJc5ubm5ObmRq1bt6bBgwfT0qVL6cSJE/Ts2TNSq9VUVFREAAR90IYNGwgAtW7dmmkn6hxDExMT8vf3F2hBVv19O3kakywzadVfb79Jq/5sXVipXX3iJDKSmNchy57TqyxwH8vW8Bw5ciTZ2trWqv7+7vg/Yfg0Gg0ZGxvToEGDBNs/Zfjmz59PHMd99JguXbqQQqGggoIC+v3338nc3JyJs+qgVqvZQsxmZma0fft20mq15OfnR4MHDyYioo0bN5JMJmPq2jNXbCGngfOrVZJwmnKEXL6LoU5z95Ntw0oF7pYt9Reo1omgduzYkVavXs0iAhMTE3J2dmYLawcFBZFcLqfWrVvXqj5dXV31IiSgUp9Qp/lna2tLffv2pbNnz+oZVK1WSz16VKpJVFVT8PX1FSiVp6en04kTJ2jBggXUr1+/j3ZCUqmU1V2fPn1ox44dtHv3bsExMpmMfH19mWF1dHSk0aNH05MnT5hDIJVKmYoEULkIdVUjcffuXeI4jsrKygSr5nMcR8uXL6eAgABBOZVKJYnFYsrKymJR27GzcWTVtj+1mrSRvtp+ncbs+pOMmvaikO4RBIACAgL0ohoiou7du5Obm5vedrVaTdHR0aRQKEgikdCgQYMoLy+PUlNTKTIykpXHwsKCnJycWIder149mjZtGjVo0IAUCoWeynhNKCgooIYNG5JUKqWDBw8yMdacnP8YbJ0xlcvlrEOvGg2FhIRQcnIyK5vOgOj09KpCp/dXXVSme/5Hjx6Rubk5OTg4UHR0NEVGRlLHjh2pYcOGZG1tTQqFgsRi8ScNGQAmgmtqakqurq7UsmVL8vPzI47jyMLCgg4cOEDv37+vVV1Vxa+//koSiYR++uknCg0NJQcHB8Fi+Obm5iSRSMjOzo6KioooOjq62miP53lKTEwkIqJhv1z7pIP8Me3HkbtusPI9ePCAAFTrxPzT8H/C8E2ePJnkcrleJPIxwzdy5EjiOI7WrVv30WtrNBqysrIihUJBHMdRly5dWOpHo9HQ3LlzycDAgBQKhd5K9sXFxQKjUFBQQMHBwayBe3h4UFZBKW248IzG77tNX22/ThFLj5F9h0jiDYypRYsWlJubS8ePH68x6hg1ahRTI1+xYgVlZ2fTt99+y6IlGxsbQaTUoEGDT6aumjZtWm0HIpVKqXHjxnT37l0aPXo0UwEXiUTk7u5OUVFRdPv2bfL29iaZTKYnm/LgwQPiOI5iYmJo48aN1K9fP/Lw8NBT7q666r1UKqURI0bQ+PHjycDAgAwMDMjGxkYQNVb9KRQKatasGS1cuJDOnTvHIgSdMW/Xrh2Fh4ez48VisWAV/RUrVpBMJhNEoA0bNmRta968eQSArKysiOd5mjFjBjk4OJCjoyOTzZk9ezaJRCJWz0+fPhUYUKAyPfr06VNB/dy/f58A1KikodFoaOXKlWRpaUk8z1Pnzp3JxsaG6tSpQ7du3aKePXuSQqEgnufJ1dWVGjduzO5nZWVFw4YN+2TEVxU6ozp16lRydHQkMzMzysjIoLKyMvLw8CCFQsGezdLSUqDcIRKJ6Pjx4wI5J5VKRWlpafT27VuaMGECjRkzhkaNGsWU5lu2bEl169YlMzOzWqcVdYZCJpORSqUiZ2dnat68OX3xxRc0adIkWrNmDcXGxpJSqfykKGt6ejr5+voSz/M0YcKET2ZIkpOTaenSpRQWFkZ16tRhdW1sbEw+Pj40atQoOnHiBJWXl9Nvv/3G0vVVyy6Xy6lv3760ZcsW1h4TEhLozz//pKioKLKsH0Bu0cf+kuHzmHmK7qYKI2SlUvlZqu9/V/zjDV9eXh6JxeJqX2Z1hk+j0VBoaCiJRCKKiYn55PWXLVvGOsEvvviCbV+3bh1Ll0ydOrXWacTt27ezDpLjONq1a5feMWlpaYKPul+/flRQUEB79+7V++jFYjGdO3eOpkyZQiKRiJydnenOnTtERPTnn39ScHAwk1LSGUOO48jPz48psn+ITp06sTJW1UAzNDSkhIQEvfo8efIkU6rWHevt7U3z58+nK1eu0KJFiyg0NJScnJxY52BoaEiOjo4sirOzs6Pt27fTkiVLiOd5iouLo0aNGrHrubm5Ec/ztH79erK0tGTSS2ZmZuTv78+Mpbe3N7m6upKJiQnztnUdKMdxTFZGV3c2Nja0Z88eatasGcXFxbGxM93+06dPs2dduHAhcRxHjRo1IjMzMxo3bhwlJycLJItkMhlZWVkJNOrWrVun9944jiMDAwO6efOmoD6tra1p2LBhn2xH+/btY+0yICCA7t69y/adO3eO2rVrJ3gXnTt3Jjs7O9Yxd+/eXaDHVxM2b95MIpGI2rVrR66urmRkZEQODg5kYGBAEyZMoJMnTxIAGj58OEsrcxzH2tqH2ou1+XEcRxKJhIyNjalOnTrk7+9PXbp0oREjRlBwcDBxHEeHDx+utu3WhKFDhzL5pE9h48aNJJVKydbWlm7fvk1ERK9evaLly5dTly5dyNHRkdW9kZER+fj40MiRI8ne3p569eoluFZZWRl98803elp+IpGIPD09Wb+h0WioUaNGLErUjY3XrVuXdl55SW7TPs/4ecyM1RtHJiJq3749+fn51bre/q74xxs+HcGhOnxo+NRqNfn4+AjGgmpCYmIiubq6kkgkomnTptHu3buJ4zj6/vvvydramkQiEQ0dOvSTA/ZVMXbsWEHHKpfLieM48vf3F3j5165dYx+WrgMQiUQ0ePBgevLkCX399dd60U50dDSlp6dTs2aVqdFevXqxsmk0Gtq4caOet6mLroYOHSq4f9OmTalu3bosMtGlqQ4ePCh4nuLiYpo4cSIVFhbSrVu3SCqVkomJCbm6ugoiJl0H0bZtW1q9ejWLEHQGuOoYKlElycHMzIzUajUtXry42s7Rz89PoLFWUlJCtra2tGzZMsr8tx7juH0JNGTbNRq07g+qE/wV9Rk4lEJD/0MSkkgkNabGHBwcaOnSpfT7779Tbm4uRUdHE8dxtHbtWiosLCSJRELz589nJJCqY5YAKDk5mZWtffv21XbuHTt2FBxHVJm9UKlUn2xLunGz3377jby8vFg08fvvv1NRURE5OjqSSqWin3/+mfz8/JheZOfOnWn48OFUv359Fim1bNmStm3bRiUlJfT8+XM6c+YMbdiwgaZPn05Dhgyhli1b1ir6qnpMdfWqVCrJ1taWpeR12xs2bEgxMTGUkpJSKwfSz8+P7OzsPktgVUewqYnYUxWpqam0cOFC5pTpnsvIyIgaN25MX3/9NcXExOhlmORyOW3ZsoVKSkpo+PDhjNwCVGYihg4dSsePHyeRSERdu3ZlQs+656j63eva0u3bt6lZs2Zk1iyc6s+IrVb7Ufg7Xi15Sofdu3eTVCqtdb39XfGPNnxJSUnEcRzFxsZWu7+q4cvLy6M6deqQiYmJXmdTFWq1mgYNGkQcx1FAQAAzCHFxcawhh4WF/aUxgMjISD2xya+tFqwAACAASURBVFOnTjEDqxv/OHjwoMBDFIlE9MMPP5CpqSnzoNesWUN5eXmCTtXKyoqlRlUqFRkYGAiIG0SVDLmqUZxUKiUjIyPiOI7q169Pmzdvpnr16lGfPn0IAO3Zs4cACNh6xcXFdPDgQUZsqNrhWVpaUuvWrWnKlCl04cIFev36Nc2ZM4d8fHwE9+V5nnbt2lVt53Xjxg2SSCQsdVZdpyuTyejhw4eC82Iu36HwpSep3oxYRgqoOshfb0YsBc3aSx4tQ6iwsJCIiAYOHKh3bVtbW72oUXdPe3t78vf3J3d3d+J5nn755Re6d+8eG28FKscNq8LIyEhwfV0bePz4sd6z5+XlEcdxdOHChRrb0ahRo0gkEgmctwcPHlCbNm0Y0UepVNLTp0/pX//6F+3evZvmzp1LzZs3Z21YZwirpier/nQkDIlE8tGxM932Zs2aUbdu3SgoKIjEYjHt27ePEhISaNOmTQSAnJycKDs7m4iIjh07xupVKpWSSCSi+Pj4Gp/3Q+Tm5pJMJqtVZFwVbm5u1LVrV8G2tLQ0WrVqFXXv3p2cnJyY4VEqleTt7U1BQUGMgPWhg1YVOhHeqvWpUCho1KhRegbywoULjJlsYGBAAQEBpNFo6NGjRyxzwfM81atXj12ve/fudDc1l0buulEtL6D+jFiqO/0EWfacTit2HKqxnGq1mnier1W0/3fGP9rweXp6UuPGjWvcrzN8KSkppFKpyN7e/qOssAMHDpBSqSSlUkm//fYbEVWSHXQedbt27cjBwYHq1q37l8vctGlTUqlUTEW8TZs2RES0ePFiEovFVKdOHZoyZQrrGCwsLOjkyZOMDWdqako8z5NUKqVx48aRWq2mxMREgUHt1KkTvX37lr799lvieZ7c3d3pwYMHlJGRQTKZTNCZ69IqulSo1NicjJv1Iqd+s8i+/w80YM1ZMm35BfXoO5Dq16/PIlZdh6i7TnWkDKLKTmrQoEEklUrJwMCAevfuzYyNLpJ0d3en4OBgatq0KeuYdWSU0aNHE8dxtH37dj2nwc3NjdULm07wCY/Y+d+dxPRtp9g9PvxV7RQGDBhAAGjp0qW0adMmGjduHIWFhbE2IRKJWOevM9DW1tYUFBREw4YNo6VLl1KbNm2oY8eO7H0SEdWrV4/atWtXbZ15eXlRYGCgYFtJSQndv3+fBg0aREDltI/+/ftThw4dyMfHh5ydndnUluoiMalUSjKZjORyuZ6ifdW2UNXIyWQycnd3p4EDB5JcLmfpyw9/pqamrJxarZYiR4yhdXFPady+BOq//gKFzPmVnEKGkcLcmq5fv84YyoaGhjRt2rS/pI5+8OBB4jiO4uLian3OvHnzSCwWU/fu3Rn5S2fkvLy86KuvvqKDBw/qZXGKioooJCSEOI6jPn36kFqtJqLKtt2vXz+WOtdFhVFRUZ9kPuuiu1atWpFcLmfOb9OmTSkwMFCQPRCLxXTkyBF27oe8gPH7btOGC8/obU4Be9/Tp09nCvcfwt3dnSIiImpdb39H/GMN39GjR4njOMF0gg9hY2NDQ4YMIblcTl5eXjU2xvT0dMbWGzBgAKnVakpOTqaWLVuydJyO3v727VuSSqWMwv45ePfuHXEcR2fOnKHs7Gw6fPgwcRxHKSkpRESUmZlJzZs3Zx70Tz/9RFKplEVF0dHRJJFIKD09nebPn08KhYLkcjl99913lJeXp5fKbNeuHZ0/f558fX2J4zgyMjIinufJ3t6emjZtyjq/c+fO0dw128l54AJynHyY6kw6JDAWdSYdIqcpR8gnah3NXr2N3r59S9euXdMbvxk/fjx71kePHlFQUBDxPE+Wlpa0dOlSQXTXo0cPFkF92Pn6+fnRggULaOLEiQSA6tevT0uXLiUjIyNq3bq1oKPp27cv7bjygjxmxn5y3EPwTBMPkklA12qjl8zMTCIi6tq1K4lEIvr999+rfZ/btm1jcx3t7e1ZezE3N6dWrVpVGzXqIkJnZ2cCQEFBQdSjRw/q1asXhYaGUtOmTRkZScfi/DDaEolEZGhoyJw0XTuoKRoDKoklTZs2pfDwcPrmm2/oxx9/pAMHDlBsbCwNGDCAVCoVcRxH7u7utGTJEkpISKAhQ4YwY8fzPBkbG1c7ZqcjB915lUtf77xRbcRdf0YsOU89Spa9vicDBw+KjIyk4uLiz/6GqiI8PJyMjIyqHW54+/YtrV27lnr06EEuLi4Cp8ne3p6GDh1K+/fv/6wynDx5krFHq6YkjY2Nyd3dnTw8PD6r/Ldv3yaxWMwcFl2mQNcPVB0Prw0jt6KigpVJF0lWnVqhw+TJk8nc3Pyzyvp3wz/W8Jmbm1PPnj0/eozuY+7UqVON4wHTp09npJD79+9TZmYmhYaGsk7gypUreufExMQQx3EsKqwtevbsqZcGc3V1pY4dOwq2HThwgBQKBSmVShKJRLR9+3Z69uwZ8TwvmFit0WhoxowZZGBgQIaGhjR79mzq06cP+2B06VIvLy8BAUMikdCYMWNoxIgRJJfLydivC9WZdJAcp35iAP27Y+Q+/QTtvPKSdc5isZjq169PYrGYTExM6Pjx4+Tp6cno9FUJRHFxcRQRESGIHBo1akRnz54losoU6oYNGygoKIiMjY0FxtDNzY114Ddv3qR169aRWCwm07o+VPe7I6Tw7kQiY0vipAYksXIhqz5zKudCTjlChvVbksi4knhj3X+hYG7ddz+upezsbNJqtbRr1y6Sy+Wk0WgoMDCQJBIJXbt27aPv1NHRkQDQhAkTiOd5CgoKIgDUokULatOmDTVs2JDNG6suWvrUrzqjp1KpyNHRkRo3bkwdO3ak3r17k0wmIzMzMzpz5gy9ffuWtXe1Wk3Tp08npVJJEomEBgwYUGPW48aNG9S1a1cyMDBg81TFYjH5+vpSt27dBGWoamidnZ1rHXE7fXeM6kw6SCFj5tf+w6kBarWaTE1NqXXr1rRu3Trq2bMnubq6MiOnUCjI09OThgwZQvv27aOioiIKCgqihg0bftZ9Xr9+Td26ddPLOLi6ujKCjYuLC5u6VFtkZ2ez9qMjzAQFBRFR5bxGjuNILpeTgYFBjfMfq0Kr1epF+jt27NA7TpeWTU9P/6zy/p3wjzR8c+fOJYlE8lFa/ubNmwmoZLRVhytXrpCNjQ2bd1NUVEQDBgxgEdHx48c/WobRo0eTRCKhV69e1arMRUVFzIhVxcmTJ4njOD0Ke1lZGfXu3Zt5fE5OTjWmddVqNU2ePJlkMhkplUpG4OB5nqysrATz1j5MUTWO+JZcph79rGjJcdJBMm/Wg1auXElpaWmMLaj7tW7dmu7du0dFRUW0cuVKatKkCUmlUuJ5nurWrUuTJ0+m1NRUGj16NCmVymqdEo1GQ0qlkho2bFht5//jjz9SZmYmuQ9dQg7j95NJq/5kP2orOX53jCx7zyJOalD595QjZNrha7Ie8COJFKYCw/fhPKdRo0aRubk5GRkZkUQioWnTptHUqVNp4MCB1KlTJ/L19SUXFxeysLAgQ0NDwZil7qczMBzHkY2NDdnZ2ZG1tTWZm5sLpmlUPcfQ0JCsra3J1dWVPDw8qEGDBmRoaEhisZisrKwEhCie50mhULBJ/WFhYSSVSsnKyoru379fo4On0WhozZo1bCpESEgIyzRUhyVLlhDHccRxHInFYsailcvlNHr0aPL392dlcmw/4LMp93UmHSTP8JGCaE2r1dK+ffsoPz+/xnJlZmbSxo0bKSIigtzc3FjkJZVKydPTkyIjI2nv3r1sDPdDXL58mTiO++RE+OTkZAoJCRFEdqampjRz5kxSq9V08eJFMjMzI0NDQzpw4ABJpdIa5yFWh7i4ODIwMCBHR0e6du0aGRoakru7O8t4cBxHu3fvpjt37tCqVatqfd2qqyVVZSR/CJVKRTNnzqz1df9u+McZvuLiYpJKpfT999/XeMzMmTOJ4zhSKpUUHR0t2FdUVERdu3YljuMoKCiIsrKy9Caf1xaenp5kb29fK3bZyJEja2Tr1alTR2/QXQfdyg8AaMGCBR+9R2pqKgUGBrIO62ORBM/zZOLqTfW+/8CoTa45evqw45LZuuulvsRiMY0YMYLNazI0NKS2bdvSL7/8wsZGdFCr1SSXy6t9l6NGjSJDQ0MqKyujFStWCKJVnfHwatJSL6Wm+0ksncmixzTBNpGRuTDiiz5BjpMPk4mVvR4LVSwWk0KhIAsLC3JwcCAXFxdydXUlNzc3cnZ2Jnt7e8ZM/bBedYQEpVJJPj4+FBwcTIMHD6bp06ez7TpvW6VS0ciRI/We//bt22wFGaVSSc2bN6eysjK6ceMGbdiwgaKioigwMJBR43UMYZ0RMDc3p/r161P79u1p+PDhtHz5cjp//jzl5+fTwYMHGVu3adOmjLKvw7lz50gkElF4eDhpNBpasGCB3jNu3bqVHB0dSWZbj8w6fE1Sm7oEkZgUjToI6tcsNIrEKlviJHKSu/iR/ZgdVRyoQ2RZ359evHhB+fn5LCuxb98+IiLKysqiTZs2Ue/evcnNzY3Vq6GhITVo0IAGDRpEe/bsoW+//ZYkEkmN8x8/hKmpKY0dO1Zv+6NHj6h9+/Z6k85/+OEHvbZLVOlMDBkyhB1b2whqzpw5jHmt6ztSUlJIqVSy1P9fXWFl4cKFlJiYSB4eHtS8efMaj+vSpQt5enr+pXv8HfCPM3x9+/YlU1PTGo3N4MGDied52rJlC9nY2AgM3+bNm0kul5OZmRmdPn2a5s2bV+Pk89ogNzeXDAwMPply1S1HNX9+9emdAwcOEM/zjPVWFS9evGCpEJ7nqX79+vTixQt68OABLVy4kEJDQ8nR0ZF5eTrP0cXFhXieZyw/XerHycmJTExMSCqVUv1hS/VWhagz8WCN0ZPAYEw9RhY9p1VrVM3MzCgyMlJvzl91mD59OslkMkHH8vr1a+J5njZv3kxEJCD7zJs3j7Zt20ZLliyhTmN/JOdqolWHqF0EkYStV/gxw+c89Sg5hXxVrWNQ1QgqlUqysbEhDw8PatWqFUVERDDiiy4y37lzJ3uGzZs3E8/zegxiHUVelyKbP3++3vPrYGlpyYgPH7b3Z8+ekaGhIXl7ewv2paam0tGjR2nu3Ln05ZdfUsuWLcnFxYVNiakaNeqWj9O9s++++47Wrl1LPM8LVkGKjIxkkXZVx4PjOLL9YjZZ9ppOlr2+J6VvqMDwWfdfSLyhCdkOW0uOU46Q0jeUZHUaCYhGdYf8yMa5qi7lpUulGhgYkIeHBw0YMIB2795dYzTo5uZW6zG20aNHM5LRvXv3qE2bNoLo3cLCghYvXlztO6kO48aNI47jSCaT0ZYtW2o8rqysjNq2bUs8z1e7cIau3evaXnh4eK3uXx2uXr1KHMexFWA+xLFjx0gkEn3WlJC/E/5RskQpKSlwcXHBvn378MUXXwj2abVaBAcH48KFCzhx4gRCQkJga2uLIUOGYMSIEejSpQseP36Mb775Bp6enpg2bRpKSkowbtw4LF68+C8rMMfHx6N9+/bYvHmzQOOrKubMmYMff/wRRUVFNd7H1tYWbdq00ROldHNzQ0ZGBogInp6eSEhIYAoNJiYmcHNzg7+/P0JCQhAaGgpDw/+I1xYXF+Prr7/Gr7/+yrb5+Pjg8uXLKNaK0OrH8wJ155rwZuu3MGnVn4lb6sBpNXi1ZpCenpxEIsH8+fMxceLEGqVkKioqkJycjCdPnqBnz55o1KgRGjVqhPT0dFy6dAnl5eUwNTVl2mdVmzH3bx05s7AJ4N2aC65Lmgpk7J8NsaktzDt/K9iXtnYwLLpOgtxJKKbLp9zAy71z2d8ymQxr165FeHj4R2VrQkJCkJycjLKyMpSVlaGiogKZmZlsv4eHB+RyOe7cuSM459y5c1i1ahWioqKg1WqhVCoxefJkzJs3jx2n1WphYWHBxFmriio/fPgQfn5+aNSoEf7888/Parvl5eW4e/cuEhISkJSUhGfPnuHp06dISUkRqJ5LpVIYGRnBwsICb968QUFBAXieh0wmw+rVq9GjRw9YO9WF47c7QHzlO/5QMif3/FZoK8phHjwaAFBRkI3XawfDbuRmSExtAVQq0L9aEyloQ6ampli1ahXCw8NrrdOYlpYGFxcXTJky5ZMyZL///js6deokkJeysrLCd999h7Fjx362/FFoaCjevXuHtm3b1ih59PTpU7Rs2RJqtRoXL16sVtB5zJgx2Lx5MxQKBaRSKbKystCzZ0+mVPG58Pb2hlQqrVaRQavVQiaTYf/+/ejZs+dfuv5/M/4RskRhYWGIiIhA9+7dUa9ePT2jV15eDi8vL1y5cgU3b95ESEgIgMqXe/r0adStWxc8z+Pnn3/GgQMHEBUVhV69eiEvLw9Lliz5y0YPAAIDA/Hdd99h5MiRePr0abXHrFy5kmnz1YTFixfj0KFD2L17N0aMGAE/Pz/I5XK8ePECxcXFKCoqglarxaRJkzB58mSmAL1q1Sps2rQJERERAqMHVKrK79mzB3l5eXB2dgYA3LlzBxYWFlh17E9wH8iXVAdNUS7UOa8htdQXeBWLRZi26Sh++OEHgaK7Wq1GdHQ0JBIJjI2NYWdnBwsLCxgaGkIsFoPjOEgkEri7u6Nr165Qq9VISEjA3r178ccffzBDl5OTg5KSEj2xTiJCUVERDFXmH2zXIuvEMkAkhlmnUZ98Nh3KIIKNjQ0AoEGDBigrK4NKpfqo0SsvL8cff/yB/v3749WrVzh//jzy8vIEnW5MTAzu3buHffv2sW1du3YFx3E4cOAAgEqpnOHDh2PVqlWC63fq1Ilpp+kkoQDg3r178PX1hb+//2cbPaDSoDVp0gQjR47E6tWrERsbi6dPn2LlypXgOA7u7u7geR4SiQQ+Pj7w9fVFQUEBgP+opX/99ddwdHSE0qvDp+8veHeV/1dnprAtPM+j08iZzBDwPI+SkhIMHDjws8SJHRwcsHr1avz444+4d++e3v5//etfaNKkCUQiETp16gSg0kFbtWoVNBoN0tPTP+qofQz3799HixYtsGrVKjx48EBP8mj37t3w9PSEs7Mz3r59W63RO3XqFNavX49du3bh5cuXAACVSoXDhw9XK/NUG+zcuRMJCQlISEjQ28fzPDw8PLB58+a/dO3/dvwjIj4nJyekpaVBq9Vi2LBhWLVqFRQKBYBKQcxGjRqhtLQU9+7dg4ODA4DKhtSlSxeIRCJMmDABBw8eRHJyMsLDw/HLL79ApVL9r5axSZMmSElJwZs3bwQfz5YtWzB69GgUFBQINNfevXuHmJgYnD9/Hnfv3kVqaiqKi4vB8zwcHBzg6uqKCxcuYPLkyViyZAmcnZ3RtGlTFhEWFhYiIiIC586dQ7du3fDbb79VK5qr0Wgwd+5cBAcH4/r165g0aRIAwLzrRCgbtf/oM30setKh8P55ZJ9cXut64nme/XQeNxEJoo0Pj+c4Tk+H0MPDAyadx+KdvNIgExGyY1ehIi8dVn3mgJfI9K5VU8RXmHgeeadXo6KiAmKxGBUVFWjTpg2MjY1Z+aiKYjYR4fnz50hJSYFCoYBWq4W/vz+eP3+ON2/eoHnz5qxMz549Y6KtQKVTcPfuXXAch8aNG4OIoNFokJiYCFtbW5iZmSEtLY05K2/evIFIJIKDgwNKS0uRmpoKuVwOOzs7Qdl0P919q9v24T7d37qo2sDAAHK5HFqtFsXFxTW+E6DSaBiHRAna0IcRX0nyHWTFLIF1/wUQm9oh94/NKLxzBhbdJ0Ph2e4/F0u+jj4OxWjXrh369OkDIyMjPHr0CGZmZjXevya0adMGjx8/xrt37xAfH49Jkybh3r17TEvRzs4OM2bMAM/ziIqKQmlp6f/I8QUqtfNOnjzJHG4AmDVrFhYuXAilUon8/HxMmDABy5Ytq/b8rKwsODg4oHfv3ti9ezeAyu+7fv36KCoqQn5+PgYOHIidO3d+dtkCAgJQXl5erTMwd+5crFixgokz/5PwjzB8FhYWyM7OBlCZ5vL29kZMTAwqKirg6+sLMzMzJCYmQqlU4v379wgPD8elS5cgFothYmKC7OxstGvXDrt27WKG8X8bxcXFsLW1RdOmTXHu3Dm23c7ODl5eXggMDMTFixeRlJSE9PR0lJeXw9DQEI6OjmjcuDHat2+PnJwczJw5EwUFBfD29oZEIkFSUhIAYMGCBVi0aBEKCwsF9z137hz69u2L0tJSbNq0CQMHDhTsLysrg1wuh0KhgFKpRGhoKPbs2QPT8OkwqNukxuch0iLr2E/QlhXDKmImOFH1nnD5y1t4+9tsve1V00g1QWfUeJ4HETHldxMTE0gkEohEInAch5KSEuTl5QGoVJxXq9UoKSmBRZt+MGjaB7xEhuzTP6M84yWs+80HLzUQPkuFGgDh9cavYR42DvI6jQCRBBzHQasuQ/7lX5H35yHBOebm5jA1NYWxsTErR9XfjRs3WNvy9vaGqakpAODy5cuwsrJCw4YNWR3ExcXBxsYGjRs3BsdxOH36NDQaDYKDg6FQKMBxHK5fv47MzEy4ubnhwYMHCAwMhJ2dHZ4/f47r168jODgYZ8+ehZ2dHTp37szKoXMiKioqUFpaipKSEpSWlqKsrIz9W1ZWhvLycpSVlUGtVrNfRUUFioqKUFFRwSJ2nXH/FCQSCVTdo2Ho3oxt+9DwAUDBrRPIvxkDbVkJjJt0R961g7DqPavyHfwbqqJUpO75Hjk5OTA3N0dpaSk0Gg0uXbqEgICAT5alKg4fPozevXsLnsHBwQGzZ8/GV199xYycVquFgYEBVq5cidGjR3/WPaoiKSkJjRo1glqtFji879+/h7+/P168eAGO4zB79mzMnq3/nQBA/fr1UVZWhhcvXgiMcGlpKTw8PJCdnY3CwkIMHToU27Zt++zyeXl54V//+pdAMBioNLiWlpZITk6Gk5PTZ133vx3/CMMnlUqZqnGXLl1w9OhRWFhYIDc3l41ziMViLF68GLNmzYKpqSlsbGxw7949WFlZIT4+Hg0aNPj/Xs7r16+jefPmaNu2LTQaDe7fv886bJVKBVdXVzRp0gTBwcHo3LmzXmpSd1y9evWQkJCAV69ewc7ODkBlas3AwAAxMTHo2rWr4BytVsuU0728vBAdHY20tDQ8fvwYL1++RHx8PPN4dbDoNgmKhkHVPkdtoicdaor4goODYW9vD2dnZ7i6uuL58+fYv38/Hjx4AJFIBK1WC7lcjh49emDx4sUwNjaGqakpPDw88PDhQ8G1ioqKMHfuXEycOBE2NjY4c+YMwsLCALkRnKJ2ojw/G6/Xf1VpzPj/pFzNOo+BsmEQ0tZ9BU1+huCa9qO2QqyyhkzM49KUQDRr7ImUlBQQEVQqFZRKJd6+fQutVgsrKyv4+PggLCwMX375JR4/fow2bdqgS5cuuH37NtLS0th1t27dihEjRuDt27ewsrICAPz6668YOHAgHj9+DHd3dwQEBOD27dsYMmQI+vXrh6ysLKSkpGDatGkAgBYtWsDa2hoFBQXIz8/HjRs3AFSOPSoUCpSXlzPD9aGhEolEEIlEEIvFkEqlkMlkkMvlMDAwYM6PkZERjI2Nce/ePSQmJqJfv37o3LkzzM3NYW1tDSsrK1hZWcHAoNKBsLGxQXp6OrtHUFAQLly4AKvwKZDVb8O2V2f4qkKd8xpvfxkL+zE7IJL/Z8zS36wCrcUvcO7cucrx5+JiFuE3bNgQixcvRlhYWLWRmVarRUxMDKZPn47Hjx8L6mLs2LFYsWJFjRFdaGgoXrx4gcePH1e7vzaYO3cuVq1ahZycHLbt8uXLCAkJgZmZGf7880/s3bsX0dHRcHBwwJkzZ1CvXj127MiRI7F9+3akpKSwdHtVlJeXo2HDhnjz5g2Ki4sxcuRIbNiw4bPK2LJlS+Tm5up9V0Dl2OaAAQOwYsWKz7rmfzv+NoYvq7AMB2+l4dG7fOSXVsBYLoaHjTEi/OxgZWwIQ0NDnD59Ghs2bMDevXtBROA4Di9fvkReXh66d++O1NRU1snWrVsX2dnZGDFiBBYtWvS/Xt7i4mLExsbizJkzuHXrFl68eIG8vDzm5fv6+iI5ORnOzs64efNmrdMp06dPx6JFi/DDDz9gxowZgn3+/v4oLS3FiBEj8OjRI7x48QJv3rxBZmYm8vPzUVpayj58mUwGe3t75gAUFhZCIpHA3t4eQ4YMwc1iU9zT1gEnluqV4WPRU1Xw2gpIH5/D85MbWbSmg4GBAaysrODm5gZvb2+0atUK7du3B8/zmDdvHnbu3Ins7GyIRCJoNBrI5XIW3b169Qp16tQRXC8pKQnbtm3D7t27kZGRAZlMhrKyMrhELgLZe+GvtHKOA0I8rbFhYADq1q0LW1tb/Pnnn5g6dSrmz58PoNKZ2bFjB+Lj4/Hy5UuUlJSwSEuj0cDLywseHh4oKChAYWEhCgsLkZiYCJFIBGNjY5SXl6O8vBwlJSXVlkEsFkMsFoPneRQXF4PjONStWxeGhoZQKBQoLS1FQkICxGIxxo8fz8Yezc3NYWlpCSsrK1hbW0OlUn1Wym7w4MHYvXs3Dh48+ElyQ2hoKM6cOQNDQ0OUlJQwJ0rVog8sgwajrEIDaDV4f/lXaAqyYR4aBfAiQKuBOvcNJBZO0ORnIuvEcsgcGsC03eD/XLyiHDkXd6Pg+mG2qXPnzjhw4AC6d++OuLg4AJURZuPGjTF06FB89dVXOHLkCGbNmoVnz56x81xcXDBnzhwMHDgQkZGROHz4MDIyMgTEoKpISEhAQEAA3r17x5yUz0VQUBBKS0tx9epVAJWZmVmzZqFr1644cuQIeycZGRno3Lkz7t69i7Fjx2LZsmU4ceIEevTogQMHDiAiIqLGe1RUVKBx48Z48eIFSktLMWbMGPz888+1LuOzZ89Qr149nD9/HoGBgYJ9X3zxBRISEgT1+E/Af73hu5v6HAFSzgAAIABJREFUHmvjn+HCk0o2XFnFfyITuZhHhUaDsuTb2D97GBrZGcHMzEzQyerGZMzNzZGbmwsbGxts3LgRXbt2ZazO/6nh043H/fHHH7h79y7S0tJQXFwMqVQKW1tbNGzYEG3atEF4eDgaNGiAoKAg3LhxA8XFxczL/xRKS0tx+/Zt9OzZE+np6XBxcYGxsTEyMjKQl5eH0tJS1uEYGRnB1NQU1tbWsLW1hYmJCeRyOXieR1FREa5evYrnz5+D53kYGBgIWJEikQhyuRxGlnaQ9VkCiCSCclTkZXw0eqoKCQ+83xmFrLSXgu1jx46Fj48Prl69isTERCQnJyM7Oxvl5eUQi8UwNTVFnTp1YG1tjZSUFDx8+FDgqatUKpw7d46lubRaLcLCwnDmzBnBfVxdXZFWLILTVytQLgxoawWtuhSiuNXgclORnJzMxkg1Gg00Go0gmtIZO47jUFFRoZfKlUgkMDIygoODA8zMzBAfH4+vv/4anp6esLCwgEajwdChQ/HTTz8hODgY3t7eEIvFUKvVSExMhK+vL7p27YqYmBiWljp27Bh69uyJsLAwnDx5EhkZGR8l3NQWPXv2xPHjx3Hq1ClG9KgJubm5mD59OjZu3CioCyKCibUDTAatRt7VA8j7117BeSat+sO4STje7YlGxfu34KQGUHp1hKrtIEG7kol5hKqvYO2yxey71pFsunbtCk9PT4waNQoODg4QiUR4/vy54D4uLi5YsGAB+vbtKzD8Wq0WdnZ2cHFxYUapOlhZWaFnz57YuHFj7SrvA1hbWyMyMhKLFi1CSEgI4uPjsXLlSkRFRVV7/KZNmxAVFQWVSoXc3FwMGDAAv/zyyyfvoxtHfvDgAcrLyzF+/PjPitICAwORlpamZ+AuXryIwMBA9m3+U/Bfbfh2X0vGgthHKK3QfNRj5wDIJSKYv4rHv3b8qLef53mYmJhg2bJlGDp0KNv+VwxfUlISYmJicOnSJSQlJeHdu3dQq9VsPM7HxwcdOnRA9+7da/QS1Wo1DAwMIJVKUVxcjIqKCiQmJuL27dt48OABnj17htTUVKSnp+P9+/coLi6GVqtlHYqBgQFKSkrg5+cHmUzGoqLi4mLcu3cPMpkMWq0WarUaRASe59k4nkqlgqWlJczMzHDz5k28e/cOzZs3x9KlS9GiRQtB5zBi102ce5j+P4qW1vb3xaBBg3Do0CGUl5ez/XXr1kWvXr0wYcIElsIpLS3FpUuXcPHiRSQkJODp06d4+/at3rilDhKJBGZmZsjKytIjtwCVDkBRUREMvUNg2n4YeKk+uadGaMpR8q89yLhyCPXq1cOTJ08wadIk1K9fHxYWFrC0tIS1tTWsra0F7MKJEydi27ZtICIMGzYMS5cuxZUrV/Dbb7/h4sWLePbsGSMpSSQSjBo1Cv3790ezZs0watQo7Ny5E+/fv4eRkRHKy8tx8uRJ9OnTB02aNEF8fDwCAgKg1Woxffp09O3bFyNGjMD69ethaWmJPn36YN26dbV/xg9ARGzKT3x8PFq2bFntcW/evMGSJUtw+PBhpKamwsTEBAUFBXrpcmNjYwTN/BV3srQA9/kEkaoR96ZNmzB+/HhUVFRg586dOHDgAC5cuMDG9qvCwcEBNjY2ePr0KfLy8mBjY4PQ0FBMmTJFMKSRlJQEb29vLF++HOPGjau2DJMmTcK2bduQm5v72eXXarUQi8U4cOAAvvnmG5SUlCA+Pp4RmWqCrsylpaUYPHgwtm3bVqtoXavVolWrVrh16xbUajWmTJmCJUuW1Kqsr169grOzM06ePInQ0FDBPplMhk2bNmHw4ME1nP33w3+t4as0eg9Roq69q07qMtQtuIfzm+YKtstkMpSWluod/zHDp9VqcfHiRZw8eRJXr17F06dPkZWVVenJmpiw8Tjd/LjqGJO66zx+/JjNi3r69CmePn3KKOhVIwO5XM5+OvKGzoAVFxez8UAddOQcExMTWFhYwMbGho0bbt26FZ6ennB1df2op3bw4EEMGTIEIpEIe/bsEYwP3k19jy82XkFZLebyfQgpTxhSJw+yonfIyclBTEwMkpKSYG5uDgcHB6SkpCA/P58ZdLFYzJ5XF1FVxYcRVXXQ1SXHcYiIiEDbtm1hZmaGqKgomDbtDkmTvijTaD9uyLVaiHlgTrgXBjZ3xt69ezFkyBCUl5fjxo0bnyRTmJmZwc/PD/Hx8SgsLKy2XWRlZeHnn3/G3LlzoVKpkJeXB57n2ViZj48P3r9/j7S0NBARnJyc8PDhQ/A8j5s3b6JJk0rS0dixY9k0h3HjxmH37t3VGoLaQNdp3r59G9euXYOPj49g//Pnz7Fo0SKcOHEC6enpsLCwQGhoKL777js0bNgQrVq1wpUrVwTnZGRk4E2pBP02X0OJWt8x+RQMJCL8NqI5vB0qGdZHjhzBzp070bZtWyxbtgyvX79mx0okEsYytbW1RZ8+fTBu3DgQEX766SecOHECr1+/hrGxMdq0aYNx48ahU6dOmDNnDubPn4/nz59XS+DIz8+HSqVCfHw82rZt+1nlv3r1Klq1agWe5xmBpLpx+w8xbNgw7N69G2vWrMH48eNhaGiIo0ePonXr1p88V6vVokOHDrh06RI0Gg2mTZv2yXmLOgQHB+Px48dISUkRbA8ICICRkRFLK/8T8F9p+O6mvkfIiOnIvXMO5ZnJUDRoJxgQL3p4Ce8v74GmIBtiIwuo2kXCsF4lI4nUpXi3Jxrl756B4ziIRCJUVFTg3Llz6Nixo+A+OsM3c+ZMNh538+ZNNi4oEolgYWGB+vXro3nz5ujWrRtatmwpYH6lpKTg1q1bSExMxJMnT5CSkoJ37yo7+4KCAtaBi0QiSKVSiMViFsFJJBKUl5cLOmypVApDQ0MYGxszMoGDgwNiYmLA8zzOnj2LevXqYcaMGVi/fj3y8/MF3qCORfbmzRvY2trWWMdarRZZWVnIyMhAamoq5s6diz///BNOTk4ICwvDq1evcO3aNZQ7NoNZh+FANWN9NV67vBT5F7dD/eA8m0+oS6mamJjAzs4OSqUSJiYmEIlEePz4MZ4/f46cnBxIJBJ4eHjgyy+/xJAhQ+Ds7IyxY8cyz7W8vBzh4eE4ffo0TExMkJ+fr8cyrFqfunp8+fIlmnbuA/vgoUjMJnAASqukzUXQQCyWQJmfgsT9yxAR1ATr1q2DSqXCwoULMWvWLGi1Wnz11VfYtGlTtR64boqMvb09/Pz8EBMT89F66tWrFy5fvsyo9fv378fJkycFZBgAGD9+PCIjI+Hr64utW7di+PDhcHR0FHRQubm5MDc3x9WrV9GsWbMPb/VRVFRUwM/PD8+fP8edO3dY6v3evXtYvHgxzpw5g5ycHNja2iI8PBzR0dECI5GUlISIiAgBCUT3voG/5sQaSHh8H9YAA5s7o6SkBCtWrMCaNWvw7t07AJXv2NPTE/PmzUOPHj3Y++jcuTMbbywuLoaRkRGaNGmCwYMHIywsDOvWrcPevXvx5MkTiMVi+Pv7IyUlBRKJBMnJydWWxdvbm6WnPwfe3t64f/8+vv32W6xZs6ZW5xw5cgQRERE4cuQIwsPDUVJSgp49e+Ls2bOIiIjA3r17a5VyDAsLw9mzZ6HRaDB79mzMmTPnk+e8e/cOdnZ2OHTokGBcd/ny5Zg1a1aNmZe/I/4rDd+IXTdx9OgRABxKXiaA1OXM8FUUZOH1+uGwipgBuas/Sp7fRNbRxbAfvRUihQrQaqHIe4EoHxnEYjHWr1+PhIQE9OrVC4cOHcK7d+9w5MgRxMXF4fDhwyyCqDoe165dO4SHh8PIyAg3b97E/fv38eTJEyQnJ+P169eMPqyLPKrOOwPA5l7pqlYikcDQ0BBGRkZQqVRITExEYGAg2rVrh2PHjuHBgwd4+fJljYZq2bJlmDJlCuLj4yGRSJCRkYH09HR88803aN26NTw8PJCXl4f8/HwUFBTg6tWrUCgUMDExYZR1HUVdNzalg845EIvFICKUlZUJ7m1jY4M6Qf2RVacdtBz/0ZQVB4AqypD9xxa0tibs2LHjs0gB5eXl2LJlC3bs2IE7d+6gvLwcPM9jypQpmDhxIvbv348pU6ZAJBKxlVB0RIB9+/Zh8eLFSEpKYobPzs6OpW+vXLmC169fV3aQMiVUvp0htXaGhpfB3MgQ7RrXxbjuzfD6xWMEBwcDqEzVrVq1CrGxsbh37x7mzJmDoUOHQqlU4uTJkyzy0sHf3x9lZWV48OABUlJS9Ag4H6KwsBCmpqb44YcfEB0dzbYHBATg7t27rH1ZWloiKyurcnqFVgsHBwe8fv0aycnJcHT8z8IBnp6ecHBwwNmzZ2td56WlpWjUqBEyMzNx//59vHr1CkuXLkVcXBwKCgrg6OiIPn36YMqUKXrvMicnB/3798e5c+fg6+uLL774AtOmTQMRoXnz5oKxMzZsodbgYx0OxwFysQiTOrgi9fwerF+/nq12w3EcvLy8MG/ePISHh9d4jQ0bNmDMmDHo0KEDAgMDcejQISQmJkKtVsPZ2RmhoaH45ptvcO3aNWzduhU3b96EWq2GSqXC+PHjMW7cOME83j179mDw4MEoLS2tldHJz89HixYt8ODBAzRs2BCJiYmfPAeoNDxOTk6IjIzUmzgeGxuLfv36geM47Nu3Ty8dWR169eqFmJgYaLVazJ8/H99///0nz+nWrRsSEhIE0XRhYSGMjIxw//59NGrU6CNn/33wX2f4sgrL0OrH84zE8iEFuuzNY2QcnIc6Y/ewc1JXfQmr3jMhs6/M38vEPLZ2t0WvLsGCJaJ06RCFQgE7OzskJyfD1dUVAQEBePXqFZKTk5Gbm8siMh2qrmDyIQnExMQEpqamsLS0hL29PRwdHeHk5ARra2uYmpqirKwMmZmZyMnJQXZ2Nvbt24fk5GSEhoYiPz8fhYWFSEhIAMdxsLCwYHOqqqOj69J9IpEIEokEFRUVKC8vh5OTk4CO/urVK6SmpmLEiBEwNTWFqakpLCwsYGFhwajoNjY2kEqFUdyMGTOwePFiFqVyHIcHDx7Aw8MD99LeY138M5y6m1p5b6pSJ+oygOPQxs0UU7v64NWdy/jmm2/w+vVrdOvWDdu2bfvsyca6+UXNmjVDUlISWx1ELpejrKwMzZo1w7Vr13D69GnBxOD8/Hz88MMP2Lp1KxuXEYlECAkJwfv373H//n3cv38fY8aMwcmTJ+Hu7o7S0lJkZmayycofjlXZ2tqiSZMmiImJQXFxMbp164a4uDgMHjwYW7duBc/zyMnJgYWFBerVqweFQoFbt27V6jmnTJmCn3/+GXl5eex9dO/eHcePH2dl37dvH169eoVJkybB398fRUVFePToEYBK46wjTMlkMixcuLDWk64LCwvRoEED5OXlwc/PDzdu3EBJSQnc3d0xYMAA/D/2vjs8imp//53Zkmw2ZdML6SQhBZJAQkIvoScgIL2DVBEREQFRCHARRUERBEEQQRCCoAhCwIIKSBFCB6kSIKGE0BLSN7vv749895hl00Cv13uf3/s88yQ7c+a0mTmf8+kTJkyoMDpKaWkpxo0bh5UrV8LDwwNr1qxBmzZtYDQa0blzZ+zcuROTJk3Cu+++a3bfqcyHeG7BRtxTe8BKrTbjuFlaDECCdOss8g5/hXuXjgMo21RGRUVh5syZeOaZZ2o0pwDw66+/onXr1vDw8EBaWhqcnJzwyy+/YOnSpfjpp59w+/ZtaLVaxMbGYtCgQTh//jzmz58vOMVatWqhc+fOePXVVxEQEACtVos333wTEydOrLLdQ4cOoW3btrC3t0dBQQFefvnlSv3zysNoNKJ27dpQqVS4ePFihWX0ej369euHr776Ch06dMCWLVsqVbGYMGDAAGHlPm/ePEyePLnK8nfv3oW7uzvWrVtnFhHG29sbnTp1+t+J5FLToJ5/Fz76+bJZRH37Jn3MAtv6Tt5KK5+6dO0xnb6Tt9L12depsHOmz8TNfwS3fXUL7eKetQgsXFHSzscPhUJBjUZDR0dH1qpViwEBAQwJCWF4eDgjIiIYHh7O4OBg+vj40NXVlfb29tRoNFSpVBZZq2VZpkqlokajob29PV1cXAiUZQ+Pjo5m06ZN2bFjRyYlJYmEtnPnzuXy5cu5efNm7tu3j8HBwfTz86swWGxhYSFVKpVFWpKcnBxKksT9+/c/0dzn5+eLHH2yLNPJyYmyLPPFF18U7atsHTl64SZ6dJ/CpHe207XLK6zT7QXWb9TcIq3Sxo0b6eHhQVmW2atXL+bk5NS4L8HBwYyOjmaHDh1EFHxTRnP8X3BinU5HJyenSoMFnzx5kklJSWYBhiVJElnc169fb1a+pKSE27dvN3uO5fPK2djY0N/fn23atGHnzp2pVqvp5OTEQ4cOccSIEXRycqIkSdy3b1+Nx2kwGGhnZ8fnnnuOJDllyhTKsswePXqIgMyhoaGUJIkLFiwQ961YsYIKhYKzZs1i69atxbuF/wso3adPH65fv77CJKwGg4Eff/yxeSaLevW4YMGCCsuXx/vvvy8Ct1cUSDkpKYkAuHfvXotrv/76KwGwSev2IkP4wI9/YbNXV9CtZX/Kmj9yEmo0Gr733ns1nseKkJ2dTV9fX2q1Wh45csTsWk5ODufPn8/Y2FhaWVmJ3HZqtZqbN2/msGHD6OHhQaAsx6OHh0e1GRHmzZtHWZaZmJjI4uJiAhAJqqvDoEGDaGVlJZIcV4V9+/bRycmJGo2mRjk/hw8fLta98u9QZejRowfd3NzMzg0dOpQ+Pj7V3vvfgn8c4Xsp5ZhZdPzHCV9ZKpPxlFTWhCRTUlrRtWeyRQR+56SJFRI2U9T4igigQqEQOeucnJzo6enJwMBA1q1bl3FxcWzTpg27devGwYMHc/z48UxOTuaiRYu4bt06fvfddzx+/Dhv3rxZ6UI8adIkarXaConYhg0bKEkSU1NTxbmFCxdSluUqsysPHTqUTk5OFufDw8PZrl27Gs97dnY23dzc6OzszIYNG4qPdvny5bSysqKrqyv37dtHoCyfHgA+ePCAV65coZOTE52dnTlq1ChKksT+/fubjXHNmjV0dXWlQqHgoEGDqsyTSJZlLjcROdPGwsbGhsuWLSNZRvAXLVrEqKgo8UxDQ0P5xhtvVLhwGAwGrlu3ziIDfUxMjEX2dKPRSDs7Ow4YMIB2dnbs0aMHFQoFN27cyJUrV3LEiBFs1KgRPT09LRKPWllZ0cbGhosXL+Zvv/1W48j2K1eupCzLfPvttylJEteuXUuDwWC2mVqyZInFfQ4ODnz++efFb71ez+joaDo4ODAkJET0T6fTsXHjxkxKSmJERITYCKjVai5ZsqRGWQZ27NhBDw8PKpVKjh8/vtKxmRIQP37dlD4JABs2bMixY8fSwcHBbJMYHx/PHTt28ODBg6xfv75I9rx9+/YazWNFMBgMbN++vcjIUhkOHjzIfv36mWU1b968Od99911OnjyZfn5+Ys6aN28unhFZNu+mNubPn0+S3LVrFxUKRY36+MUXX1CSJO7YseOJxjV06FBKksRmzZpVu6kcN26cGNuiRYuqLPvgwQMqFAqz+TKlwaru2/1vwT+O8A1bfbhKwufWdw5lazt6DHmfvlO20WPIe1RoHek5bJHZfW49Z1gQtpdeeokrVqzg1q1beeDAAbq4uHDixIl/y7gMBgO1Wi0nT55caZmBAwfSysqKd+7cYVZWFpVKZZV5Bck/EtiaUvSYYNrR12TxPX/+PG1tbRkYGMj8/Hzm5uby008/Fdfz8vLYvn17s80DALHjLywsZFRUFNVqtUijExgYaEGEli9fTkdHRyqVSo4cOZJFRUUWfUlNTRXtODo6UpZlDh8+vNLFuUePHnRwcOAzzzwjkqG6ublxwIABPHr0qFnZxMREKhQKQTDLc3XDhw8X/TX1a8eOHaJMZe3n5+ezW7duopxOp6Otra3YXNna2jI4OJidOnXitGnTuGvXrgoXDxPHVj6nYmxsrKi3ooVt9uzZIiO8CYcPH6YkSbx37x4LCwv52muv0c3NrULpR9++fbl582YWFxdXODayjGDVq1ePkiQxKSmp2gStpjGXx7Vr10S6pcc3mo0bN+bOnTsrrOvSpUts3bp1WXojT0+Ld/xJ8MYbb1CSJI4cObLKcvv27aMkSRw4cCDj4+NFHkMfHx9qNBrWq1ePDRs2pEqlokKhYEhICG1tbanVann48GFRz/PPP89atWpV26/MzEyqVCqzDcyT4OjRo/Tw8Kg25RFJTp482eLbrQz9+/ens7Oz2TmNRlMt0fxvwT+O8FXH8elaP0dNcCOzMprgRtS1fs6c8HV9tVJxpiRJQuxpynIcHh7OJk2aMCkpiYMHD+akSZP47rvv8vPPP+fevXt59erVGuffqggLFiygWq2usg6DwcDAwEAGBgYyKiqK/v7+Naq7b9++FqIJE8dQ3cewb98+qtVqNmrUqFoi+dFHH5nNY1hYmNn1QYMGUZIkvv766wwICKC1tTW/++47i3ref/992tvbU61Wc9y4cdTr9bx16xYbNWpkVn/jxo1548aNKvuUk5NDhUIhOKIrV65w3Lhx9PPzE4luW7ZsyZCQEKpUKrE4NWvWjA4ODuzYsaOZKNTPz4+rV68Wc1GnTh1WpxEICwujt7c3FQqF4Hj1ej3PnDnDRYsWceDAgYyJiaGrq6vIKadWq+np6clGjRqZEc6TJ0+SJCdMmCAWKUmS+P7771u0azAYaG1tzZkzZ5rNh0ajoYODgxh/hw4dmJqayrNnz9La2poBAQHs16+fWYZyJycnNm/enLNnz2Z6ejofPHjAjh07UpIkRkVF8fz581XOAUlevHhRcNKm34MGDbJI4guAX331VbX1mZCdnc2ePXtSoVDQwcGBs2bNeqo8cVu3bqVSqWRMTEyVxH7MmDFUq9Ui/2VaWhqHDh1KOzs7IYZt3Lgx27dvb5bP0tfXl+PGjeO1a9cYHR3NTp06Vdkfg8FAX1/fGucJrKqe8ePHU5ZlNmjQoEpxaXJysngGVW0kHj16RKVSyQ8//FCca9asGePi4v5UX/8p+McRPpOOz3fyVvpO+or2jXpSG9GavpO+ou/krXTv/xZljb3g8DyHfkDZ2o5ufWabZW5+XMcnSRLJsoXh9OnT3LFjB+3s7NisWTOOHTuWvXr1Yps2bRgTE8Pg4GB6enpSp9PR2traQkekVCppY2NDJycnent7MzQ0lHFxcezQoQP79+/Pl156iXPnzuXq1av5/fff88KFC3R0dOSQIUOqHX9WVpZo7+LFizWaswcPHlCWZQudVZs2bRgREVHpfRs3bhT6pJpg7NixFgvYnj17zMosWrSIsiyzW7du7N27NyVJsshyT5Z9rHPnzqVWqxXjtbGxEVzTTz/9VKM+kWU6DHt7e4vFMD8/nwsWLBDJVGVZZlhYGJOTk3njxg3a29uzffv2NBgMXL9+PYOCgsy4kU6dOvHZZ8veo4rGQJYldjURmIkTJ3Lr1q3UarV0dHSsVNf34MEDbt68mRMnTmTTpk1F30xtm0SUDRs2FP/7+vpWuNiPHTuWdnZ2nDhxIn19fQU3p1arzXS8R44cEWK6x+s5f/48p0+fziZNmgiu2TQHbdu25datW2u06TNlYg8KChJzbqqnUaNGlCSJ8fHxdHFx4e+//15tfY8jPz+fzz//PK2trWltbc2xY8dWq5N8HJcvX6ajoyNdXFwskgCbYCJIkZGRFu1LksQXXnhBiHQBsFatWuzSpQsTExPNuOvIyEgeOnSo0r7069eP1tbWFSaYfhqcP3+e/v7+VCqVVery3n77bdHH8jr5x/Hcc8/RwcFBvC8rVqyglZXVX9LX/zT+cYQv+1ERQ95IpUPTfhaLrEPTfvSbup2O7UZTqfOkpNZQ6eBOx8e4veDXd7BOZIyFHq9hw4acNm0aL1y4QJIWGdirQ2FhIS9evMgffviBq1ev5ty5czl+/Hj279+fHTp0YFxcHENDQ1mrVi06OjrSxsZG7PDLLwLW1tZ0cHCgp6cng4ODGRMTwzZt2rBXr14cNmyY6PfkyZN56tSpSrNKl0fXrl0tRCu//PILJUmqUEy2YMECSpLEl19+ucbjN4kxdTodvb29aWVlRVmWzTgOktyzZw+tra1Zp04dLlmyhAqFgnFxcRaLVEpKCm1tbc0WfRsbmyfezRcWFlKtVvNf//qX2fni4mIhikpPT2dqaiqTkpKEbsnJyYkAOG3aNHHPo0ePOGnSJKGPMm12JEmqUNfat29f6nQ6KpVKMb7CwkJ26tSJkiSxb9++lRKNnJwc6nQ61q1blwaDgZcvXxZtNmrUiL6+vmbvsEKhoI+PD1u0aMFBgwYxISGBrq6uYt769+/PU6dOMTs7m5IkCYOOPXv2UKlUVsuBLFq0iFqtltbW1hw8eDD79OnDgIAAKpVKSpJEFxcXtmrVim+99RYzMjLEfUePHmX37t3N+qpUKpmQkMDdu3eTJDdv3kylUvmXZPQ2GAycNWsWHRwcqFQq2atXrxoZhZhgEs2rVCoznXp5XLlyhQqFwuKdio6Opo2NDVUqFTdt2sSTJ09yxIgR9PHxEQYy0dHRBEBvb28hVWrdujW/+OILMf7169dTkiTu2rXr6SeiEkyfPp0KhYKhoaG8du1ahWU++OAD8azWrVtXYRmT8dw777xDsux7kiSJBw4c+Mv7/HfjH0f4SHLkZ0fo/9p2C4OVGh2TtzFo6DwmJyczKSlJGAh06dKFCQkJdHZ2FrtqhULB6Oho7t279y/5ICuDn58fO3TowKtXr3LPnj1cv34958+fz0mTJnHw4MFMTExkkyZNGBERIfprIpjlFxNZlmllZUV7e3u6u7szMDCQ0dHRbNmyJRMTEwmAPXv25IcffsgtW7bwyJEjtLe3t9BjmsRoFYnPqkJycjJdXV3p6OjIuXPnkizDrWD6AAAgAElEQVSzZFMqlfTx8RFiOpK8ceMGPTw8aG9vzx07dtDJyYk6nY6nT5/mxYsXGRERQQC0t7enJEmC81Gr1dRqtZw7d+4TPZNJkyZRo9EIIpOfn09fX1/qdDreunXLovzly5f5/PPP097eXoivEhISmJKSIto9ffq0hQFLZGSk4ORMokadTsdu3bpZtLFt2zZqtVrqdDoLzliv19PX15deXl5C7Na3b1/RFxNHUf75u7q6Mjg42GIzZSoXGRnJPn36cP78+fTz82PHjh25Y8cOKhQK9unTp9K527VrFz09PalQKDh27NgKCfXp06f52muvMT4+XszZ41bMpuP777+3uL9jx46sV69epX14WixfvpweHh6UJIkJCQm8fPlyje81GYfMmjWrwusLFiygLMvCMvPw4cPCyrciaUxhYSGXLVsmxOMA6OHhwZiYGIaEhFCpVFKpVDI8PJyyLHPs2LFPN+ga4Nq1awwNDaVCoWBycnKFZZYvXy76WZl16NixY2lrayu+CZOY/L8d/0jCd+L6A4ZO3/lUhC/49e208goxE0sCMLOYKiws5Lp162hlZUU7OzvKskxZlunj48OePXsyJSWlSh3Ak8CkLK9s51Uey5YtoyzLQp8SERFBLy8voQM7dOgQN23axA8++ICvvfYahw8fzq5du7J58+asV68eNRoNZVmmnZ0d1Wq12cIky7Ig9qZFtG7dumzatCm7dOnCoUOHcvLkyXzvvfeYkpLC/fv3MyMjw4z4jB49mn5+flSr1dyyZYs4n52dLURZgwYNEgunXq9nkyZNqFQquX79emENCoB2dnaUJInR0dG8fPkydTode/bsSb1ezxdffJFqtZr29vZcuHBhjebZYDAIceODBw/o7u5ONzc33r9/v9p7o6KiaGdnx6ioKCqVSioUCkZERHDWrFnCvH3hwoVmi7tarWbjxo0FN1ieAyqP4uJi4a7Sq1cvMTcxMTG0t7cXYq7u3btToVAwODjYjPt9nPC6ubnx5ZdfFsS8uLiYW7ZsIQDGxcUxJCREECbTYWtry7Zt23LSpEn8+uuvhQTg/PnzjIqKoiRJ7NixY7Vz9eOPP7J9+/ZmOjsTl1P+XWvbti3nz59vtuFwcHCwkAz8ldi2bRuDgoKEW9Cvv/5ao/uWLl1KWZaZlJRU4UYrNjaWnp6enD9/PmVZZvv27anRaDhnzhxmZ2fz5s2bomxaWhrnzJnDtm3b0tfXl2fOnBHfjCRJwujL9A1KkkR/f39OnDixWl3202L+/PlUKpX09/evUE/72Wefiee2efNmi+vFxcW0srISm4Nx48bR3d3939LXvxP/SMJHkmsPpjN0euoTEb3Q6alcezCdBw4cMPs4fXx8KiRkHh4enDx5Mg0GA3fv3s0RI0aYmYG7uLiwbdu2XLRo0VPL4evVq8f4+Phqy927d49qtdqMO8vJyaGNjQ27du1ao7ZM+qbyBiU3btwgAG7atInBwcFUKBQcOnQox4wZwx49erB169asX78+a9euTQ8PDzo4OFSo1zRZsZnOBwUFsVGjRuzUqRMHDhzIl19+mQMGDKBaraaNjQ1XrFgh5vyFF14QojrTAqlWq/nNN9+QJCdOnEhra2szUWhhYSFHjhxJpVJJR0dHLl++vNrxz5kzhyqVSohi8/LyajRvjx49oo2NDbt3706DwcBvvvmGnTp1EsYM7u7uHDp0KHv37i10S+V1WCqVqlJxkQmpqam0tbWlg4MDmzRpQrVaLbiTTp06UalUctSoUWbzXv6QZZkajaZSX7KEhAQGBQUxPj6eSUlJXLp0KQEwPDycw4YNY3x8PD08PMS7beIkNRoNu3btyiVLllS4MKamprJ169ZmXKZarWbHjh3NdJjHjh0TG6qYmBgzQ5CQkLKN6JdffvlvlayQZb6CDRo0oCRJDAoKEu9YVTh48CA1Gg0DAgIsrFZN+nMAfPvtt1lcXMymTZsKMX/fvn1F2U8//ZRKpZKyLAtLVJOOr7i4mJ988omZv6WzszN9fX3FXLm6urJ///48fvz4XzonWVlZrF+/PmVZ5oQJEyyegcmdAgC3bt1qcf/EiROFCsIkjn/w4AEzMzNZWlr6l/b178I/lvCRJuK3s1qxp/9r2xk6fSfXHkwX906fPp0ajYZKpZJarZZWVlaCyJng6elZqXvB2bNnOWXKFMbExAiHZ1tbW8bFxfGNN97gpUuXqu3/b7/9RkmSavQix8XF0dvb2+L8nj17KElSjRZ+kmzVqhWDg4PNzvn5+dHGxoa2trY1Npgx4dGjRzx79ix37drFOnXq0NvbmwDYu3dvtmvXjrGxsQwJCaGXlxd1Oh01Gk21QQJM4k0rKyt26NCBkiSxU6dOXLlyJXft2sWzZ88Kk//8/HwOHjyYCoWCrq6uXLNmTaV9vXLliuAmn5Rj3717t/ChMyE1NZVKpZKjR48W4zYtWOV1JOWJU6tWrSo1miguLqa/vz8BsFWrVtTr9UxISKBCoeCUKVPYokULC27q9u3bwlFeoVBQpVJVKLoyLUhqtVrU4e/vz/DwcFHGYDDwxRdfpCzLgsPu2LEjg4KChE7TxMGVd9w3EfekpCT+8ssvFY7t9ddfF64nJuTk5HDFihWsXbu2kKpIkkQPDw927NiRixYteiLd3JPg999/Z5s2bUR71X0/2dnZ9PHxoVarFW4wGRkZ9PLyopWVFQHw3XffNVNDADDbqF6/ft1s3lxdXXn37l2+9tprnDRpkvBP/eGHH3j+/HmOGzeOgYGBYmPp6uoq9M9arZbt27fn1q1b/7LNwscffyysiY8dO2Z2bdu2beK7fdyfUK/X09rampMmTeKbb75JhUIhiPXBgwf/kr793fhHEz6SPJnxgKPXHmHIG6ms84Y5Bxg4ZStD3kjl6LVHeDLDfKdWWlrKmJgYDhw4kAaDgcnJybS2tqZWq+W8efNoMBiqJHyPIysri/Pnz2fr1q2FUYSVlRXDwsI4ZswY7tu3z+IFbdGiBevUqVNt3SYH5jNnzlR4/fXXX6dCoaiRSfnly5cpSZJYoG7duiW4kz+7yERFRbFx48ZUKpXVlt29e7dYIEx/AwICqFAoaGNjwxYtWohFwhQlxmQM9LhBh7W1Ne3s7ER5pVLJiIgI9ujRg6NHj+aMGTM4Y8YMsXhUZtBTHSZMmEClUinEllOnTjVzE3n06BFHjhxpQRDmzJnDjz/+mJ6enmbixenTp5vpy0wGRdOmTRO+fuXratCgAT/66CPevHlT6EDz8/M574OljBk4lc5dXmHMxJV07TKJC1JP8e4jcz/I8u2rVCqGhYVRkiQ+ePCAS5cupVarpUajsbD4M1m1xsXFmfVJkiQz8biVlRW9vLzYuHFjjhw5kqtWrRIi/ObNm1OSJG7atMliXoOCgtizZ0+S5KFDhzhhwgRGR0eLDaWNjQ0jIyM5bty4Cr+jP4O7d++yd+/eVCqVtLe358yZMyut32AwsF27dpRlmePGjaNKpWJ4eDizs7PNLH5N77MsyxZRk0zPQKPRCALq7+8vNiMV+RHq9XquWbOGbdq0EQRFq9UKlxSVSsWYmBguXrz4T6tgcnJy2KxZM0qSxGHDhpnNxXfffSee/+NuSP3797fY6KlUKt69e/dP9ec/hX884TPh7qMiEeboudWH+eL6NOoa9WTKlsqjOhQVFbGkpET81uv1HD9+vBCH2dvb15jwPY7CwkKuXbuW3bp1Y61atSjLMhUKBX19fdm7d2+uWLGCAKq12nrw4AHVajXHjx9fZbm4uDg6OzvXyKy8UaNGrFu3Lk+fPk0bGxsGBwdTlmV+/fXXTzTGxxEYGMhGjRrR3t6+ynLJyckiCo7pI/H39+eVK1d47949wYEuW7ZMXH/xxRfN6jAYDMzIyOAvv/zClJQUvvfee5w8eTL79esnDD+USiVdXV2FCf7jEXlMek07Ozu6ubnR39+fkZGRbN68Obt27crhw4dz6tSp/OCDD7h582YeOnSIQUFB9Pb2psFgYIcOHRgbG2sxvvLO/BEREWKx8vLy4qBBg9i7d2+zsQcFBQlT/2eeeYb16tWzWESsra25bds20YbRaGTTZ/qz7awvGPxGKoNff0zK8eoWhryRylFrj/DE9Qc0Go3CHaR8aD7TZk+hUHD06NHi/TEYDFy1ahUbNGhgEaKta9euFmb49+7d46ZNmzhhwgS2bt2afn5+Zm4ipvu7dOnCOXPm8JdffqFer6der6csy/zxxx8rfFfu3bvHpUuXMikpiZ6enoIz9PLyYlJSEj/66KNqneZrgsLCQo4bN05ws2PGjKk0CokpclFoaCjz8/Pp4OBgNsawsDBB/B4n9CY99ieffEKyjMsvL762t7ev0sWBLNu8jh8/nkFBQWJdKe/2ExQUxKlTp/6pjWxKSgo1Gg2dnJzMRNZ79+4V787u3bt5/vx51q5d20LXDJS5Hf234r+G8D0Og8EgRDtP6hNUWFjIIUOGiN1mRUrdp+nPDz/8wOeee47BwcHi5XF1dWX79u25ePHiCj/gxo0b08vLq9pdbmFhIe3t7ZmQkFBtX86cOSO4pRYtWtBgMDA+Pv5PO5+6ubmxQYMGlcbs+/777+nm5ibEQTqdjhs3buS1a9dYr149EfdTr9eLGJzh4eFMSUmhUqlkVFQUHz16VKO+ZGVlCZcB4A+nabIs/Jtp0/HVV19x8eLFnDZtGkeOHMlu3bqxZcuWjIqKYmBgIN3c3Ghvby90No9/3EqlUuhiIiIi2KRJE6GzkiSJ8+fP5/r167lmzRr26dNHxHe0tbVlo0aNhGizPDHWarVUq9UMCwszu+bk5CR29GsPprPO9FT6V6PXNon5B85aLoiei4uLmcjNtDPX6/VcunQpIyMjzTYI1tbW7Natm1nkkZpCr9fzwIEDYmx169YVEXdMbQNgy5Yt+eKLLzIlJaXKBdtgMHDv3r0cO3Ys69WrJ4i5Vqtl/fr1OWHChBobrlRW/7/+9S/qdDoqFAr26NFD9Cc/P5/169enUqnkK6+8IhzmTfpV05zqdDpu27aNgGUoucGDB5t9HydOnDDzU/Xy8qpUXFwR9Ho9169fz/bt2wujpfLibFdXVw4dOrRSaVFVKCwsFKoGk2EZ+Uf0H9MaAkAYAZreF9O3+9+K/1rCl56eLnZdbm5ulepVqoK7u7vghvz8/CziNj4tTGHEZs+ezVdffZUNGjQQYh07OzvGx8dz+vTpnD9/PiVJ4unTp2tU79GjRynLMufNm1dlubVr1xIoC/llwtatWynL8p8SldjZ2TEiIoINGjQwO18+6oqVlRWVSiUnTZpkQczLx/0cOXKk+JDGjBnD9PR0uru709bWtsYLcGpqKmVZFuLN4OBgsXv18/NjmzZtnmqcJsKpUqnYv39/zpw5k88//zx79erFhIQEMx2PSQT7uDFQdXrOiqKZAGXRatbsv/LEhl0Bk7/mO18d5IIFCyqsNyAgwOy3jY0Nn332WYvgzU8DUwzXxyP5ZGZmMjw8nM7OzmzatClr1aolOGGFQkFnZ2dGR0ezb9++XLBgAY8fP17hBjArK4sLFy5khw4d6O7uLuK4ent7s2vXrly5cmWNN0zlsXLlSnp6elKSJMbGxtLW1paurq7CX3PgwIFmm4P33ntP6EIfPnzIsWPHcvKMf/Gjny/zpZRjHLb6MJPmfMHxH30jxNCjR48mUGYo99lnn/2p6E8kefXqVU6cOJEhISFCZ2p6H7VaLRMTEysNAVcZUlNTaWdnRzs7O+HX+PHHH5u9L126dBHcrKOjI1UqVY3UOP9U/NcSvp07dwoRk0mBXRPT9fIw6fhu3LjBhIQEEez4zy4GY8aMqVAMcOvWLb7zzjts1aqVEM8pFAqGh4dz7NixNXIMNSnY09LSKrw+d+5cSpIkfJTKR4e3sbER/ndPA7VazcDAQHbu3Jlk2e7ZFM3FFOG+ffv2VYqm8vPzmZCQQAAMCQkR3F6jRo1YUFBgEey3MqSkpJgZU1y5ckXoLsLDw7lo0SJKkvREfl3lMXToUAKw4C6OHj1q9txM4aauXbvGsWPHmnF8DRo0oEqlEn6XVRFC06H2CKbPK5vp2G401R5BhEJpEaTdre8cKp28KSmtaOVbj7WeX1XmyjNtO228Qyut28bGhj179rSIYfpn8fLLL1OhUHDAgAEW1+zs7PjWW2+ZnSsuLubu3buZnJzMzp07s06dOsLgybSABwYGsn379nz11Ve5detWM8Jmkq6MHj2a4eHhggOxs7NjbGwsX3311SeyjDQRJwCMiorigQMHuH37dgsxbtOmTanX69miRQuOmvomh6/+lcGv7zDLJuM3dTvrvJHKkDdSOWLNYXpExLNv377/FutHg8HATZs2sVOnTsIoxtRfpVLJhg0bcvny5TUitnq9nj169BDf8OPSD5VKxdLSUpGVZNWqVUxI7GpG9F9KOcaPfr5soXv+J+K/lvAtWLBAxEZUKpXs3bv3UxM+Ey5duiQU/DExMTUyJnkcJqfmxyM+PI5mzZrRzc2Nq1evZteuXenl5SV2sn5+fiKAcEUvbUJCAu3t7VlQUGB2fsyYMZRlWYhfIiIi2LhxY3G9R48eNY7/WRFkWaa7uzvHjRsnoq6YnkHt2rVrvKAmJibSwcGBjo6O1Gg0fOedd+jg4EB3d3dmZGTwnXfeoSzL7NChQ4XjX7FiBSVJqjDA+Pnz58UztLKyYt26dZ9qrEeOHCEAi12tybS/e/fuwhLUxAW4ubnxueee48WLF1lcXEwvLy/6+vry0aNH9Pf3p6OjI3/66ScOGzasQsKkVCqZ+NbX9J+6na7dp9H12ddpW7+TGeHzHv85JSsbunSbWhbSL+5Zqr3q/F/Krm106f5ahXVLksSuXbty5MiRfOONN7hkyRIR5CA7O/tPGZTExcVRlmWL8FcXLlwgUHGA7cpw8eJFLlu2jEOHDmXDhg3p7u4uuGOVSkV3d3c2bNiQQ4YM4dKlS4WV8o0bN/juu++yTZs2QgJg0rn36NGDn332mYVOz2Aw8JlnnqEkSZwzZw6PHDnC2NhYEW2lPAEx9WHr1q38dN9l1nkjtUbW5sHTtptZm/87kZGRwcmTJzM0NNSCcNWuXZszZsyodo3ct2+fEC8/fpgsnruPmMD+S3+qkuibdM//VPzjEtHWFFu3bsX27duRkZGBM2fOIDMz84nr8PLywqBBgzBv3jyz88eOHcOQIUNw9uxZtGjRAuvWrYO3t3eN6pw9ezbeeust5OfnV5oM9PPPP8egQYNw7NgxREdHi/NGoxE//PADNmzYgP379+Pq1asoLS2Fq6sr6tevj2eeeQYDBw6EjY0NPD09ERgYiF9//RVGoxFdunTBt99+i6+++kok7Ny/fz+aN2+OS5cuoXbt2jh//jzCwsKQkZFR4/GU75tCoYBGo4GDgwNu374tfi9atAjDhg2rUT3Hjh1DbGwsvv32W7Rp0wZjxozBypUrUa9ePRQWFuL69evYtWsXtFotEhISYGtri0OHDsHPzw8A8N5772HSpElITk6uMsHnmTNn0KNHD1y8eBHh4eHYvHkzwsLCajze+fPnY/bs2SgqKsLo0aOxePFiFBUVQaPRAChLAJubmwtbW1sUFBTgzJkzon6j0Yjo6GhkZGTg3LlzaNiwIQoLC3Hx4kWRkNeUSLg8FFodfF5YDcp/ZPl+PBHzoxO7kH/6B3gMml/WVkkRMhf1h+ewD6By9gFLS3Br2XDo88qS8CqVStFOrVq1oFKpUFBQgMLCQpHF3pR4V5ZlKJVKqNVqaDQa2NjYwN7eXiRbdnZ2hpubGzw9PeHl5QUfHx/4+PggLCwMeXl5ePDggVnm8nHjxuHLL7/ErVu3ajzvlSEvLw8///wz9u3bhxMnTuDy5cvIyspCfn4+JEmCnZ0dPDw8EBISgvr166NZs2YoLCzEtm3bcODAAaSnp6O4uFgk7o2Pj8cXX3yB3Nxc7Nq1C82bNxdtrV+/HgMGDBC/bWxscPnyZRw+fBiLUo/jpns8CvXGirpZITQqGa8nhmFgI/8/PQ81hdFoxDfffIMVK1Zg7969IpEzADg6OuLZZ5/FlClTEBwcbHbfqVOnEBsbC71eL841adIEBw4cgI2NDT789iTe+e4yikoNqIpySBJgrVTg9cTQv3XcNcV/LeEz4dy5cwgPD8e9e/eeOMt3ZYTPhJ9//hnDhw9Heno6kpKSsGbNmmrb0Ol06N+/P5YuXVrh9by8PLi6umLIkCFYtmxZtX08deoU1q5di927d+PChQsoKCiAvb09AgICcOrUKYwZMwaHDh3Cb7/9hn379qFhw4Zm94eEhKBWrVr46aefAJRlE+/UqRNWrVpVbdvlcfPmTdSqVQtAWVZwkoIgKBSKGtcTEBAADw8PHDx4UJy7cOECEhMTkZ6ejrCwMJENe+TIkWjatCl+++03rFu3DufOncPs2bPx3nvvYcKECTVqLywsDOnp6SgpKUHjxo3x2WefoXbt2tXe17t3b5w5cwbTp09H//79ERcXh+PHj0Ov18PKygoTJ07EpEmToNPp4OXlhYiICOzevRsA0LFjR+zZswdpaWlo27YtSOL8+fOCKJBEjx494ObmhtjYWNStWxdhYWF4f9dpbDiTi+LSPz7Jxwnf/e+Xg8ZSOHd4QZS5uXIsHJoNgDa0KayVMl5uF4JbP67FvHnzsHr1arz99tvIzc2FVqvFqVOnKhzvw4cPcfXqVVy/fh03btzArVu3kJ2djezsbNy/fx8PHz5Ebm4u8vPzBdHU6/UwGAyiDpVKBbVaDWtra9jY2OD27duwt7dHXFwcXFxc4OLiAg8PD3h5ecHb2xt+fn7w8fGBUqmssE81gdFoxJkzZ/Djjz/i8OHDOHfuHDIyMpCTk4PS0lJYWVnBxcUFfn5+8Pf3R0lJCc6cOSMy2CsUCvj6+iIuLg7dunVDt27dEBoaimvXrkGhUECSJJSWlsLa2hofbUzFW4ce4caOD1F09QSMRXlQ6jzg2HIINLVjAQCFV0/g/nfLYMjNhtorBC5JL0Pp4AaNSoGNoxoh0ltX1XD+bbh9+zYWL16ML774Ar///jtMy75arUbLli0xbdo0tGrVChEREfjtt99gbW2N4uJiUW737t14/5s0XLKrh6J/ONGvCf7rCR9QRmzGjRuHOXPmPNF91RE+E7Zu3Yrnn38eWVlZ6Nu3L1asWAEbGxuLcp988glGjx6NvLw8WFtbV1hXq1atcO7cOdy6datSjrAq3Lx5E+vWrcOOHTtw5MgRFBYWAigjcO3bt8fAgQMRHx8vyn///ffo0KEDrl+/Dm9vb0yePBkff/wxHj58WOM2lyxZggkTJgjOIT4+Hlu3boW7u/sT9X3p0qUYP348MjMz4eHhYXH9nXfeweuvvw6tVovc3Fz07dsX69evx4svvogPP/wQALBy5UoMHz68xm1euHABYWFhWLRoERYvXoxLly6hZcuWWLNmDXx9fSu8x2g0IiAgAAUFBcjLy0NRUREkSYJarUZxcTEOHDiAxo0bi/IHDx5E06ZNsXPnTnz55ZdYtWoVvv/+e/Tp0wcqlQoXLlyAra1ttX2dsPE4vj5x0+zc44TvbuoHUNg4wLHVUFHm9tpXYRvVAbaRbQEA3aK90NEhC4mJiVAqldDr9ejduzc2bdqEhw8fwt7evsbzVx127tyJxMRE+Pr64uOPP0ZmZiZu3bqFmzdv4qOPPkLDhg1BErm5ucjLy0NBQYEgmuU5XqVSCZVKJYimVquFvb294DRdXV3h7u4ODw8PeHt7w9fXF35+fhV+hybcvXsXP/74I/bv349Tp07hypUruHnzpmjXwcEB9vb2kCQJ+fn5yM3NNeN0AMDFxQUffPABbty4gV35vricp0TOoS9hW68tFA6uKPw9DXe3vQuv5z6EpLbGjeUj4dxpPGyC4vBw7zoUZZ6F5+AFkCSgQ7g7lg2M/cvm/mlhNBqxa9cufPjhh/j555/FGiJJEsqTg/fffx9JSUn49NNPcSozB2nZxIMT36Mk+yq0YS3FO1l84zwe7luHktuXAUmGtW89OLYbDaVtGZPwnyb6FeF/gvA9++yzOH36NC5duvRE99WU8JmwevVqvPLKK8jNzcWoUaOwcOFCqFQqs/qaNGmCzZs3V3j/F198gb59++Lw4cOIjf1zH0BGRgYiIyNRUFAAkmjTpg1OnjyJ27dvQ5Zl+Pj4oHHjxujVqxcmTJiAsLAw7Nq1C7m5udDpdNi7dy+aNWtWZRtpaWno0aMHrl+/bnb+aV6ZkpIS6HQ6DB8+HIsXL6603N27d9GlSxccOnQIsiwjLCwMMTExWLt2LWRZRnBwMA4ePGgmUqsOrVq1QkZGBn7//Xfs3r0bo0aNQnp6Otq1a4c1a9bAw8MDRqMRa9euxbJly3D06FHo9Xp4enpi2rRpGDFiBLy9vXHv3j14e3sjIyPDoo1u3brh22+/RVFREdatW4fx48fD1tYWFy5cqHQT9DieW3MEP56/Y3auYo7PAOcOY0WZm5+8AIem/aENbQoAKLj0K7K//FeFbciyDLVaDVmWoVAozA6lUml2qFQqwcWZ/qrValhZWYm/aWlpuHjxImrXro1evXrB2toaGo0GJ06cwBdffIE1a9bAxsbG7NBqtdBqtbC1tYVKpcLt27eRkZGBzMxM3Lx5E7dv38adO3dw//59PHjwADk5OcjLy0N+fj6KiooE0TS9hwqFAiqVClZWVtBoNLC1tRUiWicnJ7i6usLZ2Rlr165FZmYmkpOT0ahRIxw9ehRpaWm4cOECbty4gdzcXCH2fRw9BgzFKf9eKDFYvvs3PxkHh6b9YCx6VKUY2kop48CUBDjbWol709LSBDH/T+HOnTtYtGgRli9fjrt375pdS0hIQGpqKl784jS+/noLAAmF6cdAfYl4Jwt/T4NRXwRNQANAlss43rz7cO8zGwD+UdD0QjMAACAASURBVETfhP8JwmfacRcUFNR4kQGenPCZ8N577yE5ORl6vR6vvPIK/vWvf+Hbb79FUlISbt++DTc3N4t7CgoK4OLigr59+z6xmPFxnDhxAo0bN0ZQUBCOHDmCoKAg6HQ6nDlzBkajEd999x1SUlLwyy+/4Pr162IXm5CQgN69e2PhwoXw8vISornHkZubi969e+Pbb78Vi0pSUhJSU1NhMBhQXFz8xH3u378/UlNTcf/+/Rpxups3b8bgwYPFbnTlypXo1KkT4uPjce/ePezatQstWrSoUduZmZnw9fXFV199hW7dugEAUlNTMXr0aNy4cQN2dnbIy8uDQqFAbGwsxowZg2HDhmHv3r1o2rSMmERGRuL06dNITEzEjh07LNr49NNP8dxzzyEmJgaXL1+Gs7Mzzp07B7VabVG2qKgInTp1QkREBFq2bIlGjRrBx8cHQ5f/jJ+v5puVrVjHtxseg94FYFpcB8Bz2EKonH0AAN2iPBFVeBJTp07FnTtlhHTkyJG4ceMG9u/fj+XLl6OwsNDsKCoqMjuKi4tRXFyMkpIS8dd06PV6cVy5ckVsaqytrVFaWgqDwYDc3FyQhJWVFYxGozhYZlBX6eZJkiRIkgRZlsVfE5E2/VUqleK3LMtmdRqNRhgMBrO/pjGY6i/ftqkNk24TgJk+zATXFv2gaz7QgvAZ8h8gc+lz8HpuER4dS62RGHpU80D88MMPmDZtGtLS0vDWW29h6tSpFc7H3wmTmPNxuPsFwWHQIhSXlm0KHn8nH0fx7cvIWv8afCduEucqIvr/SfxPED4A0Gq1mD17Nl555ZUa3/O0hA8oExckJydj/vz5UCqVsLa2RkREBH7++ecKy7dt2xYnT55EVlbWU4k4Tdi5cyeeeeYZtGrVCt9++y1kWcb169cRFBSEkSNHYsmSJRb3nDhxAs2aNYNCoYBerxfEpHHjxujYsSOGDBkijEdmzpwpRMZGoxGDBg3CihUrMHPmTCxevBhqtRr37t17oj5funQJderUQUpKCnr37l3j+9q1a4cffvgBQNkCtWHDBvTq1Qs9evTA1q1bMXPmTMyYMaNGdXXp0gVHjx7FpUuXsGjRIqxduxYXLlwQehy9Xo9nn30Wq1atQm5uLnx8fKDX66FUKpGbmwsHBwdhkLJ//34zUefPP/+MNm3aoFWrVvjxxx/h7++PS5cuVaq7MhqNUCqVFou/ffyz0DUfAElpBRoNgNGAh7+sh+HRPTh3ehGQFTAW5f2fOO0l2AQ1xMN9n6Mo4ww8By8oq6RUj9e61MPoFrWh1+sRHx+PEydO4IMPPkCvXr3g6emJU6dOoV69ejV+DlXB1tYW+fn5uHXrlpn4WqvV4s0336xWF2siTCaxcn5+PvLz81FQUCD+FhYWChFpVYS6IiKdmZmJ69evQ6PRwMvLC0ajEaWlpSgpKUFpaakg4CYi+bjBkQnOnSfCtm6C2TkaSnHni2QoHT3h3HFcjcTQhef2IHvbfLNnr9Vq4eDgIDhtE2dt4qpNXLSNjY3gaO3s7ARnq9Pp4OjoCEdHRzg5OcHW1ha2trbQarUVbrwqg5ubG7KzswEAsbGxWLduHXx9fbHw27NYfTS7xoQv98hW5J/b+8c7CQiiP7pF9fr1vwX/fsPRvwdt27Z94nxfTxKrszLo9Xr26tWLAOjg4MBVq1ZZlNm8eTMlSao2VFF1MMX0HDZsmMW1lJQUSpJUaTT69evXU5ZlPnjwgBkZGZRlmUFBQcKf8PE0RrGxsWaplIYNG0Y7OzsGBgY+cb8jIiKe6NkYDAY2adKEVlZWPHr0KA8fPizMy03JVJcsWUJZltm8efNqnfLv3bvHCRMmiLHZ2toyMTFRJEklyXXr1tHNzU1kC9doNOLauHHjCICvvvoqO3bsSDs7O5FJ4rfffqNKpWJiYqJI4hoQEFBhP7Kzs/n2228zMjKyQnPx2hHRDJy6jX5Tt1eZiPkPPz41rXzqstaYT4Q5ue+kr7jq8y9Em1lZWWbvRe3atdmlS5caP4uqUFhYKNwMyuP06dMEUGlIsL8DBoNB+KXNmDGjxvdt3LjRzAVElmXWqlWLDSasMDPb952yjTZhzWkdGEPfV7+m39TttIvpQtv6iWblVK5+dOn2mvjtM2CuRXADlUpFKysrqtVqkRbLlMmkJsEQ/p2HTqdjx1kpZmOyb9LHwrfUdHg+t5iytS3dB7xtcW1Cyl+bdeLP4H+G49u+fTu6du2K4uLiGluJ/RmOrzzi4+NRUFCAqKgobNiwAe7u7liyZAm6d++OoqIiODs7o2fPnlizZs1TtzFjxgzMmTMHM2bMwMyZMyssM3ToUKSkpOD69esVilvd3d2RkJCADRs2oH379sjMzMSPP/6Izp074+jRowDKdEAmjsSkJ+zTpw9WrFiBn3/+GfXq1cOBAwdq3O+NGzeiX79+wqWiOpSWliI2NhYXL17E8ePHUadOHXGtQ4cO+O6776DVanHy5Enk5+ejZcuWUCgU2L9/v1nZGzduYN68ediyZQsyMzOh0+lgb2+PBw8eIDc3t8K279y5g3nz5mHx4sXQ6/UYPnw4PvzwQzg6OqK4uBhFRUWQZRkeHh6oU6cOtmzZgsDAQAQHBwsjmm+++Qa+vr6YO3cuRowYgVWrVmHr1q04duwYCgoKqhy7LMtoN3sTLuRbVWkqXhkkCXDMv47Ln07B/fv3xXfQunVr3Lx5ExcuXMDChQsxdepUFBQU/CnJAwBs2rQJffr0ga+vL65evSrOjxo1Cjt27MCNGzf+VP1Pizt37iAuLg5ZWVnYuXMnWrVqBaBMz3z69GmcOHECv/32Gy5fvoyMjAzcuXMHDx8+RGFhoYWOT5IkREdHI3jwHPyaVfZQSOJe6gcozcmCW6+ZkFVl4ruaiKG7R9fCvO7hWLFiBd544w08evQIixYtwtixY/FXoLS0FEVFRYKDzsnJwf3793H//n3k5OQgJycHubm5ePjwobDcNVnsXrlyxaI+WZYRNX4Z7lt7iXOVcXz6BzeR9flU6FoNteCOAaBNqBs+GdLQ4vx/Av8zhA8ArKyssGzZshr7lP0VhO/69evw9/cXxiL379/HkCFDsGPHDgQEBMDJyQlXrlxBdnb2Uy80w4YNw2effYaPP/64SotGo9GIkJAQGI1GXL582aK9lStXYsyYMcjNzcXx48eFcYtJdzJr1iy89tprwupr48aN2L9/P65duyZEQB4eHpg1axb69+9fraWi0WiEo6MjunTpgnXr1lU7zpKSEkRERCArKwtnzpyp0Ory66+/xrPPPguSGDlyJBYuXIiEhASkpaVhzpw5uHjxInbs2IE7d+7A1dUViYmJmDJlCsLCwlBQUACdToc333wTjRs3Rl5eHjp27CjqXrVqFUaNGiV0ReXRpUsXbNu2DQBw9uxZREZGQqPRwNHREXfu3EFMTAy2b9+ONWvWYOHChcIgqLwOyvS7QYMGqF+/PlasWCHqVygU2Lt3L7Q+4ei74hAK9QY8KTQqBdYNi0HLegHo06cPPvnkEwB/iJoPHz6M6OhoaDQarFmzBv3793/iNspj6NCh2LBhA9q1a4ft27eL876+vmjTpg0+/fTTP1X/k8BoNOLChQtYvXo1FixYAGtra4SEhODevXt4+PAh8vPzYTAYIMsyrK2todPp4ObmBm9vb9SuXRvh4eGIjo5GZGQk3N3dodfrERAQgI0bN6Ju3bpYtud3vP/DRRSXGnFv14couZMO975zIKs1og+GgpwqxdCPi/sKCgqwfPlytG/fHhEREU817tLSUmRkZCA9PR3Xrl1DRkYGbt++jaysLNy9e1ds9B49eoSCggKUlJRUasBTEUJDQxE5eoEg+kDFhK805w5ufz4VDo17wq5+YoV1dY+uhff7RFd47e/G/xTha9KkCUia+YhVhb+C8HXq1Annz59Henq62fnMzEx07NgRZ8+eRUBAAL788kvUr1//ieo2Go1o37499uzZg2+++cZska4Md+/ehbe3N3r16oW1a9daXHd2dkZkZCSOHDmC/PwyQ4qePXvis88+E87ZFSEoKAhXr16Fk5MT8vLyUFhYCAcHB9StW1foCX18fMzuGTt2LFavXo2HDx9Wq2vIy8sTxOncuXMVcqwm3LlzB3Xq1MHDhw9ha2uLuLg4HDhwQDiYDx06FFOnTq2QcPbt2xebNm2CJEmIj4/H/v37xbWbN28iMDCwUuOd/v37Y82aNYLry87OhiRJwj0gJycH1tbWUKvVZlylUqlEkyZN8PLLL6NZs2YYP348Nm3aBIPBAJKwtrbGihUrMHDgQADAukNX8Wbquad2kl63bh2GDBkirC0BoH79+lAqlThy5AhatmyJnJwcnDhxosb1V4Tw8HBcunQJb7/9ttCtFxUVwcbGBmlpaWjQoMGfqt8Eo9GIjIwMpKWl4cyZM7h48SKuXbuGW7du4f79+8jPzzdzQ7CyskJgYCB8fHwQGBiI0NBQREVFoUGDBjVy5ejZsyccHBzQs2dPyLKMkpISbP9+D763aYGS3Hu48dFzgEIFSf7Df9Wp4wuwjWhdzo/vDtSe/+fHpytz+6nKwMNoNOLOnTtIT0/H1atXkZGRgVu3buH27du4e/eu8KUs7xJS3rK1vJWuJEmiToPBIN4zoOxd1Gq1cHZ2hoeHh9kcffTRRzh06JD4NrZs2QIPDw9B9ItK9BXqnQ35D5D1+VTY1k+EQ/yzFc7pP03H9z9F+NasWYORI0cKkVR1+LOE7+HDh3B2dsbGjRvRs2dPs2tFRUVwcXFB69atcfv2bRw9ehQNGzbEunXrLKIlVISSkhI0aNAAv//+Ow4ePGgW4aU67Ny5E0lJSVi7dq1ZBIpLly6hefPmyMrKAlDm/yjLco2MVfz9/XHjxg0sW7YMw4cPR2ZmJtasWYNdu3bhzJkzePjwITQaDYKCgtC6dWskJiYiMTERH330EUaNGlVl3ffv30dYWBhkWca5c+eqdVXYu3cv3nnnHezcuVPsXmvXro1Zs2ZhxIgR8PT0xOHDh+Hi4mJ237hx47By5UpB2GJjY3HkyBGzMibLNpVKZeHTBZQtMCqVyow41q5dG8XFxbh586boj+n+2bNnY/r06bh69SpGjRqF3bt3w8XFBcnJyWjZsiXq1q2LsWPHWhgllRG/89VGyACN0KhVFhEy6tWrB6PRiLNnzwL4w/L5999/x9WrV9GmTRsReeZpodFoUFRUhCtXriAgIABAma/mpEmTqhXrlkd2djbS0tJw6tQpnD9/HlevXsXNmzdx7949PHr0CCUlJQDKCJqtrS1cXFzg5eUFf39/hIaGok6dOpg9ezZOnjyJlStXYujQoU89JgBYvHgxXn75ZWi1WhQWFgojp27zdyAtS/9UYmjQCLucdNgc+xwPHz4UHJjJPcP03pisqE3+jBqNRgSIMBqN0Ov1wsinqKgIJSUlIAmFQgFra2s4ODiYzU9wcDAiIiIQFRVVoe9seWzYsAGjRo3Cu+++i6SkJMiyjIKCAny9azc+vu2D7D2fI2f/BrN7HJr2AyQJOb+sh6Qyt6j3feUPt67/b9X5b4TRaIRarTYL21UV/izhGzx4MHbu3CksocojMTERhw4dwt27dyHLMo4cOYIhQ4bg/PnzaN26NdauXQsvL68Kai0jBKYQXqdOnXoqH5+XXnoJS5cuxeXLl+Hp6YkhQ4YgJSVFXDdFb/H09MTp06dRt27dKutzdXXF3bt3cfDgQTRq1Mjiel5eHlJSUvD111/j6NGjuH37NgAgMDAQTZs2Re/evZGYmGixIbl16xbCw8Ph4OCA3377rVKH5O3bt2PhwoWCswsJCcGAAQNw584dLFmyRPimzZ8/HwsWLMDNmzexbds2tGvXDllZWcjMzERGRgYGDRqE/Px8kERkZCROnjxp1s7s2bORnJyMtm3bCotSoGxBKh+lBIAFcbSxsUHnzp0xZcoUNGjQAP369cO2bdsQGhqK48ePIyAgAPPnz0f37t3FPbt370bLli0r1EufynyIpT9fxk8XsiEBKCr9gwO0Vsoo0etRmnES2+e9aOEcnJ6ejqCgIKxatQpDhgwBUEaga9euje+++w46nQ6jR49+6nc/JycHOp1OOMibYHL/MHHSubm5OHbsGE6ePInz58/jypUruHHjBrKzs5Gbmyuig6hUKjNOxN/fHyEhIahbty5iYmLg6+srOJnyOHv2LJo3bw5JkrB//36EhoY+1XjK486dO/D29hbjUiqVmDFjBtLSs3HCqRUk1VMs3qUl0B1dDXdVEVxdXUUEqOLiYqGLu3PnjtA3FhQUiPbVajVsbW3h6OgId3d3My4tMjIS4eHhT2S9WRUcHBxQXFwMWZZRXFwMo9GIOnXqIG7iCuy7mvvUuuf/78f3b0ZUVBRcXV3NFq3K8GcIX0lJCWxtbfHOO+9YmGynpqaic+fO2LNnj1kMQKBsoRsxYgSuX7+OLl26YPXq1WYcTnp6OqKjo4Vfnp2d3RP3zYTIyEhcu3YN+fn5MBqNkGUZU6ZMgUajwZw5c5CXl4c6deogMjISW7ZsqbIuk9l6fn5+ldEyAGDXrl1ITEzEwoULceTIERw4cADXr1+HwWCAu7s7YmJi0K1bN8THx6NJkyaoVasWTp06ZfbxGo1GbNiwAUuXLkVaWhpKS0tRt25dDBs2DGPGjDHz10xJScHAgQPh6uqK27dvIzo6GoGBgdiyZQteeOEFbN++HTk5Obh16xaysrLQrVs3HD9+HI6Ojrh//76op6CgABMnTsTy5cuh0+lEdBsvLy94enoKA6CKkJycbGZ0tGPHDkyYMAGXL1+GTqdDamqqmQvEk+BeXjE2H8vE+VuPkFukh721CqGedghS3EO75o1QVFRU4cI3cuRIrF+/Hg8e/D/2rjssiuvtnpldtrEsfRcQaQIigkoRUCMqiBWjokYRS2yRGAv2FlSs0Wg0+FNjYoyxhcSKvWNFY1eIYgkWLBQRQcrCsvt+f/jthJVuiUY5zzOPMnPblL3nvvVmQSAQIDY2FiEhIcjIyMC4ceOwd+/eV86j+csvv2Dw4MEwMTHB7Nmzce3aNfz999/Ys2cPZDIZVCoVlEoll+NVX1+fm7htbGw4ScTT0xN169Z9Jfu3NlOSr68v4uLiyp38NRoNHjx4oGMH034LWjuY1ukjOzu71AKnJEx8O8PAvz/AqzrRMGoV9BJ3Iufibo7stb9HsVgMmUxWSkpzdXWFh4dHpVLam4bWIUtLC05OTrh+/ToSHz1/LdtzTeaWt4zFixdj6tSpVVK1vA7xTZgwAcuXL0dOTo7Oj7aoqAimpqbo2LGjjoT1MrZs2YLhw4cjIyMDYWFhWLlyJa5cuYIWLVrA1dUVZ8+efa0chufPn0fnzp3x6NGLFFgdOnTAb7/9BplMBo1GA5lMhmHDhsHMzAwzZsyo9HlpY9gq+1w0Gg0UCgX8/Pywc+fOUmNat24d4uLicPPmTRQWFoLH48HPzw/t27dHWFgY9u7di1WrVuHKlStgGAaenp4YOnQo+vXrV+HzSExMRJMmTSCRSCASifDw4UMEBwcjNjYWwAu13KJFi/Dll19CrVYjODgYBw8exP/+9z9s3rUff+VLodKXgy+WgVUXwsVCimO/zEdAMx/cu3evzKxA0dHR+Ouvv/DTTz9Bo9FgxowZqFWrFqZNm4bU1FS0bNkS3bp1w4gRI0olJH9TEAqF+Pnnnzn7YElonYs6duyIjRs3AnjhnNSqVSssWrQItWrVQmJiYpmOFcXFxbh+/TouXryIa9eu4datW7h//z7S09ORlZXFSc3Aizg0IyMjLlPNyJEj0aBBA3h4eMDNze2NSSPACxv27du3MWbMGJw+fRo+Pj5wdHTkcopmZ2dzakRtajTtOHk8HpeAu2RKNBMTE9y6dQs3btyAQCBAv379EB4eDi8vLzAMw6khBQIBjhw5gvVn7uJAhgHUYACmfMImjQaMRgXD5MOoy8tAnTp14OLiAnd39zf+XF4XKSkpGDhwIJfUgohgYmKiY29/Xdvz+4QPjvi0xvUTJ05wapfy8KrEV5I4FixYoHOtU6dOOHnyJDIyMqpEXKtWrcL48ePx/PlzqNVqdOjQAbt27SpTrVMV5OTkoEePHjhw4ACAF/eozZsYHh7OlZs6dSoWL16Mp0+fQiqV4vfff0e3bt3KbVeb6kqpVFbY/9dff41vv/0WmZmZ5dqPzp07h08++QSNGjVCmzZtsG7dOqSkpHATjL6+Plq2bImoqCh4eXlV6969vLzw4MEDDBgwACtWrNC5bmxsjAULFmDLli04f/48cvjGMGrWE2IHL/B4LNT4x1mBiotAeJGOKef0JhSlviA+hmEgEong6+uLq1ev4tq1a5BKpTA3N+cSA3h7e2Pv3r2cjbFp06ZISUkpM9XZ66JRo0awsLDAvn37yry+ZcsW9OjRA4mJiXB1dcWKFSswcuRIXL58GQEBATA2NoaHhwfu3buH1NRUzlmkuLiYu1dDQ0OYm5ujVq1aqFOnDurVq4d58+YhPT0dkZGRiIyMBPDCyzMuLg737t2rdNx5eXm4c+cOkpOTkZKSopMYW+uJmZOTw9nByvJGlEgkMDIygoGBAYyMjLjdI7SJsLWJqe3t7cvUnBQVFSEiIgKrVq2CUChEjx494OjoiOTkZNy7dw/Xrl3jFo5aaKU0Q3t3iL26QK1wAcMAGuaf37qIz4IAtKprjmEtHd8rSedl3L17FwMGDMCxY8dgZ2eH//3vf9i9ezdWrFhRZlrDqtqea3ZneAdwdnZG/fr1K1XfWVlZoU+fPqXIqzIsWbIEEyZMQG5urs6qbf/+/Wjfvj0OHz6MVq1aVbm9ZcuWYfjw4VzmhokTJ2LatGnVVv/MmDEDs2bNgkajgUQiwY8//oiwsDBMnz4dc+bMQUJCArd1jlqthlQqxcSJE7F//34UFxeXcvTQQquuMjMzK9OeqcWzZ89gbm6OWbNmlZuCKS4uDq1bt4aDgwMA4O+//4ZEIkHz5s3xxRdfICMjA7Gxsbhw4QLS09PB4/Fga2uLZs2aoWfPnmjXrl2Fz0Wj0aBr167YtWsXl6mmJBiGgbu7O+q0+xx/6dVFkYYqsVsQUKzC08OrYJX/N5YuXYp69eqhYcOGyM7OhpubG27cuAEiQnFxMRQKBdLS0rjkxj179sTTp0+hUCgwderUcmMwXxWRkZFYtmyZjsr20aNHOH/+PBISEnDz5k1s2bKF25InNzeXcxbR2i1dXFxQq1Yt2Nvbc3YjLy+vCnciEQgEUKlUuHTpEgwMDJCcnIzPPvsMDg4OaNy4MdLS0pCZmcm502s9gYuKijhVIsMwXI5NiUQCqVTKZSGRy+VQKBTc9ke2trZ4+PAh+vTpAwsLC5w9exbm5uaVPh+lUomEhARcvXoVN27cQHJyMu7fv4+kpKRSqckEAgGnkjU3N8ft27e5FHs8Hg+JiYmlHNPKU0N397R+bxw5ysKtW7cwcOBAnDp1Co6Ojli2bBmCgoIAAFlZWbhw4QJat25dZt3KbM//CdJ/u/Hx7waRkZFkaGhYaTlLS0saP358tds3MzOjvn376pwrLCwkAwMD6tatW7XamjBhAjEMQ3PnziW1Wk2TJk0ioVBIBgYGtGTJkiq1cfDgQS4DC8MwNGrUqFIbi/r5+ZGpqalOlpOIiAjS19en2NhYYlmWy0byMlJSUggAt9t4eQgMDCRLS8syrz1+/Jg+/fTTf7KQGBpSSEhIhbvOq1Qqio2NpbCwMLK3tyc+n08Mw5ClpSUFBwfTqlWrdLKDFBYW0rp16yg4OJj4fH6ZmShEIhFN/nkP1X1pA83KDu2GokVFReTu7q6TTWPq1KmkVqspLi6OGIahFStWUNeuXbmsH9u3b6f58+cTj8ej1NTUCp9hZcjKyqJDhw7RokWLaMiQIfTJJ58QADI1NSWhUKiTDcTY2JgcHR3Jx8eHAFCnTp0oNjaWRo0aRWKxmAoLC4nH41FMTAyp1Wp6+PAhnThxgtavX0/z5s2jESNGUM+ePSkgIIAaNWpEDg4OZG5uXuZGpTwej8v0YWdnRw0aNKAWLVpQ9+7dadiwYTR79mxas2YNxcXF0d27d6u9I/nXX39NDMNQjx49uG87JSWFdu7cSfPnz6fBgwdTUFAQubm5kYWFBUkkEi4TEcuyJJFISC6Xk4mJCTEMQ3p6etS+fXuKjY2llJQUnb7y8vKoTp06pK+vT4mJiTR37lzq3r37a7239wXXrl0jPz8/YhiGXFxcKC4u7pXbevJcST8cu00RMZdo4JqzFBFziX44VrMD+ztDVlYWAaDExMQKy70K8f3xxx9c6q+S6NKlC8lksjJ3DC8PoaGhxLIsrV+/Xud8YWEhDR06lPh8PpmamnI7H7+Mx48fk5eXFzf5+Pv705MnT8osW1BQQIaGhtSyZUudfgQCAS1YsID09fXL3TX+5MmTBIBatGhR7r2cPn2aGIah48ePc+eSk5NpyJAhZGFhwY3RycmJEhISym2nMpw9e5ZGjBhB7u7uJBKJuEm+5C7d9evXJzMzMy7tU7169Wjbtm3Upk0bUrj6kM3YLTqkZhw0lAQWjgQev9xUTNrdpe08/XUmfD6fTwsWLODGFxERQXw+n1JSUig9PZ06dOhADMOQra0tKRQK8vLyKvfe8vLy6OTJk7Rs2TIaPnw4tW/fntzd3cnCwoLEYjFHtnw+nwwNDcnOzo78/PyIz+dTq1atKCYmhm7evEmZmZl07tw52rx5My1evJjGjRtHdevWJZZlycvLixwdHQkACYXCUumweDweicViMjY2Jmtra3J1daWmTZvSp59+SoMHD6bIyEjq2bMn8Xg8MjU15RZL3333Henr67/yey2JgoICOnfuHK1evZrGjBlDpqamBIDMzMzI2NiYBAKBDsEbGRmRvb09+fr6Urdu3Wj8+PG0UehPJgAAIABJREFUatUqOnv2LBUUFFBRURGNHDmSBAIBSaVSmjdvXrk7zj98+JBMTU1JLpdTWlraG7mf9wFXrlwhLy8vYhiG6tevTydPnnzXQ3qn+CBVnQBQu3ZtBAQEVJgm7FVUnVp10N69e7lzhw8fRlBQEPbv38+pCyqCRqNBixYt8Oeff2L//v3lqkVzc3MxZMgQ/PHHH7C0tMQPP/yA4OBgaDQaDB8+nLNhWVpaYtu2bTr78JWFy5cvw8vLC3PmzOFUkeHh4YiJiUGbNm1w9uxZndRTWsTExKB3797o06cP1q5dW2bbWhfrpUuXYv78+di3bx+ePn0KS0tLODo64sSJE5gwYcJrJQsoLi7G1q1bERMTg9OnTyMtLQ08Ho9zq8/NzeX2QtS6yQsEAi6IFwDMuk6BxMkPTAl1af6NeIApvd1KKZAGgvQk+Kquonbt2sjJyUFcXBxUKhVu3rzJFXN1deVsWCzL4tGjR+jbty+OHDkCAPDx8YGlpSVSUlKQlpamky5Lu6u9kZER5/ZuaGgIqVQKoVAIlUrFBTRr1Yipqamcl6D2PrXxhkKhkNsG6M6dOzA1NUW7du1w+fJl3Lp1CxMmTMDMmTPx4MGDcsNrXkbnzp1x6NAheHt749ixY9w9SSSScpO0a/Ho0SNcvnwZf/31F27dusUFoj958gQ5OTncc9DalAsLC8EwDHx8fFC/fn04OjpyWVasra0rVHsXFxdj3Lhx+OGHH8Dn8zF58mRMnjy53DqXL19G06ZNYWtri0uXLlVrp5f3FRcvXsSgQYNw5coVuLu7Y9WqVaU2q/4o8Y6J961hxIgRZG5uXmGZ6kp8J06cIIZhdJI3q1QqMjQ0pM6dO1epjYKCAnJ2diaJRFKpRKpFRkYGJzkoFApOjScQCOiHH36o8viJXqzMWZalc+fOcePh8/kUGRlJAHTuTYuFCxcSwzA0ffr0MtscPnw4MQxDUqmUAJCtrS2NGTOGUlNTaf78+cQwDM2ePbta4yR68Ww3b95MISEhZGlpyamoXFxcaPjw4XTx4sVSdbKzsyk8PLzMxL48fSMuCXRZR0XJd7WH89d76MlzJR0/fpxMTEy4tpOSkmjjxo00ZcoU6ty5MzEMQ/r6+iSTyTg1YMmDZVkyMTEhKysrsrKyIoVCQSYmJiSRSHTUtNp7lkqlJJfLycHBgTw8PCgwMJB69epFo0aNos6dO5Oenh6dOnWKHj9+XK40s3v3bmIYhi5evEh5eXnE4/FozZo1JJPJaMqUKVV+L7a2ti9UxpMnc+eEQiFNmzaN1qxZQ5MmTaIePXpQkyZNyMHBoVwpzc7Ojnx8fCgkJITGjRtHP/30E505c4by8vJozZo1xOPxyNfXt1wVfEXfTUREBAmFQk6TUd4z0WLnzp3E5/MpMDCw0rL/BZw+fZrc3NyIYRjy8vKiS5fenwTR7wM+WOLT2qVe1t+XRHWJr0GDBuTj46Nzrnv37mRgYFDpDgFELwhMLpeTmZkZPX78uMr9EhHdunWLrK2tdbKmX7hwoVptaNG6dWsyMDDg7GN9+/YlU1NTsrS0pP79+5Narabc3Fx68uQJjR07lry9vQkATZw4kZ4+fUpERHv27KE2bdpwuyYYGRnR9OnT6dmzZ1w/WrtMdHR0lcalVqtp69at1L17d6pVqxY36detW5e+/PJLjqzLwp07d6hbt26c+lN7SKVS8vf3p759+1K9kJFU+yU1Z3WJr87knWTRqk+Z9kNtNn+tivXl63w+n3teWmLW19engIAACg8Pp6ioKFq9ejUdOnSIkpOTq6w2z8vL48i3MjRp0oRsbW2JiKhr165Uq1Yt6tevX7m2WaIXKvU9e/bQwoULaejQodz9mJqakr6+PncvDMOQWCwmhUJBrq6uFBgYSAMGDKC5c+fS9u3b6e7du5WSilqtpj59+hDDMNU2Q6hUKhozZgxHeFFRUVUisWXLlhHDMDRo0KBq9fc+4sSJE1SvXj1iGIZ8fHyqvLj+2PDBEh8Rkbm5OY0YMaLc69UhvqSkJGIYRodstM4Me/bsqVJ9qVRKDg4O1dqupbCwkEJCQrjJplGjRnTkyBHy9PQkhmHIz8+PkpOTq9we0YsJwtzcnLy9vYmI6Pnz59zqmmEYMjQ0pMaNG1N8fHyZE7zWNlS/fn1yc3MjIyOjUhPMyJEjiWVZWrNmTbnjUKvVFBsbSz179uSIjs/nk5OTEw0dOrTSbZySkpKoffv2OtKEVCqlzz77jH777Td6/vy5TvlRMRcrJLWqEJ/tpF1k2nFMqWdSv359Cg4OpgEDBtCUKVNo+fLlFBQURHp6eqWk6D179hDDMLRu3TruPXp5eb3WJKVQKGjkyJGVlktLSyMej0cLFy6klJQUYhiGhgwZQgCoXbt21LRpU6pTpw6ZmJiUktIMDQ2pVq1a3LnRo0fTypUrKSgoiCPT10FmZiY5OTmRUCikvXv3VrmeSqWicePGkUgkIolEQjNmzKiy1DZu3DhiGIbmzJnzqsN+L3Do0CFycnIihmGoadOmVVoEfcz4oImvX79+VLt27XKvV4f4WrRoQc7OztzfKpWKjIyMqGPHjpXWPXHiBAkEAmrSpEm11CjR0dGcmszY2LiUB9aZM2fIxcWFGIahoKCgakmRN2/eJB6PR5MmTaI9e/aUUse1atWKioqKSnnwmZmZ0ZIlSwgAmZubEwCKjY3Vabtfv37Esixt2bJF57xarabdu3dTaGgo1a5dmyM6R0dHGjJkCJ06darScSckJJC/v7+OOtDQ0JBGjx7NORzdvn2b9u7dSzk5OTp1B6w5+0aIb8Avf9KOHTvI3d2dk+w2b95caqxqtZrs7e11vhstWrVqRQqFgtRqNV24cIHzFPXz86Pbt29X+hxeRkhICNWtW5f7Oy0tjfbt20eLFi2i8PBwateuHTVo0ICsrKxKebxqJVUDAwMKCAigzz//nGbPnk1bt26l5ORknW92/vz5JBAIyMTEhDunUCho+PDh1R5zSRw9epTEYjHZ2NhU+TtWqVQ0fvx4jvCmT59erd9XSEgIsSxLGzdufNVhv3Ps2bOHHBwciGEY8vf3f6Vv52PEB018iYmJBKCUB6YWVSU+7WaeJSW7Xr16kVQqrVTF+fvvvxPLstUKczh//jyZmZlxXnbffvttheX37dtHNjY2xLIshYSEUHZ2dpX6WbVqVbmbXBobG3NqO+05iURCubm5dOfOHdLX1+dsVZ6ennTlyhUieuHdyuPx6MCBA6RWq2nfvn3Uu3dvbnw8Ho/q1KlDgwYNohMnTlRpnGfPnqXGjRvrjMXc3JyioqLKtP/MnTuX+Hw+6enpUb169ahbt240cuRICp6z+Y0QX0TMJdJoNPT333/T8uXLqW3btpSRkVHm2B8+fEh6enr01Vdf6ZzPzs4mgUBA48aN487Fx8dzC5kWLVqUaW9VqVR05coVWrduHU2ZMoV69epFzZo1I0tLS87uW1K1amhoSLa2tuTt7U1dunSh0aNH0/Lly8nIyIhat27NaTKGDx+us/lueWjTpg1JpVLy9fUlIqJnz54RALp582aldctDVFQUMQxDXbt2rRJxqdVqmjhxIkd4kZGR1SI8lUpF3t7eJBAIqvwNvm+IjY0lW1tbYhiGAgMD6e7du+96SP8pfNDER0Qkk8koMjKyzGtVJb5u3brp2EC0Ti7l7XauxaJFi4hhGIqIiKjSWLOzs7m4LADUpUuXahn2Y2JiuF3EP//88wrrqlQqGjRoUJm2KADk6OhIu3fvppycHO7crl27iIjowoULnK1KG0Zgbm5On3zyCfF4PGrbti3Z2tpyROfg4ECff/45HTt2rMoTVFxcHLm5uemMz8rKiqKjoyu0fd27d48GDx5cSoI1NTWl8O+3kHMZ8Xs2E2LJZtxWkvl1J/36rchm3FaymRBbJunZjN1Cxk16cG7/+vr6xOfzKT8/v8L3wjAMHThwQOd8dHQ0sSzLEVxGRgYdOHCAhg0bRjKZjFPdKhQKkkql3D1pbWlyuZxcXFyoVatW1K9fPwJA06ZNo9u3b1f6nA8fPkwMw1B8fDw1bNiQvLy8iMfjlSm5loSVlRVJJBLum547dy4ZGBhUWKc8qFQqatGiBbEsS8uWLau0vDbOVSwWk1gspilTplTbESU7O5tsbGzIwMDgPykdbdq0iaytrYlhGGrbti09ePDgXQ/pP4kPnvi6dOlCTk5OZV6rCvFpvd9WrVpFRC9+fMbGxtSuXbsK640aNYoYhqHFixdXaZyTJ0/mpC9HR8dq2+1KYvny5WRoaEgCgYBGjx5dJlFcvXq1lCNIyb+HDBnClTUwMCChUMj9vX//fk6ieJmcGIYhOzs76tevHx0+fLhaE1NsbCxnp9C2ZW9vTxs3biyzHZVKRdu2baN+/fqRs7MzF8Atk8m4NoRCIUVFRZFGo6GM58oyic+wWWgp4jdsFlom8TlO2U0Kmzo6ZWUyGf3666/lErJKpaI2bdqQQCCgsWPHclKao6Mj9+xKxujJZDKysbEhR0dHboHh5uZGO3furFCad3BwoF69elX5ebds2ZKsrKzo5MmTnJ2xojhDIuIcdw4dOkRExHmYVhe3b98mMzMzkslkdPny5QrLqtVqmjJlCkd4kydPfiXPy7t375KhoSFZWVlRZmZmteu/S2zcuJEsLS2JZVnq2LFjtZ3jaqCLD574tNJZWdJPVYjvyy+/1MkCExYWRvr6+hVKU127diUej0ebNm2qdHwHDhzg7GgSiYR2795daZ2qQK1W09y5c0kikZBYLKaoqChKTk6m8PBwLsuLsbExeXl5cdKFra0tNWjQgORyOfUd/CWtOHqbRsVcpEajfiD/iT/TiqO3aeeBOHJwcChTStRO0BqNpsrj3LhxI9nY2HATP8uy5OLiUqZzw82bN2nGjBn0ySefcKEEenp6ZG9vTz179qT169dzjkN2dnYkFotLSeVD1p4ju8lVz9hS8rCbvIuGrjtHRUVF1LVrV5JIJMTj8bhgee07NDMzKyWlaQ8ej0cuLi7UsmVL6tevH0VERHDhHuVN5lu3biUrKytOlV2e6j48PJysrKyq/OyzsrKIz+fTzJkzyd7enjw9PYll2XKdrxISErj70JK8np5eqQQMlWHDhg3E5/PJy8urQkcvtVpNU6dOJbFYTCKRiCZNmvTKoQZnzpwhoVBIDRs2rJIH9vuCNWvWkEKhIJZlqUuXLuWq1GtQPXzwxEdEJBaLy5S8KiM+tVpNIpGIoqKiiOiFDYZhGNq2bVuZ5VUqFfn4+JBAIKg0M8Ljx4+pbt263Gq/ZEzUm0RCQgLVq1dPx+uRx+ORvr4+pyYpLCyk8PBwEggE9Nv+ePpk0q/kOGVXKemo9tgtZDNuKym6fU3+XfvSpk2buHYFAgE5OjpWGjOlVqtp+fLlnE1KSwYeHh50+vRprlxBQQFt3LiRevXqRQ4ODpxK1djYmJo1a0aRkZEVeq4dOnSIbty4Uer85ftZ5BK599WIb/w2qtM4gExNTXVsaTwej2QyGcnlcjIyMuKuiUQi8vb2pl9++YXUajUlJydzDkUl8dVXX5FIJKrU23fjxo2cKjs0NLSU1+qlS5eIYZhqTexRUVHE5/Pp119/JZZlSV9fv1zTwPTp00ksFnMLwUOHDhHLstVKPzZgwIBK1f9qtZoiIyNJIpGQSCSiCRMmVCsj0svYvHkz8Xg86tix438mRm/lypXcgqpHjx7lLnZq8Gr4KIgvMDCQGjZsWOp8ZcQ3c+ZMEolEpFarSa1Wk6mpKQUFBZVZNi8vjxwcHEgqlVZo6NfGKWknzRYtWpSawF4XZ86coZCQEDI0NCQAVLt2bRoxYgSFhv6j0mNZlnx8fHQmrYmrdpHj5J1kO7H8IG+t5OMSuZf8+rzwqJs/fz7dv3+few7Nmzena9eu6dzzvHnzOIcdrUqvWbNmXLmEhASaPHky+fr6cuMWCATk5OREffv2pc2bN7+xlfoPh/8ipynVI73aYzeTtFF7qlu3Lg0YMIA2bNhA169fp/Pnz5fZR2ZmJs2ePZsaNmxIfD6fWJYlZ2dnatOmDQHQyVGq/bYqU59rsWrVKjI1NSU+n1/KlisUCmn16tXVeh6WlpbUsmVLksvlZGdnR3K5nMaOHatD0NqAch6PRwqFgjZv3lyhGeFlZGVlkYuLCwkEAtqxY0eZZdRqNU2fPp0jvPHjx78W4RH9k3zhdb1O/y0sXbqUTExMiMfjUVhYWJUd1WpQPXwUxBcbG0s8Hq/Uaq8y4jM0NKTw8HAiIvr8889JIpGU6cTw6NEjMjU1JYVCUaEqYt26dZwruYWFhQ45vC4OHTpE7dq14wKK69SpQ19//TUXcE70QsosKakwDEPt27en8PBwcmjbn2qPrdjrsZS9a/JOWn3iFtd+bm4uR27+/v40adIkTq2qJbI2bdpQUlISrV69mkJCQsjW1pZLPm1mZkYtW7akOXPm0J07d6r9DFQqFSUmJtLGjRspMjKSevfuTc2bNycnJycuibNWpSrz7Eg2Y7eQzYSKSd520k5yidxLi2LP6kjNIpGIBgwYUOWxHThwgLp27crlndTGzW3fvp3UajUdPXqUGIapVtLgZcuWkZGREenp6VF4eDgVFhaSh4dHuYuz8qDVZDRr1kxHLWtnZ8eVOX78eCm1tkwmozFjxlTa/smTJ0kikVCtWrXo4cOHpa6r1WqaMWMG6evrk1AopDFjxrw24RERDRs2jBiGoe++++6123qbUKvVtGjRIjIyMuIWM9WJ9a1B9fFREJ9arSY9Pb1SwdQVEd/PP/9MPB6P8vLy6OzZs8QwTJkebwkJCSSRSKhu3brl2v1u3bpFcrmcs0lt2LDhjdzT5s2bqUWLFiQSiYhlWXJ1daX58+eX+6M5ePAglz6qZBiDgZ0b2U/YrjPhM3oinQMMSwaewaWIwSVyL11JyaKcnBydFF4lHWa0mUm8vLzIwMCAO1+vXj0aNGgQ7d69u9KJLisriw4fPkzR0dE0fPhw6tixI3l4eJC1tTUZGBjoeDyKRCIyMzMjZ2dn8vf3p7CwMJo+fTrFxMTQtWvXuAXQlZQsGrruHDl/XXq3hrpf7yH7STvIvOsUCh3+QvJp2bIld19CoZBmzpz5Su/u4cOHnKOGVopydXWlOnXqkLGxcbXVcQsXLiQDAwMSCATk5+dHMpmsWvWfP3/OvZeSR9OmTbkySqWSO6+np0edO3cmoOwUdyUxZ84cYlmWOnXqVOq+1Go1RUVFcYRXniNWdaFWq6l9+/bE4/Fo69atr93e24LWDm9gYEB6eno0ZMiQaqdnq8Gr4aMgPqIX2/KU/CETVUx8VlZWFBISQmq1mszNzalVq1alyhw+fJj4fD75+/uXOVkVFhZSQEAAN2EMHjz4tWwMarWaVq9eTb6+vqSnp0c8Ho88PT1p2bJl5aoBL126RMOHDycXFxfS09PjtvUJCQmhTZs2vcgDOm97hQ4ftcdsIkZPRIre35Sp9mw3e0uZji5GRkbEsiyXY7RNmza0aNEinVW/Wq2ma9euUUxMDE2fPp3CwsLI39+fnJ2dyczMjEQiEUfSPB6PDAwMyNramjw8PKhjx440fPhwio6OpsOHD7+yp15F26ts2bKF+Hw++fn50datW3UcVl4O0K8OEhMTiWVZmjNnDsXGxlJwcDAnHQuFQurSpQvt27evyt+LWq2mWbNmcV6gI0eOrFJdjUZDderUKTOsJSwsjCtXMouPvb09TZkypdTWX4WFhRxxqVQqCgwMJJZl6fvvvy811tmzZ3OEFxER8UYITzsG7c4dZ8+efSNtvmmUlHAFAgENGzbsP+Vw8yHgoyG+n3/+mfT09Oj48ePUv39/6t+/P4nFYqpfvz4NGjSIUlJSKC8vj1QqFZdSKi0tjQYNGkRisbiUFLV27VpiWVZnciiJOXPmcBN2gwYNXtk4XVhYSEuWLKGGDRsSj8cjgUBATZs2pfXr15c5sSUkJNCoUaPI1dWVk+wsLCyoS5cuFBMTU2qCKc/Fv+Rh2nE08Q0VZDNxZ9mxbeO2EiuWlZo4zc3N6bvvvqPo6GgaMWIEBQcHk6enJ9WuXZsMDAw4tS/DMCQUCsnU1JScnJyoefPm1Lt3b4qMjKSNGzdSYmLiG5sYXwXXr18nQ0NDksvlZGxsTB06dOASYVc1D2lZWLhwIbEsywX/a89pyYVlWeLz+eTu7k5RUVFVIna1Wk0CgYD4fD5JJJIq5as8dOgQWVhYlMro0rNnT67M+PHjOTX5rVu3yN3dndq3b6/TTkhICPn7+9Pff/9NcrmcDAwMdFL8qdVqmjNnDkmlUhIIBDRy5Mg3OuFnZmaSpaUlGRkZVSqJvgtowzIkEglH+DWE927wURDfuXPnOMcOoVBYKiMJy7J0//596ty5MykUCjI2NiYfHx86f/48MQxDMTExOu1pSe1l7zyiF44l2qwmMpmswsTK5eH58+c0a9YsLouHWCymwMDAMp0Crl27RqNHjyY3NzeO6BQKBX366ae0cePGSn9YK47erpT4hDYNyo1rs520ixwmxpJVYL8ypT4ej0dSqZRq1apFjRo1og4dOtCwYcNoyZIldOjQof+Me/bz58+pXr16JBAIuEB07c4Tr7KZsRb+/v5kbGys857c3d3J2dmZ1Go1bdq0idq2bcuFnJibm1P37t0rtAUGBASQp6cnjRkzhtuDbsGCBToEWFI6IyLKz8+nsWPH6ry7Vu0/5UJanAd/R7a9ppHfgK8pPSef+Hy+jsR7+/ZtEolEJBAIiGVZatSoEeXm5hLRP85NWnXsiBEj3viEf/PmTTIwMCBbW9v3ziGkZC5RsVj82l6qNXh9fBTEFxERoUN0NjY2nOcgy7LUv39/IiJq3769zg9fIBBQ8+bNddoaOnQosSxLy5cv1zmfnZ1Nrq6uXJtVDVzXIiMjgyZMmED29vbEMAwZGBhQcHBwqQkuKSmJxo0bR+7u7lzAtlwup+DgYFq3bl25E0pRURGdOnWq1PXKEjfX+nI1gWHJKnxVheUahS/mnmnJmL4PCWq1mnr06KHzftevX08sy+pIR9WBdoPg1q1bc+dSUlKIx+OVkibv3r1Lo0eP5gLfBQIBeXp60jfffKMz2a9cuZJEIhERvSC4L7/8kksyvXTpUiIi+vTTT6lFixalpMHNmzeTgZ0b1e49i+wnxpZaFDlN3U11Ju8iechUunjvHwm0b9++OnZjbczd/PnzOcJ7Wyq9Y8eOkZ6eHvn4+LxXhFJYWEgjR44koVBIEomEvv766/9MOMWHjg92I9qSUKvV6NGjB3bt2gWVSoV27dohMDAQ48ePB4/HQ3JyMmxsbNC9e3ds2bJFp66bmxs2bNgANzc3dOrUCfv378fWrVvx6aefcmWGDBmCVatWAQA6deqEbdu2gcfjVTquBw8e4JtvvsH27dvx8OFDGBsbo02bNpgwYQI8PT0BALdu3cKqVauwf/9+3LhxA0qlEubm5mjcuDE+++wz9OzZs0obZl6/fh2urq6QSCQICgpCnz59EBQUhK/+SMTJ5Gfl1nt2KgbKu5dhEfZNhe3n3/oTGVtm6ZzT09ODtbU1pFIpDAwMYGhoCGNjY5iYmMDMzAzm5uZQKBSwsrJCrVq1YGVlBT6fX+m9vGssWLAAkyZNQmhoKDZs2ICjR4+iTZs28PHxwfHjxyvcHLUsnD9/Hr6+voiOjsZXX30FAJg4cSKWLFmCjIwMyGSyUnWKi4sRExODNWvW4M8//0Rubi4sLCwQEBCAIUOGICAgAFevXoWbmxsAQKlUYtiwYVi3bh309fWRl5cHgUCAadOmYeLEiVy768/cxcydf0GlecFg5UKjgVioh6kdXOBlWABXV1cAAMMwICKwLAupVIqCggIMHjwYS5YsgUAgqNZzqQrWr1+P/v37IyQkBJs2bXrj7b8KlEolRo8ejdWrV0MgEGDChAmYOnVqtb+LGrw9fBTEB7yYKIKDg7F//370798fy5cvh1QqhaurKxITEwEAISEh2LZtW6m6ZmZmsLS0xM2bN3HixAluB+MtW7YgNDQUKpUKNjY2OHfuHORyeYXjuHHjBr755hvs3r0bGRkZkMvl6NixIyZOnIi6devizp07+PHHH7Fv3z4kJSVBqVTCzMwM3t7e6NGjB3r37l3tnaGfPXuGffv2oXfv3nj5ddv1mg6yK39H5ocrv4ChX3dIG7apsI9gNzkkVzZh6dKlKC4uBgAEBATA1tYWT58+xbNnz5CTk4Pnz58jLy8PBQUFKCwsRFFREYqLi7mdwwGAx+OBz+dDIBBAKBRCLBZDX18fUqkUhoaGMDIygomJCUxNTTnytLCwgJWVFWrXrg2pVFqt5/MqOHjwIIKDg+Hs7Iw///wTd+7cga+vL6ysrHD16tVqv6MZM2Zg9uzZuH79OpycnEBEsLKygouLC+Li4iqtf+PGDURHR2Pv3r24e/cuiAhyuRyTJ0/GF198AYlEAgDIzc2Fubk5lEolgBeLk1OnTqFx48ZYf+Yu5uy5jgKVpsrjFvFZ5J9ah0fH/4CzszNu3LgBjeZF/YCAAOzZswdCobBaz6KqmD17NqZNm4bx48dj/vz5b6WP6iA/Px8jR47E2rVrIRaLMWXKFIwfP76G8N5DfDTEBwAqlQpyuRyBgYHYvHkzfHx8MHDgQISHhwMA7O3tce/ePW7Fam5ujmfPnqGwsBAAcOTIEbRq1QqPHz+Gp6cnUlNTIRKJsGPHDgQFBZXb7/nz57FgwQIcPHgQz549Q61atdC1a1dMnDgRarUaP/30E/bu3Yvr16+joKAApqam8PLy4ohOO2lVhnv37uHgwYOIj49HYmIi7t27h6dPn6K4uBgCgQDFxcXQaDTg8XiQyWT47bffcEfkiMWHbqKwuPRkp3xwHem/fw3r4evACssfAw9qePAeoa0tD0lJSdi8eTPu37+PuXMlt/2IAAAgAElEQVTnYvLkyVUaO/Di/Tx+/BgPHz7E48ePkZaWhvT0dDx58gRPnz5FVlYWsrOzOfLMz89HQUEBioqKoFKpoFarOWJnGAZ8Ph96enoQCoUQiUQceZaUPk1NTWFmZgaFQgGFQgFLS0tYW1tDLpdXOmHdv38fXl5eUKvVOHfuHPT19eHu7g6WZZGYmAhzc/Mq3zsAeHt7IyUlBY8fPwbLsvjzzz/RpEkT7N69G+3bt69yO0VFRWjWrBkSExPBsizy8/NhZWWFoKAg+Pj4cFJlSels7e5jmB2fi/wCJTIPLIfy7mVolLngG1nAuEV/iOt4o/BhEp6dWI+i1NsAw0Jk4w7joKEQGRihi/QOFk0dpTMOa2trpKSkVOsZVBUDBw7Er7/+imXLlnG/33eF3NxcfPXVV9i4cSOkUimmT5+OkSNH1hDee4yPivgAIC4uDtv2HoJrx4E4eukmeGIpzI2kcLGQYXq/tvBt6IqdO3di6dKlWLJkCf7++2+urlQqhZ+fHw4dOgSGYTBu3DgsWLCgzH6OHj2KhQsX4tixY8jLy4O9vT0+++wzhIaGYvPmzdizZw+uXbuGgoICmJiYwNPTE927d0dYWFiFEotGo8GlS5dw+PBhnDt3DklJSXjw4AFycnKg0WggkUigUCjg6OiIRo0awd/fHwEBAZBIJPD390d8fDx69eqFlStXQl9fH09yC9Fs/pEyiS9z3/9AqkKYdRpb4TPlQYO73/eBpiCHO8cwDG7cuAEnJ6fKXskbhUajwbNnz/DgwQM8fPgQ6enpSEtLQ0ZGBjIzM5GVlcVJn7m5uTrSp0ql4hYH2ntgWRZ6enoQCAQQiUQQi8WQSqWc9CmTyXDs2DFkZmZi0KBBaN68OSZOnIjs7GzEx8ejYcOGVR67Vl0ZFBTEaR5CQkJw5MgRPH36tFoT6d69e9GpUycUFRXh2rVriI6Oxr59+3SIiGVZtGvXDhkZGXhSLwRk5Q51kRI5f26B1L01eIbmKPj7PJ7s+BZWA/8HVWYKNColxPaeAMvi6YEfoM59CoueM6G+fxGm17YiMDAQfD4fLMvC0NBQR436JqDRaBAYGIiTJ09ix44d1VoQvGnk5OQgPDwcf/zxB4yMjBAVFcUtKmrwfuOjIr4rKc+w7OhtHLuZAQA6k72Iz0Kt0UCSfQcTO3lAlJeGbt26ldmOr68vjh8/rmOz0Gg02LlzJ6KjoxEfH4/CwkLUrVsXnTp1Ap/Px6FDh/DXX38hPz8fxsbG8PT0REhICPr161cm0SmVShw7dgzHjx/HxYsXcevWLaSmpiIvLw8Mw0Amk3GqMG9vb7Rq1QqNGzeu0Ea2c+dOFBcXo2vXrjrnv1h3Hgevp+FVvgSGAdq6KjDCQwwfHx/k5+f//3kGbdq0QWRkJJo1a1b9ht8xlEolHj58yEmf6enpnPSZlZXFSZ+5ubnIzc1FWloalEol+Hw+iEhHdcuyrI70WVJ1K5PJYGRkxEmfOTk5+PHHHzF27Fj069cPcrkcDg4O6NWrF1avXl3l8Ws0GggEAuzcuVOHHORyOTIyMnTKNvBphvzWk1GehvPRz8Nh2CwU+i6677Ew9TbSNk6GzZhNEPJZxE8MgKn07ag1gRfvpFGjRrh//z7OnDmDBg0avLW+KkJWVha++OILbNu2DSYmJpgzZw6GDBnyTsZSg1fDR0N8L+wXSVAWqyuc4BkGEPJY5BxbA2HKWQDA3bt3uessy0KlUoFlWWg0GmzYsAErVqzA+fPnodFoULduXdjZ2SE9PR3Xr19HXl4ejIyM4OHhga5du6J///46zgpPnjzBoUOHcPLkSVy9ehXJycl48uQJCgsLwefzYWxsDBsbG9SvXx++vr4ICgp641LUlZRn6PXTGRSo1JUXfgliPR5+/8IPDayNcOnSJfj7+6OwsBDdunXDlStXkJSUBAMDA3Ts2BFRUVH/ugT4b2LlypUYNmwY2rdvjx07dqB79+7Yvn075syZAzc3N6SlpSEtLQ1PnjzhpE+t6vb58+fIz8+HUqnE8+fPUVxczKkiteDxeBAIBBAIBBCLxZBIJNDX1y/TcUgul2PmzJlwdXXFL7/8wjkOMQwD4IVtr0uXLvjkk09wPs8IZ/JMUVTG61fnZeHB8oGwGhgNPdPaOtdyzsUi7/pxWPZbBBGfxeggZwz1r/NWnm1qaioaNGgAjUaDq1evwsrK6q30UxGePHmCwYMHY+fOnZDL5fjmm2/Qv3//f30cNXh9fBTE9ypGewELGN05gnO/fVfqWrt27ZCWloarV6+CYRhYWlpCT08PqampyM/Ph6GhIRo1asQRnZGREW7duoWDBw/izz//xF9//YX79+8jKysLxcXFEAqFMDc3h729PRo0aIBPPvkErVu3hpmZ2Zt8DBXiVZ6RWI/F1A710MfPjjv3559/onfv3jh//jyMjY2Rm5uLefPmYd26dUhJSYFCoUDPnj0RGRn5r97fv4UzZ84gICAAlpaWuHDhAqKiovD9999j4cKFGDNmTJXbqV+/Pp4/f467d+8iNzcXTZs2RWZmJhYuXKijutU6DmmlT63qVqlUIj8/n1PblgeBQACv4dF4JLAudY3UxUj/Yzr4xpYwbTdc51pR+h2kbZwM825fQ1T7hedo10a1sLhnoyrfY1WRmJgIX19f1KpVC5cvX66yzftNITU1FYMGDcK+fftgYWGBhQsXIjQ09F8dQw3eLD544qtMmlE9fYhHPw+HvkszmHUap3ONVIWwuv476pqLsXbtWp3Vt0wmQ1FREZRKJWQyGRo2bIjOnTujQYMGOH/+PGd/e/ToEXJyckBE0NfXh4WFBZycnODp6YmWLVuiefPm1fYAfFuojlQs4vMwtYOLDulVhkePHmHGjBnYunUrnj59Cnt7ewwcOBBjx459b57Bm0B6ejo8PDyQnZ2NPXv24NChQ5g1axZ69+6NYcOGQalUIi8vD0qlkiMp7f8LCwuhVCqRnZ2NH3/8Efb29mjSpAmePXuGXbt2wdnZGbVr14ZKpeKceoqLi3X+VavVKC4uhlKpRGZmJoyMjKBWq6FWqzlVdEnU6j0bfBtdwiLS4MmOb6EpzIe8WyQY3j8qdFXWI6RtmASjlp9D6hbAnQ90kePn/uV7CL8K9u/fj+DgYDRp0gRHjx79Vx1GHjx4gEGDBuHgwYOwtrbG4sWLyzV/1OC/hQ+e+CqzX6XFRIKKC8E3lJciPgaAMCMJN34eV6qeq6sr5HI5iAj3799HWloa8vPzwbIsZDIZrK2t4eLiAh8fHwQGBqJRo0b/CS+vqw+eYfnR24i7kQEGgPIlOygBaFXXHMNaOqKBtdGr93P1KmbMmIEDBw6goKAA7u7uGDVqFPr37889J41Gg/z8fOTn5+t4cZb8tyRplCQPLYFoFydFRUWcA0tRURFHGtpwCpVKxZGH9tASiJY0NBoN96/2oBdJIDjJqrKfE8Mw4PF4YFlW59Ce04Zy8Hg8qFQqpKenw9LSEiYmJnjy5AnS0tLg7e0NiUQCgUDA2Q21/wqFQs4RRygU4ttvv0Xnzp3RvHlzCAQCzvlCT08Ptra2mDp1Ks4wLtiXlMmNkYiQued7FGenQd5jBli9f+x2xdnpSN0wCYZNusPAo4POvb1piW/VqlUYOnQowsLCsHbt2jfWbmW4d+8eBgwYgKNHj8LW1hbR0dHo1KnTv9Z/Dd4+Pmjiq8hjEQDyrh1D/s3T0DOtjeJnj0sRHwBQcREeLPtcx2MReDGByeVy2Nraon79+mjatCmCgoJga2v7Vu7lVVFcXIzc3FyOPAoKClBQUMBJHOWRR7ZSjVvFJniqEaOQeGCKlRApM2GUdQOa/GwdiaMkabwseZRFHloC0RKG9nxlYBiGO7SEUZJIyiIPPp/PHXp6ety/2qMkeWjtZ1oCEYlEHIloD7FYzP2r/b++vj7nsKK1vWmJady4cfjuu+8QERGBkJAQBAYGwsPDA/Hx8VVaCA0ePJhTE8vlctjY2MDa2hrx8fFVev/e3t4wNDTE4cOHAQAKhQImJiaIjo5G69atwTAMfjj2t05IS+a+/6Eo/Q4UvWaDFYj/+ZaeP0HahkmQenSAoW+ITj9v2sY3depUzJs3D9OmTcOMGTPeSJuV4e+//8aAAQNw8uRJODg4YNmyZWjbtu2/0ncN/l180MT38g+6JDSF+Xi8JgKK0LnIvbK/XOKDWoXc0zHIPPm7zunly5fD0dGRI5KXyUOpVJYreahUKh3pozzyKEkYZZFHWZKH9igLWscGLWGUJBAtYZRFHnp6etzfJUmjJHm8fJQkDS2RlCQNLZFIJBKOLEQiEfbu3Ytff/0V165dg0gkQtu2bREVFfXOPPjeBGJiYtCnTx80a9YMK1asgK+vL+RyORISEiq1V2k0Gjg5OYHH4+HmzZu4cuUKPDw8sGnTpiqp3WbPno2FCxfi2bMX2XnS0tIgl8u5bwHQXSAWZ6fj4YqBAE8PDPtP9iGTdl+hOOsxsk9uBKOnq5a2Gbv5jXp1hoaG4o8//sDq1av/FeeRGzduYMCAAThz5gycnJzwww8/oFWrVm+93xq8O3zQxBfx+yVsv/yozGtPD64Ez8AUhn7d8ezEhvKJD0BuwhFk7tZ1cnlZVfUyeZQ8SkodJSUPrbRRkjzKkzwqIg99fX0dyUMba6aVOv4LKtaXoVQqsWTJEqxatQrJyckwNjZG165dMWPGDFhbl3bEeN+RmJiIpk2bwsDAAAcPHkSrVq2gVquRmJgICwuLCuumpqbCxsYGQ4YMwbJlyxAWFoYdO3YgKyur0hRv6enpUCgUePz4cYX9vImQlh/6eFe/cgloNJoXXqbnz2Pfvn0ICAiovNJrIDExEQMHDsT58+dRr149rFy5Ep988slb7bMG7wc+aOIb+Os5HElKL3W+KC0ZT3YuhOWA78Hw9ColvhaOJqibFocFCxZwEtmNGzdgZ2f3lu+gBgDw9OlTzJo1CzExMUhNTYW1tTX69u2LKVOm/Cvpyd4UcnJy4OXlhQcPHmDPnj0IDw/HgwcPcPbsWdSvX7/Cur///jtCQ0Oxf/9+tGrVCiYmJujQoQNiYmIq7dfY2BgRERGYPn16uWXeVEjLqyI3NxcNGjRAeno6zp07h3r16r1yW5Xh4sWLGDx4MC5fvgw3Nzf89NNP8PX1fWv91eD9w39PFKgGZKKyV8PK+wkozk7Dg+UDkLK0D3LObkP+jXg8/mVUmeVNpC/y7j1+/Bjz58+Hs7MzDAwM3ubQa1ACJiYmWLx4MR4/fozbt2+jRYsWWL58OWQyGerVq4fo6GguP+j7DJlMhhs3biAoKAitW7fGqFGj4OXlBQ8PDxw9erTCuj179kT37t3RuXNn5OfnY+3atfjjjz9w8eLFSvv19vZGbGxshWUa1jbC1A4uEOtVb0p4EdLi8lqk9+DBA9ja2qKgoAB37959a6R37tw5NGjQAN7eLyTT8+fP4+rVqzWk9xHig5b4yrPxaVRKUGEB93fO2a0ozk6DSduvwJMY6pR924G5NXh1nD59GjNnzsTRo0ehUqng5eWF8ePHo3v37u96aJVi5syZmDFjBj7//HMUFBTgjz/+wNq1axEWFlZuHY1Gg9q1a8PMzAxXrlxBs2bNcO/ePTx48KDCvn755Rd8+eWXXGLqivC2Q1pexsWLF9GsWTM4ODjgwoULbyWs5dSpU/jiiy9w/fp1eHt74+eff4a7u/sb76cG/x180BJfd6+ybUGsngg8qTF3MHoiMHxBKdIDXmzN0t3zv2dT+hjQpEkT7N27lyMOlmXRq1cviEQitGvXDqdOnXrXQywX06ZNw44dO7B+/XrcvHkTERER6Nu3L775pvztn1iWRXx8PK5du4ZJkyZh586dSE9Px7Rp0yrsKywsDEVFRbh69Wql4+rjZ4ffv/BDyzrG0BQXQchndK6L+CyEfBZtXRX4/Qu/1yK9HTt2wMfHB/7+/khISHjjpBcXF4e6deuiefPmMDQ0xF9//YWzZ8/WkF4NPmziM5MK0cLZHAxTcTmj5mFl2vcY5kXM2tvMP1iDN4OQkBCcPn0aSqUSCxcuxP3797kJr3fv3rh169a7HmIpBAcH4/r167h79y7Wrl2LGTNmYMqUKRg2bFi5dWxtbbFixQosWLAASUlJmDNnDubOnYvU1NRy6wgEAlhaWmLFihVVGlcDayP4FSfg6S9fol8jU+QmHIG/ozG6NqqF0UHOiJ8YgB/6eL+WenPp0qXo0qULBg8ejP37979RB6wDBw7A0dERgYGBUCgUuHnzJuLj49+q3bAG/y180KpO4N0b7Wvw7pCbm4tvvvkGa9eufa/TpRUUFMDPzw9JSUmYNGkS5syZg/bt22Pnzp3l1unQoQNOnjyJ1NRUuLu7w8jICBcuXCi3fGhoKM6dO4fbt29XaUwhISG4ceMGAgICsGnTpgqJtboYM2YMlixZgrlz52LSpElvrN1du3ZhxIgRuHfvHlq2bIlffvnlvYurrcH7gQ9a4gPerdG+Bu8WUqkUs2fPxv379/Hw4UN8+umn2LBhA+RyOerUqYM5c+ZUye71tiEWi3HlyhV89tlnmDVrFr744gscPHgQXl5e5Trt7NixA0KhEIGBgdi9ezcuXbqE9evXl9vH4MGDcefOnSolCgCAS5cuwcfHB7t3736jYQVdu3bF999/j99+++2Nkd7WrVthY2ODTz/9FM7Ozrh//z6OHDlSQ3o1KBcfvMSnxb9ttK/B+4uEhARMnz69wnRp7wrR0dEYPXo0goKCcOrUKZiamiIhIaFML+Lr16/Dzc0Ns2bNQnJyMjZu3IinT5+WaSvTblO0fft2BAcHVzoOoVCItWvXIjQ0FCdOnHjtraWKi4vh6+uLxMRExMXFoWnTpq/VHvAixGPMmDFITU1Fu3bt8PPPP1caE1mDGgAfgcSnhdZo39ZVASGfhYive+tv0mhfg/cb7u7u2Lp1K3Jzc7Fv3z4YGxtj6NChEIlEaNGiBfbv3//OxjZy5EjExcXh6NGjsLS0hFKphJ2dXZmem/Xq1cO3336LyMhIfPXVVxAKhejVq1eZ7bIsizp16uCXX36pdAz3799HUVERnj17BoFA8Nqk9+zZMzg4OOD27dtISkp6bdJbu3YtLC0t0bt3bzRu3BipqanYvXt3DenVoOqgjxBPnivph2O3KSLmEg1cc5YiYi7RD8du05Pnync9tBq8I6jValqzZg01atSIWJYliURCXbp0ocuXL7+T8Tx8+JAsLCxIJpORg4MDicViunLlSpll/f39ydjYmHbt2kUMw1B8fHyZ5UaOHEkKhaLSvhcuXEgGBgbUokULaty48WvdR3JyMhkaGpK1tTVlZWW9Vls//fQTmZubE8uy1K1bN8rMzHyt9mrw8eKjJL4a1KAiKJVKmjdvHtWpU4cYhiETExMaNGgQpaSk/KvjUKlU1LRpU+Lz+eTm5kZ8Pp/27dtXqlxhYSEZGhpSYGAgBQQEkFwuJ7VaXarctWvXCADl5eVV2G/79u2pUaNGpK+vT999990rjz8+Pp4EAgF5eHiQSqV65XaWLVtGpqamxOPxKDQ0lLKzs1+5rRrUgKiG+GpQgwqRmZlJERERZGFhQQDI2tqaJk+eTM+fP//XxjBs2DBiGIbc3NyIZVlavXp1qTLnzp0jlmXp22+/JYFAQGPGjCmzLbFYTMuXL6+wv1q1atFnn31GACg3N/eVxvz7778Tj8ejzp07v1J9jUZDixcvJiMjI+Lz+dSvX79/9ZnX4MNGDfHVoAZVxO3btyksLIwMDQ2JYRhycXGh77///rWkmapizZo1xOPxyN7engBQVFRUqTIzZswgHo9H06ZNI5Zl6d69e6XKNG7cmFq2bFlhXzwej9q3b09WVlavNNb58+cTwzAUERFR7bpqtZrmz59PMpmM9PT0aNCgQZVKqDWoQXVRQ3w1qMErID4+ntq1a0cikYh4PB75+PjQpk2b3mqfFy5cIH19fTIxMSEANHjw4FJlvLy8SC6XU926dal+/fqlrs+bN48MDAzK7UOrDq1duzb179+/2mMMDw8nhmFoyZIl1aqnVqtp1qxZJJVKSSAQ0JdffkkFBQXV7r8GNagKaoivBjV4TWzZsoX8/PyIx+ORUCiktm3b0smTJ99KX5mZmWRra0tCoZAYhqG2bdvq2POeP39O+vr61Lp1a2JZllauXFmqPoBy7ZUzZ87kJNoLFy5UeVxqtZratm1LPB6Ptm/fXq16kZGRJJFISCgU0siRI6mwsLDK9WtQg1dBDfHVoAZvCCqVipYuXUr16tUjhmFIJpNRaGgo3bx58432oyUZlmWJz+dTgwYNdMji2LFjxDAMBQUFkVAoLKUqNDY2pq+//rrMtlu1akV2dnYkFourPJ7CwkKqX78+iUSi/2vvbmOiyu4wgD/3zr3D4PAiIIwoLL4uRHYxLqaxkrrYbqGrm21IcNGMH+wHFSW6EVGD0/pWS1SwEmMI2aZqommsWU1aX7Kx6mI/1LWo7Wqr1CoaF2opKuwMdIDB++8HynQnjGJ3mVHnPr9kEnI558y5N5k8uefec45cvnz5uer4fD5Zv369REdHi81mk4qKirAMGROJMPiIQsLj8YjL5ZL09HQBIA6HQ1avXi3t7e0j9h0bN24URVFE1/Uh0wXKy8vFYrFIYmKiFBQUBNQrLCyU7OxsOXLkiJw4cUJEBqYKlJaWit1ul5SUFJk9e/Zz9aG9vV3Gjh0rCQkJcv/+/WHL+3w+WbNmjdhsNomOjpbKykoGHoUdg48oxFpbW2Xp0qWSlJQkiqLIpEmTZPv27SPyDOvYsWOiaZroui5xcXEBL7RMmzZNkpOTRVEUOXfunNy7d0+cTqckJycLANF1XebPny8iIgUFBYKBzUj8/6utrQ06LWJQU1OTxMTEyMSJE4d947K3t1fKysokKipK7Ha7bNmy5ZltE4USg48ojK5duyZFRUVit9tFVVWZPn267N+//xuFwM2bNyU+Pl4sFotYrVb/s7lHjx6JzWaT1NRU0TRNVFUVq9UqiqL4w62mpkZEROrq6sRisQSE37hx46Svry/od54/f150XZdZs2Y9s+9er1eWLVsmuq5LbGysVFVVMfDohWPwEb0gZ86ckfz8fNF1XXRdlzlz5gSdoP48PB6PZGVliaqqoiiKnDp1SkRE1q5dGxBmCQkJkpKS4g++CxcuiMjAVA1VVQPKNTc3+9u/e/eufyj14MGDoqqqlJSUPLU/3d3dsmTJEtE0TeLj46WmpoaBRy8NBh/RCza4XNqMGTMClkt72hJlz2pnwYIF/vAqKSkJCD0Aoqqq3LhxQzRNEwD+IUrDMPx3fJqmyfXr1/3tGoYhU6dOlezsbHG5XKIoilRWVgbtg9vtFqfTKZqmSWJiouzdu/frXxiiEGHwEb1EvF7vN14ubefOnUMC76ufhw8f+oc2DcPw1xtcnebw4cMB7V26dMk/NAsg6MovHR0dUlJSIhaLRcaMGSP19fVf/yIQhRiDj+gl9bTl0txu9zPrdXZ2+u/oBj/jx4/3/33gwAEREZn77vtS+8lf5MMjV+VHB/8oM1ftk9zFG4Ys1r5o0SJ/XavVKnl5eQF9LCoqElVVxeFwBF1OjehlY5r9+IheZXfu3MHmzZtx8uRJuN1uZGZmorS0FGVlZdA0LaDsjh07UFlZGXBMVVXs2rULLpcL7zpLkZy/GBdutQMAevv/tzmtTVMhAPIzk7Hy7Slw6D1ITU0FANjtdni9XhiGgbNnz6K2thanT5+Gw+FAdXU1nE5naC8C0Qhh8BG9Yi5evIht27ahoaEBPp8Pubm5WLduHYqLi9HR0QGHw4HS0lKkp6fj6NGjuHLlCkQETqcTbxatxIHPv0RvvzHshsxRmgrt+m9x69QvsWrVKng8Hhw6dMi/a31aWhr27NmD4uLiMJ050chg8BG9wo4fP47q6mo0NjZC0zRMnjwZt2/fhqZpqKmpwYoVKyAi2LdvH37z18doTfkWvD5j+Ib/S1MM/GR+Nkb94woWLlwIwxioa7Va0djYiJycnFCdGlHIMPiIIkB/fz/q6+tRUVGB3t5eAAPDm1VVVdiwYQM+/6ITC3/xGby+J4H1Otvw6Ewd+lqbAE2HPTMPCe8sg6Ja/GU0xUDLwbXoffB3AICiKBARbNq0CVu3bg3fSRKNEAYfUYRoaWlBeno6rFYrAKCvrw8AUFhYiHEfbMantx8PGd5sO7oZllGjkfSDMhg93Wj79Y8RM70QcTPf95dRIMjLiMWh5XMgIjAMA4ZhQNd1KIoStvMjGina8EWI6FWg6zrKy8uRkZGBjIwMTJgwAYmJiWj47Ap+eq0z6DO9/i/bEJf7HhTNCkuMFdETc+F7eD+gjEBBY+u/8bi7D0kxUVBVNUxnRBQaDD6iCOFwOLB79+4hx7ub+6DgVtA6cTN/iO4bv0fUa2/C6OmCt/kyRn9n8ZByCoCPr7Zg+ZzJI91torBj8BFFuKZ/ugOmLHyVLf0NdP35E3zx8w8AMWB/43uIfv3bQ8r19BtoeuAJdVeJwoJjFkQRzt3TH/S4iIG2o5swKnM2Xlt7DGkf/gpGTxc6Gw48pR1fKLtJFDYMPqIIF2cLPrBjeD144m5H7FvvQdF0WKLjEJPzDrx3Lj+lHT2U3SQKGwYfUYTLGhuHKG3oT90yKh5avAOeP52GGE9g9HSh6/o56CkTh5S1aSqyUmPD0V2ikON0BqII97CrF3k7zwd9ztfX1ozHZz+C7193AdUCW0YOEr+/HBZ7QkC5KE3FHzZ8F0kxUeHqNlHI8OUWogg3JiYKb7+ejN/dbBsypcHqmISxzh3PrK8owNzMZIYeRQwOdRKZQFn+FNg0y/AFg7BpFqzMnzLCPSJ6cRh8RCYwPX00XPOyEK3/fz/5aF2Fa14WctJGh6hnROHHoU4ik1g8awIA4Genm9DT/2TY3Rlsmg9Iu2IAAADVSURBVAWueVn+ekSRgi+3EJnMtZZO1DXcxqd/a4eCgcnpgwb345ubmYyV+VN4p0cRicFHZFKPunrx8dUWND3wwN3jQ5xNR1ZqLIrfSuOLLBTRGHxERGQqfLmFiIhMhcFHRESmwuAjIiJTYfAREZGpMPiIiMhUGHxERGQqDD4iIjIVBh8REZkKg4+IiEyFwUdERKbC4CMiIlNh8BERkakw+IiIyFQYfEREZCoMPiIiMhUGHxERmQqDj4iITIXBR0REpsLgIyIiU2HwERGRqTD4iIjIVP4DsTAB0XnV14gAAAAASUVORK5CYII=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd1gUV9vG75mt7NKRKgJKUQQsQARLVMSGBXsh6huNnVgwGmuwRE1eYwxGY4vGWBMLGnuPQkwQUVGxIRYUFJEivSxbnu8PwsTNAmq+FPN6ftc1l+6Z55x55rA795znNI6ICAwGg8FgvCHw/7QDDAaDwWD8nTDhYzAYDMYbBRM+BoPBYLxRMOFjMBgMxhsFEz4Gg8FgvFEw4WMwGAzGGwUTPgaDwWC8UTDhYzAYDMYbBRM+BoPBYLxRMOFjMBgMxhsFEz4Gg8FgvFEw4WMwGAzGGwUTPgaDwWC8UTDhYzAYDMYbBRM+BoPBYLxRMOFjMBgMxhsFEz4Gg8FgvFEw4WMwGAzGGwUTPgaDwWC8UTDhYzAYDMYbBRM+BoPBYLxRMOFjMBgMxhuF+J92gMFgvDo5xSpEX3qE5MxCFJZrYCoXo5GdKQb4OcLKWPZPu8dgvNZwRET/tBMMBuPluJqej1UxdxGbkg0AUGl0wjm5mAcBaN/QGuHt3NC0nvk/5CWD8XrDhI/B+JewLf4BFh9JRrlGi9p+tRwHyMUizOnWCEMDXf42/xiMfwss1Mlg/AuoFL1bKFPrXmhLBJSptVh85BYAMPFjMH4HEz4G4zXnano+Fh9JRmmZCrknVqP8wRXoyoshNreDRbt3YeTqD03+UzxeOxKcRC7kMw3sh8UYiiaO5mjiyMKeDEYVTPgYjNecVTF3K8ObOi3EJnVg985/ITKzRtm9i8jevwQO730l2NabshMcLxI+l2u0WB1zF2uH+v8TrjMYryVsOgOD8RqTU6xCbEo2iABeKof520MgNrcFx/FQuLWA2MwWqsy7NeYnAs7czkZusepv9JrBeL1hwsdgvMZEX3pU4zltSR7Uzx5Dau0kpD1ePQKPVr2LnMPLoS0tAABwAKITay6HwXjTYMLHYLzGJGcW6k1ZqIK0GuQc+BzGPsGQWNUDrzCF3btRqBv+LeyHLwdVlCLn4OcAgHKNDslPiv5u1xmM1xYmfAzGa0xhucYgjUiHnEPLAJEYlp3GAQB4qRFk9u7geBFESgtYdhqP8tTL0KlKfy1H/bf6zWC8zrDBLQzGa8KcOXOgVCrh4+MDb29vODs7Q8Zp9WyICLlHVkBbkg+bAfPBiWr4CXNCBgCAqVzyF3rOYPy7YMLHYLwmbNu2DWlpaZDJZFCr1dDpdLBoNRAWbYdC+2tw5tnxVVDnpsN28CLwkt+WJlNl3AYvU0Js6QBdeTGenfwaMicf8HIl5GIejexN/qnbYjBeO5jwMRj/MOXl5Vi7di2ys39dhkz12wjMoqSTsGg7FACgKchC8ZVjgEiCRyuHCTaWXd8Hx/HIi90CXWk+eKkCcpdmsA6dDgAgAP19Hf++G2IwXnPYkmUMxj9AWloali1bhv379yMtLQ1GRkawtbVFamqqYCMSiTBq1CicLHOB1t4L4F69S54D0MXLls3jYzCegwkfg/E3ERMTgxUrViAmJgZ5eXmwtrZGx44dYWNjg+joaDx+/LjafFI7dziN+AJq4qo9XxukVoFOfYGZY95BixYt4OPjA5mM7d7AeLNhozoZjL8ItVqN9evXo1WrVpDL5ejQoQOuX7+OsWPH4sKFC2jTpg327NmDtWvXolWrVkhLS0PLli0Nyuno6455od6Qi1/t50pqFXSXopF+9Re8//77CAoKgomJCfr27ftn3SKD8a+ECR+D8SeSlZWFWbNmwcPDAzKZDBMnTgQAfPXVV6ioqMDcuXOxd+9etGjRApcuXcLnn3+O0tJS7Nq1C+bm5uB5/Z+kTCbD1q1b0dqWkHf6G/CkAfeihh/pAG0Fgsyf4VHM90JycXExOI5Dx44d/+zbZjD+VTDhYzD+n1y8eBFDhgyBjY0NbG1tsW7dOvj4+CAmJgbl5eU4cOAA4uLiYG5ujuHDh8PFxQVJSUl4+PAhJk6cCJ7n8c0338DKygoXL14UyuU4Du+//z7mzZsHd3d3ZMXtwedd66KhohykqYDkd79emZiDTlOBsjvn8WTrdBz+chbEYv3xaxUVFbh7t+YlzhiMNwJiMBivhFarpe+++47at29PCoWCOI4jZ2dnmjRpEj18+FCwO3bsGPn6+hLHcWRtbU2RkZGkUqn0ynr69Cn5+voSAFIqlWRkZETHjx+nJUuWkLGxMSkUCpJIJASAeJ6nGzdukEgkInNbR2rcbxLZ951JzsM+JdchC2ht7F3ijUwJlQM5hTxV/xeJRLRy5UoSi8Xk5+dHZWVlf3fVMRivBUz4GIyXID8/nz7++GPy8vIikUhEEomE/Pz8KCoqikpKSgS7srIy+vDDD8nS0pI4jqOAgACKjY2ttsylS5eSWCwmS0tLEolE1KxZMyooKBDOR0dHk0KhEITL1taWzM3NCQCZm5sTz/PEcZxw3Lx5U0/0nj+MjY0JAH3yySeUkpJCVlZWZGZmRlevXv3L647BeN1gwsdg1MDNmzdp5MiR5ODgQADI1NSUQkJC6PDhw6TVavVsL1y4QO3atSOe58nU1JTCw8P1ROx5Hjx4QB4eHsRxHDVo0IA4jqPZs2dXaxsUFEQ8zxPP8yQSiQwErUr8AFDLli1JKpUa2Hh4eFBeXh599dVXxHEcrVixglQqFbVt25Z4nqfVq1f/6XXHYLzOMOFjMH5Fq9XSgQMHqGvXrmRiYkIAqG7dujRq1Ci6efOmgb1araYlS5aQg4MDcRxHXl5eFB0dXes1Zs2aRTzPU4MGDcjc3JxMTU3p/Pnz1dru3LmTOI6jmJgYGj58OCmVSr3Q5e8PmUxmII6enp5kZWUlCPV///tf4jiONm7cSERE8+bNI47jqF+/fgZizmD8r8KEj/FGU1JSQsuWLaPmzZuTWCwmkUhE3t7etGjRohpbbPfu3aNevXqRRCIhuVxOgwcPpsePH9d6nWvXrlG9evVIIpFQjx49iOd5evvtt2vsZ8vLyyOZTEajRo3S8xUAOTs7VyuAYrGYTExMyN3dnQAQx3GUmppKMpmMIiIihHIiIyOJ4zjatWsXERGdOXOG5HI5OTs709OnT1+1ChmMfx1M+BhvHA8ePKCJEyeSs7MzcRxHCoWCOnToQDt27Kix1aPT6ejbb78lNzc3AkAuLi60evVq0mq1lF1UTmti7tLkHYk0YlMCTd6RSGti7lJOUTlptVoaO3YscRxHfn5+5OfnRzzP07Jly2r10d/fnxwcHPT8+fTTT0mpVBIRUWlpKQGgmJgYioyMJJlMJthptVqSSqVkZmZGgwYNolWrVhHP85Seni7YREREEM/zdPjwYSIiys7OJldXV5LJZHT8+PE/XLcMxr8BJnyMN4IzZ85Q7969ycLCggCQjY0NDRkyhC5dulRrvuzsbHr33XdJoVCQWCymrl27CmHPK2l5NHrLBfL46Ah5fHSEnGceEo6GHx0ht9mHqO6g+WTs7EVz5swhY2Njsra2phs3btR6zS+++IJ4nqfk5GS9dHd3dwoNDSUiorNnz5JIJCIiotjYWOH/VXTq1Ins7OxIIpGQSqUiDw8Patq0qZ7NqFGjSCQS0ZkzZ4ioUjDfeecd4jiOZs6cWXuFMhj/YpjwMf4nUalUtG7dOgoMDCSZTEY8z5OHhwfNnj37pcJ5hw8fpmbNmhHHcWRjY0MLFiygiooK4fzWc6nUKPIoucw6pCd4BseMA9Rgxn4ybh5CPXv2JLVaXet1Hz58SCKRiObPn6+XXlhYSBzHUUJCAhERRUVFkampKRFVtmB/PzMpLi6OAJBCoaBZs2ZRSkoK8TxPW7du1bMbNGgQicVivX7GDRs2kEgkopYtW1J5efkL64rB+LfB1upk/M+QmZmJqKgo/PDDD7h79y6kUin8/Pzw3nvv4d133zWYzP17SktLERkZiY0bN6KwsBCBgYH47LPP0Lp1az27bfEPsPjILZSpDXdGrwkJR5gX6o2hgS612rm6ukIul+PGjRt66XPnzsWXX36JgoICAMCYMWNw8uRJpKamQqPRQCKRoKSkBAqFQshjYWGBBg0a4N69e8jPz8eoUaPw/fffIy8vD1KpVLDr2bMnjh8/jsTERHh7ewMAbt26Jdz3L7/8Ak9Pz5e+VwbjteefVl4G4/9DQkIChYWFkbW1NQEgS0tL6tevH/30008vXcb58+fp7bffJp7nyczMjCZOnEhFRUXV2l5Jy6NGkUdJ6dWeREoL4qRGJLZwIMuQiUIrz2bwIhJbOhInlpHMyYfqjt9IzjMPUaPIo3Q1Pa9GP6ZMmUISiaTaFqmLiwsNHDhQ+BwUFEStWrUSPlfN43ueESNGkI2NDYlEItq8eTNptVoyNTXVK6eK9u3bk0wmo5SUFCGtrKyMAgMDSSQSCaNAGYz/BZjwMf5VaLVa2rZtG7Vr146MjIyI4zhycXGhiIgIvVVTXoRarabFixeTnZ0dcRxHPj4+9MMPP7ww3+gtF8hl1iGyH7mKnKb9QM4zD5HD6DXEK83Jbvhycpy0nTiZgur0nklO0/aSaYu+JHVoSM4zD5HLrEM0duuFasu9dOkScRxHGzZsMDiXnZ1NAOjatWtCmru7Ow0dOlT4LJFI6NixY3r50tPTCQAFBQWRs7MzERHt27ePOI4zmLiu1WqpRYsWpFAoDOpx5syZxHEchYWFsSkPjP8J2FqdjNee/Px8fPzxx/Dy8oJUKsWIESNQXFyMTz/9FKWlpUhNTUVUVBScnJxeWNadO3fQo0cPKBQKLFy4EMHBwcjIyEBSUhJ69+5da96cYhViU7JBBEitncGJJb+e4cCBgybvCUpTzkFaxwnKRm3AiaUwa/MO1FmpUOemgwg4czsbucUqvXJ1Oh06d+6Mtm3bYuTIkQbX/fTTT2FpaSmEIQEgJycHjRs3Fj5LpVKkp6fr5XN0dISzszOMjIyQlpaG8+fPo1evXggICEBoaKieLc/zOHfuHFxdXeHt7Y2srCy96x8/fhx79+6Fh4cHcnNza60nBuN1hwkf47Xk5s2bGDlyJBwcHGBhYYFly5bBxcUFBw8ehEqlwsWLFzF58mTI5fIXlqXT6bBhwwa4urrCw8MDt27dwldffYWSkhJs27YNdnZ2L+VT9KVHep9zj69G2uf9kLF+HETGljBy9Yc6+yEkNvUFG14qh9jcDhXZaQAqN4aNTtQvJywsDOXl5Thy5Ei11925cyd69uypl1ZUVITmzZsLn+VyOTIyMgzyjh49GrGxsfD19cWECRMAAAcPHsTjx4/x3//+V8+W53kkJibC1tYWnp6eyM/PF8516tQJaWlp0Gg0cHR0xJkzZ2qqJgbjtYcJH+O1QKfT4cCBA+jatStMTU3h5eWF48ePo0ePHkhOTkZBQQEOHz6MkJAQcC/cl6eSp0+fYtiwYTA2Nsb48ePh6emJ5ORk3Lt3D2PGjDHYAqiK7Oxs3LlzxyA9ObMQKs1vA1qsuoSj3ge7YDtkCYw8WoITSaBTl4OXKfXy8TIlqKIMAFCu0SH5SZFw7ujRo9i9ezd2796tNzClioyMDDx+/BiRkZFCmkajgUajQUBAgJCmVCqRmZlpkH/q1KkoKyvDwIEDcenSJWRkZKBOnTqYPXs25s6dqyduACAWi3Hjxg0YGxujYcOGKC4uFs7Z2Njg/v376N69O4KDgzF//vxq64/BeN1hwsf4xygtLcWyZcvg6+sLmUyGvn37IiMjAzNnzkRBQQEePXqEr7/+Gg0bNnylcg8cOIAmTZrA3t4ep06dwpw5c1BWVoZDhw69VFkfffQRPDw8YG1tjUmTJiEuLg5FRUW4cOW6gS3HiyCv5wVtUQ6KLh8BL5FDpyrVs9FVlIKTGgmfC8vVAIC0tDT06dMHbm5uaNasWbW+LFq0CDY2NnB1dRXSrl69Cp7nYWFhIaSZmpoiOzvbIL9cLoevry/27dsHR0dHodW3YMEC1KlTB3369DHII5VKcevWLfA8D09PT5SXlwvneJ5HdHQ0Vq1ahYULF6Jdu3aoqKio1ncG43WFCR/jb+XBgweYOHEinJ2dYWxsjHnz5sHCwgLbt29HRUUFkpKSMHv2bJiamr5SucXFxZg8eTLMzc3Rp08fmJmZIS4uDk+ePMGcOXNeOJWhimfPngn71eXk5GDlypVo3bo1TE1Ncfv6lZoz6nTQ5D2BxNoZ6qzU35IryqHJy4TU+rf+x1NHD8Lc3BzOzs5QqVS4c+eOXsvqefbs2WOwY/qlS5dgZGSkl2ZmZlZj39uMGTOQkJCAuXPn4uDBg4KQ/fDDD4iNjcXJkycN8igUCiQnJ6OsrAxeXl7QaDR658ePH4/Lly/j6tWrcHBwqLaFzGC8rjDhY/zlnD59Gr1794aFhQXq16+PXbt2oW3btrh48SKKi4vx448/YuDAgTWGHmsjLi4OrVu3hpmZGbZs2YL33nsPRUVFOHv2LAIDA2vMl5+fj507dyI8PBytWrWCvb09JBIJrKysqu2/kslkeLdXR8jEPLQl+Si5GQtdRRlIp0XZ/UsouRULuUszKDxaoiLnIUqSfwFpKlDwy/eQ2LhAYlUPACDhgYqsVGE+HlC54ey0adOwbt06vdBjamoqsrKyMGfOHD1frl27ptfaAwArKyuDsGUV/fv3h0QiQUFBAYyMjITyAgIC0LNnTwwePBg6neGcRDMzMyQnJyMnJwdNmzY1sGnSpAkyMjLg4uKCxo0bY9u2bTXWN4PxWvFPDytlvN7Utg5lTahUKlq7di0FBAQYrJqSnZ39//ZJrVbTxx9/TLa2tsRxHDVt2pQOHjxYrW1eXh7t3LmTwsPDqVWrVsIyXvh1UWeFQkEKhULY1UCpVFLTpk31Fn8eN24cERGdOnuenKbtJcdJ20lWz5s4mZI4qRFJrJ3JsuuEaubxSUlWz5vqjvtGOOc0bS/VbdBQr3yFQkHe3t7C3nsKhYJ8fHzIw8NDb2eFKrp06UJvvfWWXtp7771Hrq6uNdZZaGgoubm50YcffkjGxsZCellZGcnlcpowYUKNedPT00mpVJKfn1+N0xmmTJlCHMfR8OHDayyHwXhdYCu3MKrlano+VsXcRWxKZb/R84M65GIeBKB9Q2uEt3ND03rmwqope/fuxb179yCTyYRVU/7zn/+8dKixNpKTk/HBBx/g5MmTkEgkGDBgAJYuXQobGxsUFhbixIkTiI2NxeXLl3H//n3k5ORArVZDKpXCwsICcrkcarUahYWFKC4uhlgsRt26deHv74+ePXuiX79+UCgUGDlyJDZt2gSxWIytW7fCxsYGUVFROHToEGz6fQSFeyD+yI+G4wDLknQkrhivlx4UFITTp08DAHJzc7Fz504cO3YMhw4dEmzq1KkDLy8vBAcHY/PmzWjevDl27dolnJ89ezY2btxY7QAXAEhKSkKzZs2QlpaG+vXrY9WqVRgzZgwAYP369Rg3bhzu378PZ2fnavPfu3cP3t7eaNGiBWJjY6u1OXToEPr164f69esjPj4e5ubmL185DMbfCBM+hgGVS3Ilo1yjRW3fDg4Ap9OgLG47Mn/eDUtLS3To0AGTJ09GmzZt/hRfdDodvv76ayxZsgQPHjxA/fr1ERISAp7nceXKFUHgKioqIJVKYW1tDRcXFxgbG6OoqAiPHz9GRkYG1Go1LCws0LhxY3To0AFhYWEGy3DFxsaib9++KC8vx6hRo7BixQpIJBKo1WrBpoF/EMRdp0GlefWfjZFEhI7cNaxaOAMikUjoN2vUqBG++uorBAcHC7Y3btyAt7c3srOz8ejRI+zcuRMxMTFITk5Gfn4+eJ6Hi4sL3nrrLfTo0QNZWVlYsGCBXgj191hbW2PAgAHIyspCfHw8Hj36bVqFp6cnJBIJkpKSasx/48YN+Pr6Ijg4uMapFxkZGWjRogXy8vJw4sQJg+XeGIzXASZ8DD3+yDqUItJicjsnTAqpfmTiHyElJQUjR47EuXPnoNVqIZfLodVqhRZcnTp10KBBA/j6+sLBwQGPHj3CuXPnkJKSgqKiIshkMri4uCAwMBB9+vRBSEiI3vqUz1NRUYFBgwZh//79CAkJwZ49eyASiSCTyfD8z0MkEmHv3r2YsHwnZIFhUNPLTasAACMJj1F+VpjetyWWLVuGI0eO4PTp0+jZsyeePn2K+Ph42NnZYc6cORg/fjzeeecdxMfH48GDBwZlyWQyTJo0CU+fPsX58+fx8OFDqFSVk+L9/Pzw9ttvY+DAgQgICNDrN504cSK+//57XL9+HQ4ODoiJiUHbtm0BVLboPDw8sHHjRrz77rs13sfFixfRsmVL9O7dG7t3767WRqfToU+fPjh06BAWLlyI2bNnv3Q9MRh/B0z4GAJX0/MxeH08nsbvQ8m1H1GR/QBKz3ao02MKAKD4xhk8O7bqtwxEII0KdsOXw7xeQ+wcE4gmjr+Ft86fP4/Lly9j3LhxNV6ztLQUp06dQkxMDBITE3Ht2jXk5eUJgmNiYgIfHx/4+vqiffv2aN68OY4cOYKjR4/iypUryMzMBBHBxsYGTZo0QZcuXTBo0CA4Ojq+1D0fOHAAQ4YMgUgkwq5du9C5c2doNBp4e3vj9u3berY2NjbIysqCpaUllh+6hPn7k6DjRLWGPTkAWnU5Cs5shCi1cmWUCxcuoKioCGFhYVi5ciXq16+PrKwsTJo0CXv37oVEIoFGo0FERASWLFmiV55Op4NIJMLjx4/h4OAgpB89ehTdunVDp06dcO3aNWHlFRsbGzRt2hRdunRB586d4ePjgwsXLuD999+HSqXC5cuXhTLGjRuHLVu2IC8vDzKZrMZ7Onv2LIKCgjBs2DB8++23Ndp9+eWX+OCDDxAUFIRjx479KeFuBuPPgAkfQ2DM1os4eespSpLjAI5DWWoiSF0hCN/vKU46hYK4HXAYux48z6FLY1usHeoPnU6HxYsXY/HixVAqlcjNzUVpaSlOnz6NM2fOIDExEXfv3kV2djZUKhUkEgkkEgnKy8uh0+mE0F9QUBBOnjyJPXv2IC4uDvfv30dZWRmUSiXc3Nzw9ttvY8CAAWjTps0rjwgtLi5GaGgoYmJiMHjwYGzZsgVisRjffvstRo4cCSICx3EQi8V6oU6O4/DNN9/g3Llz2HI4FkMWbcbP9/Og1WigeW6QNGlU4DgeXZs44uSK6bh/oXKkqJWVFVasWIF33nmnWr80Gg3GjBmDb7/9FjzPIyQkBKtWrRL63m7dugUvLy+DEZbPnj2DlZUVdDodOI6DTqdDXFwcdu/ejbNnzwpTJjiOg0KhQLt27XDkyBGkpKTA3d0dQKWoWllZITg4GNHR0bXW37Fjx9C9e3e8//77WLFiRY12Fy9eRIcOHWBkZISEhIQa+xAZjL8TJnwM6HQ6fLf3ICIvAMT/9lae99NWaAtzahS+zO9mQe7kA/M2lQ9xmZjHjjA3vNMvFHfv3hX6sKRSKSoqKoTpAg0aNEDTpk1ha2uLQ4cO4dKlSzA3N0ffvn3h6OiI2NhYXL9+Hbm5ueB5Hg4ODvDz80O3bt0wYMCA//egic2bN2PcuHEwMTHBwYMHERAQgKysLLRu3Rp3794Fx3HgOA6fffYZ+vXrpzeJWywWo02bNoiJiYFMJkN5eTlyi1Vo0ms0bBr6wjegNfZH70BF1gOUXDuF8e8Ng1qtxtdff63nw9KlSzFt2rRq/evduzdu3ryJuXPnIjIyEg8fPkTTpk0RFRWFtLQ0jBs3DqWlpQb5OI5DTk4OrKysqi23uLgYY8eOxY4dO+Dk5CSEUS0sLNCoUSMEBQXB3t4ekyZNwsWLF+Hr61trPe7duxcDBgzAzJkzsXjx4hrtiouL0bp1a9y8eRPbt2/HwIEDay2XwfjL+fsHkjJeB0pKSmjp0qXUrFkzEovFZBbYn5x/3W2g6jBtNYiU3sHVbrBad/xGAseTw7gNQprL9H1k0qKv3lB9iURC8+fPp5ycHCKqnOowd+5cqlOnDgEgCwsLsre3J6lUSgDI3NycAgMDaebMmXTlypU/9Z6zs7PJ39+feJ6n8PBwYWh+ZGQkcRxHAIjjOHJycqL79+8TUeWuBd7e3iQWi4nneRKJRMLUBwcHByIiOnnyJAEgOzs7SktL07t/AIJ91dG8eXNSqVQ1+qlUKumTTz4RPickJFBAQABxHEdKpZJMTU2rnVbA8zxduFD97g9VqNVqEolEtGPHDtq2bRvxPE9z5syhtm3bkpWVlVAPIpGIevXqRevWraO8vJq3UtqyZQtxHEeLFy+u9bpEROHh4cRxHI0dO/aFtgzGXwkTvjeI+/fvU3h4ODk5OQkP0eDgYNq9ezdN+j7RQNxqEz6zt4eQrJ63QXr4lng6evQoDR06lJRKJQGgqVOnUnR0NLm4uOgJgFQqJXd3dxoyZAjt2rWLysrK/rJ7j4qKIolEQk5OTsK+dQkJCWRjYyMIHsdxNG7cOD1Rad++PRkZGdH9+/epadOmeiLm4uJCJSUlZGdnJ4j8woULBfGo6TAxManRz5iYGOI4rtq6ePLkCdnb2wvzDSMiIvTsZDIZ7dmz54V10bp1a/L19SUiInNzc705fGq1mnbu3Ekcx5G1tTUZGRnpzS0cO3YsnThxQq+OVq9eTRzH0YoVK1547ejoaJJIJOTt7V3jnocMxl8NE77/cU6dOkW9evUic3NzAkC2trY0bNgwunz5sp7diE0JryR8Ygt7suo22SA9cPomQSB+LwA8z5Onpyd98skn9ODBg7/l/h8+fEienp4kEolozpw5RFQ5abt37956fpmYmNDZs2f18vbv358kEonePngzZswgjuNILBaTm5sbRURECOIgkUjI2dm5WrFr0KABnTp1inbu3EkAqHXr1tX626VLF2rcuHGN99OkSRPq2bMnzZw5k0xNTUkkElFoaCg9fPiQTE1NX0p8jh49SjzPU1lZGX300UekUCgMWpALFy4ksVhMubm5lJ2dTatWraIePXqQo6Oj8LetU6cOtW/fnhYtWiTUy8tsWJgB0lEAACAASURBVPvw4UOys7MjY2NjSkhIeKE9g/Fnw4TvfwyVSkWrV6+mgIAAkkqlxPM8NWzYkD766CPKzs6mCxcukKurKw0YMIDWrFlDiYmJVFZWRiO+jnlp4bMd+hlxEhnVm7LL4JxV9w+qffDb2NhQ8+bNqWfPnhQREUHr1q2j+Pj4v7SVFxkZSSKRiDw9PYXNVTdt2kRGRkYkFosF37p06WIQegwPDyeRSKQnhlU7mI8ePZri4+Pp+++/Jw8PD+J5ngCQXC6vtrXXvHlzvbIHDhxIAGjp0qUGPsvlclq+fHmN92Rra0vTp08XPm/atImcnZ0FMR4yZMhL1Y1SqaQFCxaQWq0miURSrWA6OjrS22+/XW3+xMREmjFjBgUEBAgvVVX1EBgYSNu2baOSkpIar69Wq6lLly7E8zx9/vnnL+Uzg/FnwYTvf4CMjAyaNm0aubq6EsdxJJfLqXXr1rRx40ZSq9V6tg8ePBAeUFX/AiDPvpPI46MjlctqTd9fuXt4YH9SegWR07S95DR9vyBuxk27kNIryLAlOG0vOXQYJoQOq/rEFi1aRJMnT6YePXpQs2bNqG7duqRUKvX8MDY2prp161Lz5s0pNDRUEMfz58+/sjjevHmTnJ2dSSwW07Jly4iospXh4+NDHMeRRCIRhGLLli0G+efPn088zxvsyP7xxx+TVCo1EMnY2FjieZ7OnTtHa9asobi4OKGfzNPTk8RiscHfoSo8WhV2JSI6dOgQ8Txfa/+fXC6nbdu2GaTHx8eTTCYjAOTo6Ejr16+vtY4GDRpETk5OREQUFhZGdnZ2BjYXLlwgjuPo8OHDtZZFRFReXk67d+8mT09PofVbFdb18/OjiIgIiouLM2hZfvbZZ8TzPIWEhLDd3Rl/G0z4/qXEx8fToEGDhEEiVlZW1L9/f/r5558NbLVaLe3fv5/69+9PDg4OBoNPvvnmG8ouKheEz6x1mEGrxax1mLDWJCdTks3gRQbCV2/aXuKNTAmAXquqtr6ckpISiouLozVr1tCkSZMEcXRwcNATR5FIRMbGxuTo6Ei+vr7Uq1cvmjJlCq1fv54SEhJIpVKRVqul8PBw4nme/P39KTs7m7RaLU2ePJl4nidra+vfhN7Tk7Kysgz8qeqv+r1waLVaMjIyoqlTpxrkWb9+PSmVSuHzsmXLCAD5+/uTsbFxta248vJyEolEeqLYrl07g9bh7wFAd+7cqfacr68vderUifr27UtisZiMjY3pgw8+qPbFISUlhQDQw4cPKTs7mziOoxMnThjY9enTh8zNzV9JlEaPHi0MoPnss8+oU6dOZGdnJ7wM2dnZUZcuXeiLL76gjIwMio+PJ6VSSfb29pSenv7S12Ew/ihM+P4laDQa2rJlC7Vt25aMjIyI4zhq0KABTZkyxeBhodVq6ccff6Rhw4aRk5MT8TxPYrGY3N3dafz48dS1a1ehjyYpKYny8/Np37595D3uS3KecaDaPr0XHU7TD5B1n9kGIxjt7OyqFZhXoaSkhH755RdavXo1TZo0ibp3705NmzY1EMeqw8LCgvz8/KhVq1Ykl8tJLBYLg0I4jqPIyMhqr7N7927iOI4WLVpkcG7atGlkZGREGo2m2nP29vZEVNmiFolE5OzsTIGBgQSAgoKCyM3NzSBfQkICASBnZ2fSarUklUppw4YNNdbDgwcPCECNItShQweh71ClUtGHH35IJiYmJBaLqXfv3gbfE3t7e3r33XeJiKhNmzbk7e1tUGZZWRkZGRkJC3W/LGFhYSQWiyk+Pl5I02q1dPbsWZo4cSI1b96cjI2NhRCxu7s7mZmZkUgkol27dr3StRiMV4UJ32tMbm4uzZs3jzw9PYnneZJIJOTv708rVqwweItPSEigMWPGkJubG4lEIuJ5nlxcXGj48OEUGxurZ7t9+3aSyWTCbgDCKEs7d3KauucPCZ/brIMktXMzaCnKZDLiOI48PDxo1apVf3o4S61W0zvvvEMcx5Gvry8tW7aMxo4dS1ZWVoRfd2B43h+O48jExITq1atHfn5+1Lt3b5o6dSpNnTqVeJ6vdpcClUpFUqmUFixYUK0P/fr1E0Sjfv365O3tTdOnTycbGxuytramoUOHEgB68uSJQd45c+YQAGrbti2JRKJa62fXrl0kk8lqPD9gwADy8vIySN+wYQPVq1ePOI4jPz8/iouLI6LKgTpmZmZERHT16lXiOI7u3r1rkH/jxo3E87wwxeNlCQ0NJYlEQlevXq3RpqioiDZt2kT9+/cnFxcXoY9UJpNRq1ataPbs2ZSUlPRK12UwXgQTvteMa9eu0fDhw4U+IDMzM+rRowcdPXpUz+769esUERFBnp6eQp9V3bp1afDgwXTkyBG9B2jVm/akSZP03rSfP5o1a0ZqtZq2nkulRpFHXkn0GszcT8bNQkgulxuUe+bMGbp8+TJ169aNpFIpSSQSCg4OFh6+/x9OnDhBZmZmpFQqad++fUREtHz5cpJKpWRjY0ODBw8W/Bg8eDAVFBTQ2bNnadWqVTRhwgTq1q0bNWnSRAgXPz/v7nlxdHFxEVpjly5dMuiDCwwMpI4dO1JERARJJBJ6+vQpxcbGkkgkon79+pG7uzvZ2NjQ6NGjq72PJk2aEADy8PCo9X5nz55N1tbWNZ6vmqpSEz///DP5+fkRx3FUr149WrVqFXEcRz/99BMREbm5uVHnzp2rzevl5VXraNOa6NChA8lkMkpJSXnpPMuWLSOe50mpVJKlpSVxHEcikYjq1av3UnMLGYwXwYTvH0ar1dLevXupc+fOgiA5OjrSuHHj9B4WqampNGvWLGratKkwiMHW1pZ69+5NO3fu1Bs88eTJE4qKiqIuXbqQnZ0d8TxPPM+Tvb09de3alSIjI6lu3brCg97Y2Fhvn7yt51KpYeQRcp55sFbBc5l1iFw+/IGMm4UIPlV3NGvWjO7fv09arZY2bdpE3t7exHEcWVpa0rhx4155j76ysjLq1q0bcRxHvXv3JpVKRcnJyeTq6koikYgmTpxIrq6uwlzBI0eO1FjW/fv3SS6XU8eOHYmosgVy9uxZWrlyJb3//vvUqVMnYZCGQqHQ63OsEkeZTCa8qIwYMYIuX75MKpWKANA333xDPM/TBx98QObm5tX6oFarhbqqrS6eb1lWx8KFC8nKyuqF9Zeenk69e/cWIgNOTk6kUqkoOjqaeJ6nwsJCgzxVg6JeNGjm92i1WgoICCCFQiGMrH0Z7t+/T9bW1mRqakoXLlygI0eO0OjRo8nLy8tgbuG4ceMM5hYyGLXBhO8foLi4mD777DNq2rQpicViEolE1KRJE/r000+FgSBPnjyhhQsX0ltvvSWEJK2srKhr1660ceNGIdSpVqvp4MGDNGLECGrUqJHQ6jI2NiZfX1+aPHky/fLLL6TVakmr1dKkSZOI53ny9vamgQMHEsdxtGbNGsG3hw8fUr9+/Ujp1Jhs+s0hl+n7yG22YQuv/oz9NHbrBTp56Xa1YieTySgxMVFPYHv06EEFBQVEVLlBbEREBFlbWwuh0NWrV7/w4bVr1y5SKBRkYWFBZ86cIbVaTcOHDyeO46h58+a0bds2oZ/Rz8+v1oE12dnZZGJiQs2bN6/xumFhYQZiUlhYSLGxsbRixQoKDw8XWtxSqVRPHJ8f3Vg1eT8sLIw2bdpEV65cEV5WNm7cKIRkTUxMavTFz8+PQkJCaryfDRs26A2yeRFlZWXUuXNnISTct29fMjc3r7FlGh4eTnK5/JVH2Wq1WmrSpAmZmJhUG+6tCbVaTUFBQcTzPK1cuVLvXE1zC62trYW5hffu3XslPxlvDkz4/ibu3btH4eHhQl+LUqmkjh07UnR0NGm1WsrLy6Nly5ZRmzZtyMTERAhztm/fnlauXCkIRkpKCs2fP5/efvttsrS0FB5azs7O1K9fP/r222+psLCQdDqd3vXPnj1L1tbWJJPJaN26dURElJ+fT/PmzSOtVkvfffcdNWrUSAiDRUVFkVarpZyicmo3bhFZdf+ARmxKIOvQadR27ELijUyFvsPqWnsKhUKY+L127VqSSqXCqL7w8HC9FuqlS5coJCRECIV27NjRIBRaUFBAbdq0EXb51mq1tG/fPjI1NSWlUknbt2+nd955R+jHe9FE7pKSErK2tqYGDRoYTDWoIjc3l3iep02bNtVaFs/zJJPJqLS0VM9fNzc38vLyIktLS6Huq8Tx+aXBeJ4nqVQqiKODgwNt2rSJrl69qudb3bp1adKkSTX6ceLECZJIJLX6+nu0Wi1JJBIaNmwYOTo6CvVXXShaq9WShYUF9erV65WuQVQpYu7u7mRhYUG5ubmvlHfhwoUkUppT4IhImvR9Io3YlECTdyTSmpi7lFNULthdvnyZZs6cqTe3UCKRUIMGDWjQoEG0devWWucW/pVkF5XTmpi7NHlHzf4z/j6Y8P2FnDhxgkJDQ8nMzEwY4fif//yHLl++TCUlJbR27VoKDg4WfqRKpZJatmxJS5YsoezsbCopKaGtW7fSgAEDqH79+kLrwcLCglq1akWRkZF048YNg+tqNBry9/enzZs3U1lZGXXv3p04jqPOnTvrtYByc3Np1KhRpFQqSSQSUXBwsMFAhLKyMqEF88MPPwituaow4qlTp4TRi1VHTEyMMFhj7969RFQ5eKJnz57C0mByudxg4rJWq6WNGzeSl5eXEAodP348LVu2jKRSKdnb29OlS5coOzubWrZsSRzH0cCBAyk1NVWYqmBjY/PCkJparSZnZ2eytbWt9UHYs2dPYbRmTRw+fJgAVLtiyciRI8nFxYU++ugjsrCwoM2bN5NYLBZadHl5eXTy5EniOI66du1KXbp0EcLdPM8L4igWi8nU1JQ4jiMXFxfq168fzZw5kzZv3kzXrl0TxDE5OZk4jqvV3+oIDg4WBsWcOXNGuK6zszNt3rxZz/bYsWPEcdwfWnFFpVKRk5MTWVtbv/RyZVfS8mj0lgvkNvsQ1fvdwKuGHx0hj4+O0JitF+hKmmGfn0qlot27d9OwYcPIw8ND+N5WzS2cMmVKtXML/0yq/Pf41ddX8Z/x18GE709EpVLRqlWrqEWLFsKqKY0aNaLIyEh6/Pgxbd26lbp37y48pI2MjMjPz4/mzZtH6enplJCQQB988AH5+/uTqampIDLuPr7Ufvxi6rv0AA3fGP/Ct8Uvv/yS5HI5yeVykslkZGFhQadOnRLOnzp1ShjkUKdOHZo9e3aN4atx48YJgubs7GwwdcDIyIhGjhwpPFCeH6Qxfvx44jiOpk6dSmZmZuTr60v3798nHx8foWVhZWVF0dHRBtfNy8sT5oNVif2qVauEyeVVodSqRZIB0KhRo174N9JqteTj40Ompqa1tjweP35MHMcZTGJ/npKSEiG0XN3Dc8eOHSSTyejJkycEgB4/fkwymUwvbLdixQqSy+V6+aoG21y9epXy8vLoxx9/pOXLlxMAatmyJXl7e5OdnZ0wraVKHKvq/6233qL+/fvTzJkzaevWrXriWB1nz54ljuOEqMK7775LlpaWFBoaSiKRiExNTWnmzJnCoJ62bdtS3bp1ayyvNqrWNq1bt+4LQ6aVA62Oksus2gdXucw6RI0ij9LWc6kvvH56ejotXbrUYG6hvb09denShaKiol4pHPt3+8/4c2DbEv0/ycjIQFRUFPbu3YvU1FTIZDL4+/vjvffeg7GxMXbu3Im4uDhkZmZCIpHAw8MDISEh6NevHy5cuFDthqo+Pj7o0qULmgaFYvfNQsSmZAMAVJrf9mCTi3kQgPYNrRHezg1N61Vu1fP06VM0aNBA2LZGLpejpKQEFRUVWLBgAdavX49nz57B398f//3vf9GhQ4ca7+327dto3Lixwd5vzyOTyWBra4tx48Zh+vTp6NWrFw4fPozQ0FDs378fX3zxBaZOnQoAUCgUOHfuHJo0aYLo6GiMHDkSxcXFgNwEzu0HoXX3AZAozWAqF+PJrUvY98UMOFqb4/PPP8fSpUtx7tw5AJXb7xAR7OzskJmZCalUip9++gkBAQEv/Ht16NAB586dw+3bt+Hk5FSjXXBwMO7fv4/U1NQabdq2bYukpCSUlJTo7dlXRXFxMUxMTJCbmwtXV1dMnDgRiYmJSElJQUpKCgDAx8cHDg4OOH78uJCvoKAAlpaW4HkeRUVFkMvlyMrKgq2tLdRqtcGGrvn5+UhMTERSUhKmTJmCNm3aID8/H9nZ2SgsLER5eTmICGKxGEqlEubm5rCzs0O9evXg7u6Oxo0bIzw8HGPHjsXSpUuRn58PKysr7N+/Hx07dsSsWbOwfv16qFQq9O7dG4sWLYK3tzfmzJmD+fPnv7DOf09hYSEaNGgAMzMz3L59u9oNarfFP8DiI7dQpq75u/d7jCQ85nTzxNBAl5fOU9O+hXK5HC4uLggICECvXr3QvXt3SKVSvbzFxcWYNm0aPv74Y9jY2Pwj/jP+GEz4/gDnz59HVFQUTp06hdzcXFhZWSEoKAht2rTBhQsX8NNPP+HRo0cQiURwdXVFcHAwGjdujKSkJPzyyy8GG6q2adMG/fv3R9u2bYUNVSt/OMko12hR21+I4wC5WIQ53RphaKALGjdujFu3bunZNG7cGLdv34ZCocCQIUPw6aefvtSedt26dcPRo0f10nieF4SQ4zgMHDgQmzZtglwuF2zq16+PBw8e4KOPPsLPP/+Mn3/+Wdibb9CgQdixYwcA4HLaM4Sv3IcMWICIwEt+2/Vbp67coLZDI1s8OrERx7//Gq1atYKdnR327Nkj2Jmbm+PWrVuws7N74f0MHDgQ+/btQ2JiIry9vWu0u3fvHtzd3XHy5EkEBwdXa7NhwwaMHTsW06ZNw9q1a1FQUFCtnUKhwJo1a7Bz5048evQIW7Zsga+vLzIzM2FqagqFQoHTp0+jffv2evlOnz6N4OBgODk54eHDhzh06BD69u2LioqKWu9RIpHg1KlTaNeunV76s2fPcPnyZSQlJeH27dtITU3F48ePkZOTg8LCQpSVlQGAII4qlQoA0LNnT7i5uaFx48a4c+cO1q9fj8zMTDg6OiIjIwOZmZmoU6dOrT5VR05ODtzc3FC3bl1cu3ZNbyPhq+n5GLjmJzw+/BXKH1yBrrwYYnM7WLR7F0au/qjISUPuoS+gyXsCAJDaucGi01hI6zjBSCLCzjGBaOL4x/dsLC4uxp49e3Do0CFcvHgRjx8/hlqt1tu3MCwsDE+ePEG3bt1gbm6OY8eOwc/PT/B/8Pp4PI3fh5JrP6Ii+wGUnu309rXUqcuRd3ojSpN/Buk0kFrXh93QJX+K/4wXw4TvJdBoNPjuu++wYcMGXLx4EeXl5ahfvz5atGgBAEhISMDDhw9BRHBxcYGvry/Mzc1x9+5d3LhxAzk5OcKGqr6+vujWrRsGDhxYo/hU97aozklH7ok1qHh6FyIjM1gEjYCiYSvhvJGER92sBJxZ/zEsLCzw7NkzVP1pzczM8PXXX7/yBqBZWVnYtWsXJk2aBKlUCmdnZ4SEhODLL7/EvXv3MH36dCQmJuL+/ft6+UpLS2FtbY3S0lK0bt0at27dQklJifAwvXnzJi4VGL2UsJNOB2jVGNxIhk9GdIVcLhdE9HkaNWqEiIgIjB49utrd2CdMmIC1a9fi9OnTaNu2ba33HRgYiIKCAoMXiCoyMzPh5OSEiIgIlJeXY9++fUhLS6vW1t3dHS1btkRoaCjCwsKgVqthY2ODvn37wsXFBYsWLaps9VbD5MmTsWLFCgwdOhQNGzZEVFQUcnNza/VdoVDg66+/xtChQ2u1+z2PHj1CvXr1sHHjRuTl5eHcuXOIjo5GgwYNUFxcjMLCQqhUqsoXlF/rt2q39xYtWiA4OBheXl5o3rw5GjZsWO3f4HkKCgrQoUMH3Lx5E15eXkhISBDyjNl6EcevPkRB/B4Y+3SEyMwaZfcuIufAUji89xV4uRK68hKIzGwA0qEo8TCKr56Aw8ivwHFAl8a2WDvU/5Xu/0WkpKRgx44d+PHHH3Hjxg08e/YMAITfmFQqRVRUFMLDwzFm60WcvPUUJclxAMehLDURpK7QE76cg5+DdFpYdhoHXm6MiqxUyOzc/jL/Gfr8a4Qvp1iF6EuPkJxZiMJyDUzlYjSyM8UAP0dYGcteXMAr8uzZMyxfvhy7d+9GSkoKxGIxPDw8YGVlhSdPniA1NRUajQYODg5wdnaGVCpFeno60tPTUVFRATMzM+HtcNCgQWjWrNlLXbfqbbFMrRXSSKdFxvrxMGkeAhP/UJSnXUf2no9hP2IFJJZ1BTspDwSWnMPWL/V3w1YoFMjOzoZCofhDdcFxHNzc3HDnzh0AleHNHTt2wMPDA97e3nj69KlBqOfOnTto1KgRdDodEhISYG1tjRMnTmDOnDkw8e0GacBglL9iGEhzcTfuHv1WSJPJZKhfvz7Wr1+PxYsX4/Tp0yAiBAUFYeHChcKLyccff4z58+djz5496NOnT63XSUpKQrNmzRAfHy/k/z2NGzdGRUUF7t69i9DQUDx69AiJiYnV2vbt2xd37tzB1atXIZFIcOLECRw+fBibNm1CnTp14Onpif3799foT8OGDZGSkoI2bdogOzsbycnJtfpvaWmJGTNmYMaMGbXaVYeLiwtatGiBXbt2AQA8PT1hZ2eHM2fOCDY5OTlITEzEtWvXcOLECZw4cQJA5XeE53lotZXf26qWo6WlJezs7ODk5AQ3NzdBHIuLi9GmTRtwHAe1Wo233noL586dQ06xCq2XnNYL61eR8c0EmLUOg7JRayGNdFoUXz6KvDPfwmlaZSRAJuYRN6OD8FwoLCzE7t278Z///AcSieSV66U6NBoNLCwsDF5anNwbQzrgMzz/1c77aSu0hTmC8Klz0/Fk8wdwfH8zeJnhb/L3/jP+fAyD668ZV9PzsSrmbg39XJmIOpVi0M/1R7l+/To+//xzHD9+HJmZmTAxMYGNjQ2cnJzw5MkT3LhxAxYWFrCysoKLiwuysrLw+PFjZGdnw8nJCQEBAfjkk08QGhqqF/p7FVbF3EW5RquXps5Nh7b4GUze6g2O42Dk0hSyuo1Rcv00zNsO+81OB9wgR4wfPx7e3t7Iy8tDZmYmioqKqm0lvQzl5eUAoBfOsra2xpkzZ9CnTx/UqVMHCxcuxMqVK/Xyubu744cffkCvXr3QqlUrpKamYsyYMWgRMgD9v4rFo/1R1Yaxim+cwbNjq34riAikUcFu+HJIG3dHByXhy3lT4e7uDpnstwfD0aNHodPpsHHjRnzxxRcIDAyEpaUlvL298dNPP2Ht2rUvFD0AGDZsGJo1a1aj6M2dOxd37twRWrkZGRmwt7evsbx27drh1KlT4Hkerq6uWLt2LdavX4+oqCjk5+dj+/bttfpz7do1mJiY4Oeff0br1q1rtQUqX3IyMzNfaFcdI0eOxJIlS4TPS5cuRa9evZCfny9EJ+rUqYPOnTujc+fOmDp1KgYMGIATJ05g6NCh2LRpE9RqNbp164awsDCkp6cLYdWkpCScPn0aRUVFQsvxeeLj42Fvb48xUbur9U1bkgf1s8eQWv/WL5sWNQhUUQYQweztIUI6ByA68RGG+tkhKioKS5YsQWlpKdq1awc3N7c/VDe/RywWC6LHcRzatGmDyMhI/JjB4Yc7Fagc+1U9qowUiM1skH92O0punIHI2AJmrd8RBL3K/7FtXf8UXxmGvNbC96J+rvJfRfDEzaf4KSVH6Of6PTqdrtrQi06nww8//IB169YhLi4OJSUlMDU1hUwmg1wuR1FREXQ6HZRKJZRKJTQaDfLy8iASieDt7Y0RI0YgLCwMLi6G1/wj5BSrEJuSXWvo7zcIFdkPf5cCFJs6Y+GMEcLbok6nw9GjR5GWllZrv1ZNVLUwLC0thTQ3NzehhdOvXz/s2rXLQPgAIDQ0FPPmzcOCBQvg5eWFJ0+eYHXMPai1WohN6sDunf8KYazs/Uvg8N5XMPYKgrFXkFBGcdIpFMTtgNTWFSCCskXfGu+D53mMGjUKo0aNwrNnzzB06FChjzIqKgoAMGrUqBrDcL/88guuXbuGa9euVXv+1q1bWLx4MZYvX4569eoBALKzs2sUSQDo06cPIiIiUFFRge7du+O7776Dubk5rK2t8ezZM7z11ls15gUqQ2hXrlxB48aNcf78+Rq/y1WYmJggKyur1jJr4sMPP8T8+fNx9OhRhISEoEePHrCyskJERAQ2bdpUbZ7t27fDwsICarUaRUVFWL16NT755BMcOHAAgYGB+Oqrr+Dr62uQr0ePHjh8+LDwmeM4ZGZmYvvhGGgcm+vZklaDnAOfw9gnGBKrekK605Sd0FWUo+T6jxCZ/hZxKNfo8PmG7xEeNA9UOXIdHMchJCQEYrEYGo0GWq1W79DpdHqHVqsV8up0OuH/zx+Cf0Q4e/YsOnfuDPu+MyH1aFNrPWuLcqHOfgiFRys4TtgM1eNkZO1eAGkdJ0jq1EO5RofkJ0W1lsH4//HaCt+rjIoiAsrUWiw+UtknUyV+RIRZs2Zhy5YtePToEXieR3FxMVavXo3t27fjxo0bICLI5XJhVF55ebnw5QcqhcPGxgatW7dG37590bFjxxf2X/xRoi89qjZdYukIkcIMhef3wPSt3ihPS0J52nXInX0MbKveFt9tURdbtmzBwoULkZGRgZkzZ2Lx4sWGhb+AW7dugeM4WFhYCGn+/v5CS2Xu3LlYt24dbt++jYYNGwo23333HYKDgzF//nycP38ex44dQ5MWrcH3+QScRA7z597QFW4tIDazhSrzLsTmtnrXL77+I5TeHcBxHMBxuJJVgUZN/bFj8wYhfHzq1Ck4OTnBw8NDyJeUlITjx49j0qRJGDp0KCIjIzFhwgRMmDABQUFBWLRokYHojBgxAi1btoSXl5dBPeh0OgQHB8Pf3x8TJ04U0gsKCuDu7l5joXftkQAAIABJREFU/Tk5OUEsFuPMmTOYMGECli9fjsLCQuGB+iIhAypDjjKZDCqVCi1btsT58+drtDUzM0NWVhby8/NRXFyMkpIS4d+SkhKUlpaipKQEZWVlKCsrQ2lpKcrKylBeXo7y8nKYm5tj2LBhaNmyJUpLS2FkZIQtW7bgwoULUKvVqKiogEajgVqt1hOQ9evXC+JYJQrnzp0TBny8iKo8hWUVUOil65BzaBn+j70vD6/p6tu+995nzslJZJ4nQiIiiZjHiCmGKlJT1VRNRQ01pULNVJ9S1SpKq0W1lIqHalEVqhSlplIlouYhgogIiZOT+/sj71nNyUliePp8b/t9va9rX2Sftddee+21171+44KigkubZLvrZI0Oxpj2uPxeH2iTPoDiUCKZ5t5/aOONTBKZmZmQJKlkLAHi/6UPWZYhy7LN/xVFgaIoNv9XqVR2tm1nZ2cE14jAlUcsXCWVBpBVcGrSC5KsQBcQCV1AJB6cOwy1Wwmx3y2w9xL+B38e/pLEd+zSHYydNhs5R7+z84iqzKPrgbkYb2w+hdp+zoj0dUJSUhI++eQTkETTpk1x8eJFXLlyBYqiiIlHlmWYzWaYzWbIsgx3d3dER0cLB5Sn8Vh7Wpy6frdc24akqOCeOBG3v1uCu/vToPGuBofwpoBib68oKCrG3DKrXQBYsWIFfv31VxgMBjg4OMBoNMJoNMLR0RGOjo4wmUxwcnKCs7OzOFxcXJCZmQnAVtXZqlUrvPfeewAAHx8fBAQEYOrUqVi9ejUAoLCwEH369IFWq0VKSgrWrFmD2rVrI9sYAqcHD2y8N4Hy1VgAUJR7A4WXfoVrh1f/6AsShb4xqFOnDiIjI3Hz5k1cvXoV7du3x+bNmwGUkF6bNm3Qo0cP0c6tW7eiuLgYS5cuxbx589CgQQO4uLigd+/emDZtGg4ePIjMzExhsyqLl156CTk5Ofj1119x9+5dGzIpLi7Gt99+i3v37iE3Nxe5ubm4e/cucnNzce/ePahUKgwdOhRVq1aFoiioWbMmbt68CQDw8PCAwWBAUVGRnSRSWvKwenMeOHBATNKVmedLL1SeBl9//bXN3ydPnrQjjNIEIUkSioqK4OTkBFmWoVKpoFarIUkSbt++jfv370NRFHh7e6Nq1ao4c+YMrl69CqBEqo2MjETVqlVxwtGI/P+5J0nc2jwflvw78Og+FZJSwXT1P+pwS94tQXwBXm64KUlo1KgRjh07hgcPHuDo0aOIjLRfLD4tNBoNzGYzGjVqhNWrVyMwMBAj1xzBlaNXK71O7RFkf/J/+tYKk+7PsUX+g/Lxl3RueXnlz9iw4d8A7D2iigvuVejRBZSMn7bhnjj+wQgR91UW1knDaDQiLCwMcXFx6NGjxyPVTv9tvLjiIHacejw11fWVY+FQqxUcY9rb/aa/nYnfl79m4/ru4OCA0NBQFBQU4OHDhygsLBSEbzab7Sbc8oZF6ZVvQUEBnJycoNFo8ODBA+Tn56NGjRrQarWQZRlHjhwR18myXDIhNhkIYy3buEFainBj7RSoqnjDNWGYzW93flyNgvPH4NXnXzbn7x3fgVvfvGNzzmAwIDAwEPn5+bh48SI0Gg2cnZ1hsVhQVFQkSMQqZZFEUVFRpeTxfwtWgpAkSfSvVbpQqVSQZRlZWVkICAjA5cuXUVxcjBo1asDd3R1arRYGg0Ece/fuxY0bNzBy5EjodDpotVro9XrodDrodDoYDAbxt/X/1muNRiM0Gg0cHBzw5ptvYuTIkQCAl19+GWlpaZV6lF68eBHBwcFYtGgRBg8ebPf7vXv38Nprr2H58uUoKipCREQEjh49alNGkiS0GfEWzhrCUUQJt7YuwMMb5+DZayZkjV6Ue3DuCBS9CWqPINBciDs/rMT90z/CN3kpJJUGOpWMUW2qQ8nYieTkZNSrVw/9+vXDwIEDn9r2Xh6mT5+OO3fuoGbNmnBzc4OLiwtW/nwdO7L1sEAGiy1AsQV39qyCJe8WXNsPB2QFIHH1oyFwiIyHU6MeKLx6GjfWToF3/3egdvUX7f/Hxvffw19O4rPauQzVS1z1C69nwmK+KX6XdUbIOiOAEhWnJMlC+rOe2/rLJVw++qtd3X5+fmjSpAmeeeYZdO3a9am9HP9bMOkqfh0Pb5yD2sUXZDHyDm9G0b0cGCNbl1s2+8pFu3gvkujatSuaNm0KT09P3L9/H/fu3bNRfVnVXlbV14MHD0T8WWRkJNzc3ESZ48ePQ6VSQaVSQavV4t69e7hw4YJY+ZdGcXExcnJy4O3gVKZNlaux8k/sgFMj+xAMWedgd+7+/ft24Qd5eXmCSKzttLZZpVJBo9FAo9Hg9u3bQvqQJAnu7u6oX78+goKCoNFosGDBAoSGhmL8+PFwdnaGg4MD9Ho9cnJy0L59e1y5ckWQR9kgZwB4/fXX8eGHHyI7Oxsff/wxXnrpJfTr1w+vvvoq6tati6tXr1aqWdixYwfatWuHCxcu4OrVq/Dz88PZs2dx4MABmEwmm7IpKSlYtWoVJk+eXGF9j0Lr1q2xaNEiQXzvvPMOPv74Y6SlpSExMbHcawICAjBs2DCMHDkSffv2tfu2dDod4uPjcePGDaSnp9uQniRJ8PX1xb59+3Du2k28uOEKiu7cwL2jWwFFjcvv/+HA5ZIwFJKixu3vlsCSdxOSSgOtT3V49JhWokJEia37uTp+cG3+Eho1aoSmTZti4sSJiI+Pt1HH/6fw9PTE9OnTheRXVFQElbEKAod/ChDI/fEL5P64WpTP/3UnnJr0hnOzPnBPnIhbW+bj7v51UJk84NZxlLBfWtv/D/57+MsRX0V2rrKoyKMLKJnkHSJbI+/AepvzFy5c+NPtc0VFRbh37x7y8vKE+stKJlaSuH//vh2plD4KCwtRWFiIK6aakLzqg+WoMPNP7MS9Y9+CxRZo/SPg2WsGJJV9uWJzIR5mn7c7f//+fUyZMsXuvFXKUKvVUKlUQqqzShvZ2SXetDk5OQBKpBO9Xi9IIzo6GjqdDunp6TAajXjmmWdQWFho4wyh1WrRpUsX7Hp4X5x7lBqr4PJJWO7dhqGGvSdjj67PoE3fWAwcOFC0S1EUWCwWSJKE+fPnY9iwYXbXVQQvLy906dIFaWlpQhX6zTffwMXFRZDc0aNH7TKMbNq0CRqNBj4+PpXW37lzZ/zrXyVSqzUgvnPnzqhTpw7c3NwwefJkLFq0qMLrDx06BAeHErL38fFBWloaunXrhpo1a+LyZdvvxcvLS2TteVpMnz4dsbGxuHnzJtzc3GA0GtG6dWukpqZWSHxAiQPR559/jp49e2LNmjVYs2YN0tLS8PPPP+PGjRtQqVQIDg5G9+7d0a9fPyQkJCA/Px8kRRyhWq1Go5RPcNHJA4GpX1d4L4ewChxIWIzc3/ahftQwhIaGQq/Xo127diJe8OOPP0b//v3/o/4BShZzVk2CNfhfo9GgS4c2+CHzIDTBdeHcrI+NLbs0NO6B8O431+68JAEta7j/E8rwX8ZfjvgqsnOVRUUeXQAgq7XwqVkXmYc22qjtWrRoYaPesx5W+0pFdpbSR1mPrtIoz0he2iBemlCsNhDrv2q1GiqHXNC7/LRbVeJfRJX4Fx/ZL7IsI//49gp/d3R0RN26dREREYHTp0/j9OnTyMrKwoMHD0T6sbCwMDRq1AgJCQno0aMHLl26hK+//hpRUVGinvbt2yM7O1vY1RYsWCCymLz77ruiLdOmTcOWLVuwdu1aNB40BdkqGYVFxbj97UKYb10qUWOp7T/y/OPpMFRvbB/nVPQQn87/FxaWWdRYLBbIsoxOnTph5MiRmDVrFj7++GO0b2+vCi6NpUuX4ubNm1i2bBlkWcbLL7+Ml19+GTdv3kTv3r2xfXtJX0ZFRWH06NEYOHCgWDz99ttvj6U1qFevHkjil19+weLFiyHLMjZt2oTExEQ8//zzWLlyZaXEd/LkSbi6uoq/u3btiv79+2PFihWCZKzw8/MTIShPi5iYGLi6umLq1KlYsKDEhLBo0SKEhobi6NGj5cak3r59GytXroSfnx++/vprODg4QKfTITQ0FL1790b//v3trnvmmWewdu1aGycUs9mMY1/MgUfvWXhoKXuXR0OvUUF9aR8yf/9dOJ9IkoR9+/YhLS0NAwcORHp6OpYvX/5Ui+CrV68iJSUF69evR1FREXQ6nSC+hw8fYu3atdB4hcI7MAqQn5y8tCoZr8T9OSEX/6Bi/OVsfGXtXGWDP8uCLMbl9/rAp5RHFwA8PHcI19bYSjjNmjUT0orV/lH6X51OB71eb2P3KP1/a1iD1THEahP5M6VIa9aHp3orLMb9jP248/Ucm9yRsixj//79mDRpEnbv3i0kAquKafDgwejXrx/27t2LHTt24MiRIzh37hxycnLEpBQWFoY6deqgRYsW6NixIz766CMsWLBAOGkUFRVBo9HAz88PV65cQb9+/RASEoLp06fDy8sLGzZsQGCNWmjy1g7k37qOKx+8CChqSLIi2umSMBTGiJZg0UNcer8v3LuOhz7IdrJUyxKCf1mK777+t93jW223AQEB8Pb2xoEDB1CzZk188cUXFYZAuLi4oFOnTvj0009tzt+5cwdeXl4YOHAgBgwYgEmTJuH777+HJEmIj4/HjBkz8OGHH+K7776rNJ9n6fuMGTMG77//PqpUqYK8vDxcvnwZd+7cgYuLC/bt21dhrlFr+rFdu3bZnA8MDMTFixexcuVKkanlxx9/RIsWLZ46btOKYcOGYc2aNULiB0ryijo5OWHPnj24fPkyli9fjs2bNwuHHwcHB4SHhyM7Oxv379+vNKwiPT0dSUlJ5fadLMsw1G4H19ZJgMpedVwRdGoZEzuEo0stN1SrVg1ZWVkAAL1ej23btqFp06bYsmULunbtioCAAOzfv98mTKcyrF27FtOmTcNvv/0Gb29vDB8+HGPHjsW4cePwzjvv2JU3Rrd/4vbD8hD3fvgU77/aA126dIFer3/0Nf/gqfCXI76Ra45gQymvqEcSX7EFl97pDq8X5kDj9YcxuODUD7ixcQ4kSRKTd1FRERRFKbeevwrKy9zyuCg2F+DG6gkovJphc16tVqO4uBjx8fF47733EBoaimXLluHtt9/G2bNnRbYNjUaDmJgYjB07Ft26dYMsy1Cr1SgqKsKzzz6LkydP4sqVK8JDz2KxoGnTpqhXrx6ysrKwatUq6HQ6pKWlITk5GdeuXcOkSZNs7E3/CbFLAAoy9yNn0xyYTCabSdnf3x9XrlyxS6htbWe1atWQlpaG2rVri9/mzp2L1NRU5Obm2klusbGxuHHjho16vLi4WASfW7P5uLi44NSpU4/MfVq3bl0YDAbs3r0bW7duRfv27XH//n3odDpERETA19e3Qo/SatWqoVmzZli2bJnN+bt378LNzQ1FRUXIyMhAtWrVcPXqVfj6+v7HTjs3b96Eh4cHDh8+jOjoaJw+fRpTpkzBmjVroNPphHNT7dq10alTJ/Tr10/kS7W2a9y4cZgxY4ZNvT/88ANeeuklZGZmIi4uDnq9XmgNysKtYRfom7wAWaUBpIoXl5IEoMiMnJ0f44PRz6N79+74+eefER8fj+LiYkRGRuLQoUOIjo7G6tWr4eTkhPr16+PmzZvYunVrhSnsbt++jXHjxuGLL77AgwcP0KJFC8yZM0fEJRYUFKBDhw42mW1Kwym2E7w6vIKCh0WPbL9OpWBQHWekdG0ESZKg1WpFDGhlcaL/4Onw3wlI+w8Q5mWCVlXiEcWih0CxBWAxWPQQLLbgwbkjeHj9LFhsQXHhfeSkL4WsM4r4FwCQWQTcuSJCFqxwdHREcHAw2rRpg5SUFHz11VcV5kn830KUvzNe7xAGvfrJXo1eLaOlU44d6UmShIsXL+Lzzz/HhQsXEBERgbCwMBgMBpw+fRpFRUU4f/48Bg0aBAcHB/z000/o3r07FEWBs7OzkBw2bNiAjIwMkXNz06ZNAEoko/nz52PVqlUASiaDjh074t69exg/frydTWhoXDXoVE+3+JBhwZyBbWA2m21IT61W4+LFi7BYLDhw4ACSk5PFSt6qAs3MzERUVBRkWUb16tXRt29fTJw4EYMGDbIjvTlz5uDo0aPYuXOnjTQvyzIGDx6MU6dO4caNGzCZTLh9+zZcXFyE/aiinSzq1auHw4cPw8fHB+3atYNOp8OKFSsAAKNHj8b3339f4bU3b95EzZo17c6bTCZ8//33IIno6Gg8fPhQkM9/Oq7Pnz8Pk8mEZs2aQafTISwsDOnp6dBoNKhVqxZyc3Nx584d/PDDD3jttddskoSbTCa88cYbePPNN4XUt2/fPoSHhyMuLg5eXl44e/Yshg4divT09HLvL8sybuxdjwn19Si6cBjFRQ9RbC60KaNTydCqZLSr6Yk5CT7I/flrvPDCC/Dy8sKOHTswatQoJCUl4eDBgzh69CjMZjPCw8PRt29fHDhwAAkJCYiLi8P06dNt6t28ebOwv27cuBEjR47EvXv3kJ6eLkgvLS0NJpOpQtIDgI41TKh59Vvcz9gPjUqGTmX7TSu0iPavebkhxnZpiKpVq4IkCgoKsGbNGqSmpj7+S/sHj4//fGejPxfZeQWsPnEznZr0ttvV26lJb7p1SaXKxY+SWkdZb6K+al16v/i+7R5XKf+mrDfZXOvi4sKlS5dy0KBBrF+/Pj09PcXGrhqNhl5eXmzYsCGTkpK4fPlyXrly5X+tDx4+fMjo54YzYGzaI/fyCnjtKwaMSeOCrcdYVFREb29vm+f28PCgoih87bXXaLFYmJGRwYSEBCqKQkdHR44YMcJmM1brzuYNGzYU/YP/2TsvKCiIkydPZlZWFi0WC1UqFSVJYp06dfjBBx9Qr9cTAKtWrcrIyEg6OTmJ/c5cXFwYGxvLF198kU36p7Jq6leVPlfZo9qETTRGtxf7ApZ+Rnd3d65du9auH3Nzc9mgQQMCEPvmWY/S+wo6OzuzQYMGfO2117hp0yYqisKZM2c+8j35+PiIzUxbt25NtVpNjUbD9u3b89ChQzZl169fTwAcNWoUSbJhw4Zs1qyZ6HONRsPFixeXex+VSsX09PQK2zFlyhQCYExMDElSkiQeP378ke23wmKxcPv27RwwYACrVasm3qujoyNlWebKlSvF3nnz58+nWq2udH8/KwIDAxkRESE2Fm7cuDEzMjJoNpvZqVMnSpLEF198kUePHrX71uPj40mSly9fLtmp3uBEx/rd6NpxNN0TJ9G142i+++0JsSdlcXGx2MTX+n5feOEFuzZt27aN/v7+lGWZffr04bx58yjLMps2bcphw4bR2dmZsiyzcePG3L17t931eXl5bNq0qc195s6da9d+rVbLRo0aiV3gb+YVcPGuTI784ghfXH6Arh1H09SgG2/cvW9T/9SpU6lSqcTG1NY9Ev/Bn4u/HPGRZNKnBx854Vd4jPuK7l0n2G2YKkkS4+PjuX79eptNQ3Nzc7l+/XqOHj2a8fHxDAwMFBO4dcKuXbs2e/Xqxblz5/LYsWP/1R2bd+/eTT8/PwLgMwOGcfDKkt2ba5TZvTlgbBqrT9xMt67jqfEqmawWLFjAxYsXi/YD4KRJkzhv3jxqNBp6eHhw586dJEt2Vk9JSREfenx8vN1kuXfvXrHJqa+vr9j0tPTh5+fHqKgoSpLEgQMHsk2bNgwPDxd1WCwW/vTTT0xKSmJAQIC4zhjdnv5j1jHgtcoJMCj1awaP28BP957js88+a3d/vV7PTp06UZZlenp68uOPP7br04MHDzIwMJCKojAxMVFshGsdF05OTlSpVHRwcBDnfX192aFDB86fP59ZWVnlviuj0chFixbZPOuiRYtYo0YNSpJEd3d3jhw5kjk5OTx48CAB8NdffyVJzps3jw4ODuLahIQEhoWF2d3jwYMHBPDIHctjY2MJgOPHj6dareY333xTYVmz2cx169axZ8+eggRkWWZgYCB79+7NjRs30mw202w2U1EUrlmzxuYZDQYDJ02aVGl7jhw5wurVqxMAQ0NDefLkSZLkjz/+SGdnZ5pMJu7atYskmZKSYjO2FEXh3LlzeeXKFRsysx6urq7i3fXv3585OSW7l7dt21aUCQ0N5d27dyts3/Lly+ns7EyVSiU2/rWO4Yr6esWKFTaLwZCQEK5Zs0bMNQkJCTbjSqPRCAIrjatXr4pyZTdP/uWXXwiAderUoUajYZs2bSrt53/wdPhLEt/RizkMm7TlqYgvbNIWtu31kt3HkpqayujoaCqKQrVazXr16nHJkiUVrlzNZjN3797NadOmsXPnzqxRowZNJhMlSaIkSTQajQwNDWWHDh04adIkbt++XexQ/TTIz89nr169bEj3s88+I0mxWmw06gO6J07i8/O30rF+NyYNG2VDchqNhuHh4XR2dub48eO5ZMkSyrLMli1bMicnhwkJCZQkia1atbJZSa5bt45hYWGUJIkhISFcvnw5SXLZsmVUq9V0cXEhWTLptW7d2k5iAkp2X+/RowcXLFhASZLE5LFv3z56eHjQYDCIsiNHjmReXh5nLf6MnokTGZjyb/qPSbN9l2PXM+i1DWw15Qs6+IczKCiIp06dsnuv7777Lkny9u3b7NGjBxVFoYuLC9977z0WFxfb9PH7779PnU5HjUZDjUbDvn37UpIkarVaOwkyLCyMVatWFe3W6XQMCwvjgAEDuGHDBhYWFlJRFP7www/lvs/s7GwmJyezSpUqlCSJJlOJBsIq1eXl5RGAIISDBw9SkiS7XeH37t1LWZYfOX4KCwsFcet0Oi5ZskT89uDBAy5fvpydOnUSu46r1WqGhobypZde4s6dOytczDVu3JixsbE256ySUXk4fvw469SpQ0mSGBsby4SEBJpMJhYWFjI5OZmSJDEhIUF8K6NHj6Ysy+zatStlWaaTkxMBcMuWLXR2drZ73wBYt27dPxZQRiNlWWaLFi04btw4AiW71MuyLBZ5ZfHgwQOOHz/ehvDUajV9fX2pUqm4atUqm/K3bt1i/fr1bdowcuRIrly5UhD26NGjWaVKFcbExNgsrKzSX2mMGTPG5vfvv/9e/FZcXMwVK1awoKCAR44coVqtZteuXct/6f/gqfGXJD6SXLnvHMMmbX5C0tvMlfvO0WKxsHnz5kJlAICtWrXihQsXaLFY+Nlnn7FJkybUarWUZZk1a9bkrFmzHrmqtuLkyZOcP38++/Tpw5iYGLq6ulJRFDHp+Pv7s3nz5hw+fDjXrFljN5mVh/Pnz9PV1VW02dHRkdu3bxe/FxUVsUqVKgTATp06CUms7IpYlmWbSf/IkSN0dHSkl5cXL126xN27d9PLy4tqtZqzZ8+2aUNmZiY7duxIRVFoNBoZGxtLnU5HX19fpqen09nZmQ4ODpwxYwY9PDwoyzIVRWF4eLgdETo5OXHMmDHct2+fjfpVo9Hw999/Z25uLj09PWkwGLjx2x30avkCq/ebSc/uU+jacTR9W/dn9cg6NlJYeUf9+vVpsVj45ptv8tdff2VeXh4HDBhAtVpNk8nEmTNn2kzqOTk5YrKqXbs2f/75Z5uJSpZlGo1GIQkpisLg4GA2a9aMcXFxDAoKsln1161bl6mpqTxy5EiF73bPnj1ifEiSJFShXl5efOWVV0Q5V1dXDhs2zOba999/n0aj8ZHjhyRPnTolni0+Pp6tWrWii4uLGJe1atXiiBEj7NSwlWHz5s2UZVmoOsmSRZqiKGJhRpZ8E/Xq1aMkSYyKihL9UVhYSL1eT4PBQK1Wa0MqI0eOpCzLHDNmDCVJEgvRzz//XKgJyzvKah5mz57NsLAwIalv3LiRPXr0oFar5YULF8T9Dh48yLi4OKHmf/nll3nr1i2azWa+8sorVKlU1Ol0lCSJgwYNIkkuWrRIqH6tJPb999/znXfeEefGjRvHmJgYurm5CUJfu3atGO9lFy7u7u52WouKFh4//vgjFUVhv379Hvud/YNH4y9LfKSV/LY8Wu057isGjk3ju9/88UHfvHmTbm5u1Gg0XL58OUNCQihJEps1a8aMjAxR7ttvv2X79u1pNBqFHWvs2LEVqrcqQ1ZWFj/77DMOGTKETZo0oa+vr5AmVCoV3d3dGRsby/79+/ODDz5gZmamzfWXL1+mJElUqVTUaDQ8ceKE+G316tXCTmWdRMs7XnzxRbt25eXlsWbNmtRoNEIF9vrrr1NRFAYGBtpN2oWFhRw/frxQ1ciyLCbsdu3aUZIktm7dmj/99BMlSRIf7U8//cS+ffvaEEPZIzQ0lKdPn6a/vz8BMCAggJ6enpQkiQUFBXR3dxcTinWCnj17dqXkZz1q1KjBo0eP0mKx8MGDB3zllVeo1WppMBiYmppKs9nMgQMH0snJiadOnWLNmjUpy7LdCt26SLBYLPzmm2/Yu3dv+vv7i3cTGhoq1FotWrSgm5sbJUmioij09fVlx44d+f777zM7O5skeeDAAUqSxM6dO9PT05PVq1cXkqaTk5NQ1Q0fPpyurq427yI5OZmBgYGVjrsrV65w5syZYjFnfY6YmBhOmDDBZrw/DayLndLo2LEjg4KCmJGRwUaNGlGSJNaqVYsHDhywKTdr1izxPkv/Nnz4cGEfU6lUHDJkiM11586ds1Edlj1KL7S0Wi2vXbvGkydPMj4+nrIs083NjZ6ennRxceG0adPo7e1NSZIYERFRrj2YLDF7dOvWTdSrVqttSDYmJoZ5eXlMTU0V51NTU5mUlES1Ws3ff/9d1BUfH8/Q0FCeP3+en3zyiThvsVhs6qxSpQp79OhRqflk27ZtlGWZQ4cOffTL+gePhb808ZHksUs5Fdq5qk0ocWTx7jGFGq9qQgVx/fp1kuShQ4f43nvvibrS09OF/aV+/fo2xEKSP//8M3v27ClWyV5eXhw0aNB/PHHcv3+fW7Zs4fjx49muXTuGhIQIScYDUhnBAAAgAElEQVRqY6pZsybd3Nzo6OjI5cuXs2vXrsLpxGKxMCgoqNJJQKVSsUaNGjQYDBWqXPv160dJkjhhwgSS5I0bN8SklZiYaLOqJ8latWrZ3cvBwcHG0UKSJDsJIiMjgwD4xhtvlGujKX24uLgIB5iMjAxeuHBB/KYoCvPy8jh//nybZx03bhyLioqYlZXFNm3a2EkDkiSxSpUqjI6OZr9+/dj2mUS6NOlJ984pdH9uEhOmreYH32fyZl4BV61aJSai0NBQLl26lH5+fpRlmQMGDLDpS4vFwo0bN7J79+5C+rb2e3JyMhcuXMjk5GRGRkaK96vX62k0GmkymZicnCzsPVlZWezcubNod61atYSauDRBtGrVig0bNrTr3/HjxzM2NlaoYp2cnNi0aVO++eabos87d+78pEO1XHTv3t2OfHfv3i36OywsjD/++KPN79nZ2axduzYVReFbb73F6OhohoaGkiRfeeUV4TTj6OjIJk2alHvfF198kQD42muvUZZl6nQ6uru7s2HDhuzQoQMdHR2Zl5fH6tWr09nZWWhWcnJy2LVrVxuC6d69+2M7rL3++ut243TKlCmiTaVJb9myZZQkiRs2bBDX37p1i5IkcdOmTeXWf/fuXRYXFxMABwwY8FhtWr9+PWVZZmpq6mOV/weV4y9PfFZY7Vw1X/wXW05Zw5FfHOGinWco601iErIeOp2OQ4YMqdB+t3fvXkZGRlKSJEZHR/PgwYN2ZX7//XcOHjxYqOmcnZ2ZmJjI/fv3/2nPZLFYePDgQb711lvCU8zqSQeABoOBwcHBjIuLo6urq7B/qNVq4QCzfv16Pnz4kLNnz6ZKpaLJZGL37t0rvOfSpUupKApbtGgh+mfTpk10dnamXq/n0qVLeffuXbZo0UJM7Hq9nrIsMzg4mLIs08HBgYMHD2Zubi6dnZ05a9Ysu/t4eHjQw8ODOp2Op06d4okTJ5iUlFQhEUqSxNTUVGZmZtpIjCaTSUie1mfeuHEjyZIJxtHR0aaeqKgoHjp0iDNnzmTLxAEMfOENBoxdX64Nser4r/n8op00BkawSZMmlGWZISEhPHbsGD/66COaTCZqtVpOnTrVbkU+bdo0urq6ct26dUxMTBQShVqtZlhYGIcPH849e/aI/nZychKSurOzMxs3bswJEyZQpVJx8uTJjI+PF2puNzc3IYXXqFGD7dq14/DhwxkRESEkOldXV7Zu3Zrvv/++kBitaNq0qejDijxFnwRW2+qlS5d44cIFtmzZUjhvlOeQs3LlSmo0GgYGBgop6NKlS8J7UpZlrl+/niEhIfT19a3wO7WO98LCQrEQffXVV0mWqC2tKsTCwkIGBgbSzc2Ns2fPFl6/1apVs5Ea4+PjhU21PFy4cEEsjMvTVLRt21Z8m+PHj+exY8eoKIodGfXq1YteXl6P7FdZllmjRo1HlrPCalN8HI/jf1A5/jbER5Y4nFgnJyvKG6QAWL16dd6/f7+S2sjDhw8zNjaWkiSxZs2a3LNnT7nlsrOzmZqaKtSlBoOBbdq0qXBF96SwWCx0dnZmly5dxLlz587xww8/5MCBA0X4hXXi1Gg09Pb2pizLbNSoEVesWMErV67QycmJbdq0oSRJPHz4cIX3O3bsGE0mEz09PYUNxGKxcMiQIaI/XVxchGrVZDKJcoWFhZw4cSJdXFwoyzINBoNwyy/9PJ6engTA06dP293f6n7/KBWW9TAYDFy9ejULCwv5wgsvUK/X8969e7x//z7feOMNNmvWzMZ5pmHDhlyx9/fHUpOXhIOsY9WEgezYsSMDAwMpSRI7derE3NxcTpgwgRqNhs7OzlyxYoV4hn79+gkJxgqz2cw1a9awS5cuwonESmavvPIKT5w4QZVKxd69e7N58+bCO9FK6h07dmSdOnVsJN7S6tfOnTtzxYoVdpJ5WXTp0oXh4eHi+mPHjlVa/nHg7u5OHx8f4QC1fft27tq1i5Ik8dq1ayRLnEZatWpFSZLsbJXkHxqENWvWMCEhgXq9vkKTwvnz5wmUhK78/PPPQop/8803SZaMMQDMyMjg77//buPx++yzz9qoHbdv304AQo0eFhZm9+1OmTKFiqIIZzFJkti8eXM+ePCASUlJNuMxJSWFeXl5dHR0ZIsWLWzqKSwspEqlsvH2rQhGo/Gx7bdWLFq0iJIkcf78+U903T+wxd+K+D777DNhS/ntt99YUFBQ7kQJgGfOnHnsek+ePClUfqGhoTZOJWWRn5/P2bNnMzIykrIsU6PRsFGjRly2bNlThzkkJSVRr9ezoKCg0nJbt26loihMS0vjyJEj6ejoSK1WKwjKSlpWZ4J58+bx+PHj5bYrLy+PkZGRVKvV/Oqrr5iVlSW88UpLUQaDgUlJSeW2Z9OmTWJVHhAQwMWLF9NsNrNBgwaiTeXFk3l5ebFnz57MyMgQnpXe3t425FX2aNu2LQsLC2mxWOjh4cGGDRuydu3aQs1aXFzMkydPsnHjxjRGt2fA2LQncowKGJvGkLb97SRSf39/vvzyy2zWrBklSWJgYCB37drFli1bVqiis6KwsJCRkZE0Go308PCwUe+OHj2ap06d4uTJk6nVahkSEmJnGy39d0REBFesWPFYYywpKYnBwcHctGmTGA+lYzWfBFlZWWzfvr0YX5s3bxb9/fDhQ/r6+jIxMZHp6ek0Go2sUqUKf/rpJ7t6Bg4cKBZRISEhlGXZzh5YGi+//DIlSeLIkSP59ttv02QyUa/X89NPPyVZQnxarVY4igQEBPCtt96iq6srg4OD7aTIefPmCQeauLg4EW6SkpLCoKAgKopCRVGoUqkoyzLffvttkiXvMCwszOZdqFQqurq60tPT0+4+o0aNoqOj42P1rVW6fFLMnj2bkiTZ2A7/wZPhb0N8FovFJnC5Q4cOzM7OtnNFt34EISEhT0xEmZmZbNGihXBy+eqrryotbzab+cknn7Bhw4bUaDRUFIWRkZF8++23H7kqtyIjI0PYOx6F7du3U6VSib8nTJggQg0ePnzIXbt2UafTCfWsVqsVNi9HR0dWr16dHTt25JQpU7hz504WFhaKCUmWZQYEBLBu3brCFd3an5W5Uy9ZsoR6vZ5du3aloihiYXLw4EEGBwezW7duNuW3bNlCSZKE40ffvn1tJHiLxcK1a9dWuKDx8fFhhw4dxH0cHBy4ZcsWcf3RizmsMXEzA8b+mw6121AxuVPS6Kn2CKZH96l2hOfUtA8B0KPXTPqPWcemnZ/n2bNnuXPnTjZu3FjYH62Sm7VdsiwzNDSUBw8erHSc6XQ6EXJRWFjImjVrUq/XC/VtaZXuc889x/T0dMbFxdHb21vYAEtrNSRJYrVq1bh+/foK7zlx4kR6eHiQLAk9AEpsiE+C7OxsPvPMM5RlmX5+fly9ejUlSRJakblz5zIkJITz588X7evatWu5asv+/ftTURRu3ryZEydOJABhZ64IVkI7f/48e/XqxerVq1OlUjEtLY19+vQRkpmPj4+NrT47O5tOTk4MCwuzey/9+vUTTig5OTmsWbOmzTtQFIWurq6ivtzcXPr6+gp77dixY20coQwGg40PgTXGcfz48Y/Vx/379yeAx0oGUBaTJk2iJEn88ssvn/jaf/A3Ir4NGzbYhCdIksQtW7YIFQZQEhwcEBDAOnXqUKvVsm/fvk91r0uXLrFt27aUJIm+vr784osvHuu6TZs2sU2bNjQYDJQkiVWrVuX48eMrDWcIDQ1ldHT0Y9W/a9cuKooi/rY6kZQm2Q8++ICKonD8+PFUqVTMzs7mr7/+yvfee4/PP/88o6OjbcIvyqqKq1Spwu+++44kbdRtdevWFSqtsn0FlNhh6tatS5VKRWdnZ0qSxICAAOp0Opvy4eHhNqrRsLAwG5ukxWJhdHQ0dToddTodz549S61Wa/PuS//f+ve//vUvkn8kP/AfvY5OTXrTN/ljBoz7iu7PTaak0dM3+WNBej6DP6LaPZCK0YUevWYyKPVrBr4wk5IksUmTJjx16hRzcnKE+rhhw4ZcuHAhu3btanN/q4NS7dq12bdvXy5dupTXr1/nN998Q1mWOW/ePLZu3dpGtRkREcEhQ4Zw8uTJVKvVQkLW6XQi8PuLL74QEsHJkyf5+uuvC2nJWo+joyM7dOjAxYsXi3G2aNEiGxVajRo1CIDDhw+vcGxl5xXwg+8zOeTTnxg5bBHdnhlDvzYDuHz1OlEmIiKCrVu3Zk5ODo1GI9VqtSCg0mr60ujTpw8VReG3334rbGL+/v709PSssC3WMWWVnGJiYmxUwN7e3nzjjTfYoUOHcr8da+B7TEyMHfnVqVOHjo6O9Pb2pkqlEt+qte74+HhmZGTw2rVrdHFxEbGEVqJeuHCheOcRERHCW3vdunWcO3cuNRrNYxPZ8uXLCYB79+59rPJlYQ0HsUrh/+Dx8bchvm+++YadOnWiyWSij48P+/btyxMnTvDYsWMsLi6mp6cn+/bty2PHjgnPRUmSbGKNnhRZWVli1evp6clly5Y99rX79+9nYmKi+HB8fHyYnJzMc+fOiTLvvvsuFUXh5cuXH6tOa0xPaWi1Wjtp0c3Njb1796avry+bNm1abl3jx4+nJEl2weXlkUtsbCzd3NwoyzJTUlLsJhOrkV6v14sQjc2bN4vVsZubGxcsWMDjx49TkiSbFbpOp7PJthIfH0+dTicyneTn5/PUqVNUqVSsVq0aFUURIRVl21w9MpbVXv+mQnWm2j2Ibl3Gi791wXXo0X0KFZMHPXrNZGDq16w+cTM3fruD4eHhQvI9cuQI9+/fT39/fyqKwtGjR9NgMHD06NHC1lqvXj1hIyyrspRlmR4eHuzVqxfXrl1rEwJCks8++yzDwsKYn5/PJUuWCKIt3f+TJk2yiUm7dOkSExIShORYWs1tDb345ptvmJmZyevXrwvNSGnvQ7JEQk769CBDX/+GQa9tsOmvGhM3s/rEzXx55UEevZjDDz/8kGq1miNGjBALIlmW2blz53LVe71796aiKNy+fTtv3bpFBwcHtmzZkrm5udRoNBVKRq+88goVRWFUVBSbNWtm83z79u0T5aZOnSo0HmVx7tw56vV6G3W0xWIR9jpr+x0cHKgoCpcsWcJ169YxNDRU3K8s6R04cICyLHPGjBn88ssvqVKpGBERwWeeeUZoBtq3b19ue8qD1Y45atSoch3sHgeDBg2ioigiC84/eDz8bYjPitjYWHbs2NHu/Jw5c6jVammxWNinTx8ajUaOGDGCKpXKxtD9NLh16xa7d+8uVCELFy58outPnz7NF198UTh8uLi4sFu3blSpVHzttdceux7rh1ca4eHhdqvtTz75hIqicMeOHWICtOL48eP09/enSqUSNr0GDRowKyuL+fn5rF27NlUqFV944QUx2ZS1v1lVwYmJiZw1a5YI9C4bl0iWSHTu7u4iJsrJyUlIJtnZ2QTAO3fukCR79uxJlUolnDE0Go1Q5WzYsEHc19HRkT4+PoJYXVxcqNFoaGqQyICx68slPb/hKwlFTZ+kDxiY+jXduqRSX60BA1O/tiG+GhM3c/GuTNHf0dHRBEryj+7Zs4fz5s0T0tnbb7/NzMxMJiQk2EhhJpOJDRo0EF6MTZo0oaenp81iIiAggF27duXcuXOFlH7x4kVu3LiRv//+Oxs3bky1Wk2j0cimTZuKSdhgMLBevXqcOnWqWDDt3r2bLVu2FHYqaziOdXJXFEU4lsiyzIsXL5IsiZOtMXFzSRxsZWnjxpdkRFqx93ebZ5BlmVqtloGBgVSpVFy6dKl479bvJT09nRaLhQEBAQwICBCEP3fuXCqKwmvXrvHixYs2C8LyMrZYx2LpNGS7d++2WwiWxsmTJ6nRaNi2bVseOHCA7u7u1Gq1NinPvL29efbsWXHNwYMHqVarxULBYDBw7ty5vHXrFg0GAxMSEkTZ8+fP09PTk0ajkampqTYLlUeFQA0dOpQ+Pj7iGo1Gw6KiokqvqQjdu3enSqV6avL8/xF/O+Jr0KAB27Zta3feaux+6623aDab6ejoyJ49ezIqKopeXl5/Sn7NvLw89u3blyqVik5OTpwzZ84T13vt2jWOGTNGTJ4ODg5s3749t23b9shrjxw5Ykd8Q4YMoY+Pj11ZT09PPvfcc+zWrRudnJxoNps5ePBgYSNycHCgo6Mj161bZ3ftSy+VpHyzSi7WhYPFYuHOnTuFKs5gMNhM+AaDgSEhIWzbti1TU1O5efNmLly4kBqNhleuXBGkYFUbpqSk0GAwkCRHjBhhl2YqICDAJpfhxIkTKcsy3d3dGRAQQLPZzNmzZ1NRFJ49e5Z9Fmwr33ElZQN1gVE0RicwMPVr+o9aS1UVb6H2LE18galfc+QXR3jr1i3OmDFDpBpzcHCgJEn09/e3C6x2cnJifHy8CElwdXXlq6++SkVR7MbHpUuXaDAYRPLm8jLTWJ1JrJOzLMt89913mZuby/nz57Nly5aCHBwcHNigQQPOmDGDly5d4rvvvsuQkBDxm5WgTCaTTaJuv7jeT+wAVH3iNzTV6UigJHvQrFmzuG7dOmZmZrJLly709/cnSSYmJlJRFJGKKz4+ng4ODnYq/+DgYPr4+FCtVrNbt24cNWqUcJYCwNdff108g9V+XBpms5kABJGXB6tHKFDi6S3Lsg2xTps2TZTdunUrVSqVCHUaPXo0+/btS41GQ0mSyk0abTabRSxpWFgYjxw5IpJyt23bVtiyyyI1NdXGP6G8Oe1J0L59e7ukF/+gYvztiK9JkyYic3tZ9OvXTxj1rRLC7t27aTQa2aFDhz+tDffv3xfZGoxGI6dNm/ZEBLht2zZKksTvvvuOb7zxhsggotVq2bRpU3722Wfl1mdVFZbG3r177VRnJPn5559TlmVevXqVGo2GOp2OWq2WQUFBlCSJ/fr1q9QW0aFDB/FRlpfKbffu3WL1X7t2bfr4+HDJkiUcMGAA69WrRw8PDxvpQK1WU61WMzk5mePGjWNERIRQqVqdVcqScPv27e1sOFY3eAcHBzZu3JgkGRUVxcDAQA5cfsCe9MZ9RUN4M+pCYhmQUqLKc6zXhU5N+4gyZYnPq8fUCiWO0kd8fLyIbezfvz/NZjPz8/PZs2dPsYovL0Smfv36bNWqFUny1Vdftalbo9GIrDal7x0XF8fJkydz79694l3n5ORw3rx5bN68uSAMo9Eo0n2VJdV69eqxUaNG1HiF0n/MOlZpM7gk8YOiokOtVjb95tFrZskuKCottQGR9B3yCQNTv2bV1K+o9Q61GxPWrEPWVIHWnQ1GjRpFRVHssgPt27fPRuIBSuIbo6KiqFKpWKtWLebm5tqk8LMukkrDYDDYSJqlsXPnTlapUsWGYFxcXKhWq7lq1SoRGrBx40bxvVgdmiZOnCjqefbZZ4XtWpZltm3b1ka7sWfPHvGeOnbsSIvFwq1bt4pECH379rVzdnv48KFIswaAq1evLvcZngTNmjWjTqf7jzVc/z/gb0d8cXFxdnFjVlgzJlilp8aNG9PPz4/79++nLMt/euxLYWEhR4wYYZcWqzJYLBZWqVLFLquG2WzmkiVLWK9ePapUKiqKwujoaL777rsie4g1F2NZKIrCrVu32p339PS0mVysMZCPsyrs2bOn2E3Bzc3N5mOyWCysU6cODQYDhw0bJqS+8nJA5uTkCAmxWrVq9Pf3t5E8rJO+JEmsV68ed+/eLSb2N998k05OTnb9FxwcTC8vLyqKwr59+/LmzZvUaDRsMvbDMqS3iQ6RrakNiLQJYFd7BFPWmyg7OFN2cCYkmbLOSOe4ASWT/rMpdiRnbWNl6eKsBG+VEq2TtslkYseOHTls2LCSwPqWLenq6srffvuNd+/eZfPmzUW91gWa1RvTSrB169alq6ur6GuTycRatWrx+eef5+LFi3np0iVmZ2dz9uzZNtvmlHe4dZ3AgNdKdjFx7/Y6jTHtbYjPb8TnlLQGunVJZcDY9TTV70aNTw2h9vTuPrncDCJW8rWS/YoVKyhJkl3S58LCQtauXdumTdaAb19fX6rVapEpxZq0ICkpyS6dG0mGhIRw4MCBNufMZjO7desmbLRarVYsAoxGo00Gl6SkJJGSz2o7Lk16s2fPpizLgsjXrFnDqlWrUpJKUrRt27aNMTExrFevHvfu3UuDwUBfX19xD6vWQKPRiK3BrPjtt9/KVeE+LazfpYODw//qtmp/B/ztiK9169Zs1KhRhb83btyYkZGRJEuIUK1Wc/LkyZw5cyZlWf5TgnnLwmw2c9y4cdTr9dTpdBwxYkSFacOSk5Op1+srDXewWCxct24dW7ZsSb1eL+ILrZNhWQQGBrJ///425zZv3iw87qz74rm7uz/2MzVv3pzR0dGUZZkxMTFUqVRiS6eYmBgaDAZBhmfOnBHE0LVrV7tns+Y/LH2+sLBQTOKhoaEi32Vptak1TduUKVO4a9cusajIycmhg4ODaN+sWbO4fPlymhokMnTCH8RnjE6gxqcG/Ud/aWvve3UV/YatFIfi6Ea3Lqn0H/0l/cek0bF+NzuyCAgI4KxZszhgwACxxVFpIirvCAgIoJ+fnyBAjUbDKlWq2DmklCVOb29vG6mvbt26HDp0KKdPn86lS5fyww8/ZEpKCjt37szQ0FBhf1WpVPTy8mLTpk0rTOzgHVy9JNVfqf4wNe5pQ3wuCcOo9Q0Tf/uPXkdJpRH20YCUf9PZ089G7dexY0fRFxcvXuTBgwepKArHjRsnyhw6dIjx8fEiDCUuLk7EjGo0GmZlZYl2WlWEHTt2ZHh4OIcNGyZUqaXRrl07BgUFce7cuWLcOzo6ilRoAETiiVatWlGWZRu7ujU9mfUdld5uadeuXSKfaFkcOXKETZo0Ef08evRoWiwW5uTkMCwsjBqNhh9//DGNRiMTEhI4Y8YM6nQ6Go1GmwW4dSul/zQtohUWi4Xh4eF0cnKqUM36D/6GxNe+fXvWrVu3wt+tOv3z58+TJN966y1hRG/RogWdnZ0fO8buSWGxWDht2jQajUZqNBomJSXZ3CszM5OyLD9x4OmuXbv47LPPiknCz8+Pw4YN46VLl0iWeM9Vq1aNZEmAfbt27cQq2qreOXHiBGVZfqyMEmSJU0rjxo3FlirJyckESkJHDAaDjTMCSarVak6cOFGkPvvoo49I/rFBqEqlstkN4osvviAAJicn29Szfft2hoeHE/hj81hHR0eb3S9KxxtaHVy+/PJLNmvdQTi3+A75pGQSVdSU1DpxuD4zxk4dWlrVGTB2vd0mxkBJHJxVkunVq5fNnoO5ublMTEwUCQ2sk6HRaKSbm5vdJrhW22lMTAyfe+45Dh06VOxQ0KJFC44dO5YvvPCCUFdqtVr6+/vT1dWVDg4OdsmTFUURUo3BYLC7n/UIDQ1l/NBZDH29cuJzjH2Gxpj2th6xbgF/eMSOXS8WBw4ODkKamjJlCgMCAtiuXTsaDAa2a9eOZrOZb775psj6UrNmTRu1Xk5ODlu2bCnGglarpbt/CD/4PpOvfnGY8dO+5HNzv2bTpGkMj65nN05HjRpFoCRm1UpErVq1YpUqVajX6+nh4UGtVivS3H3++eeUJIkzZswQ0t6AAQMIlITyWCWyrKws6nQ6uzjUsmjevLlNaMeQIUOYn5/Pfv36iX7X6/X87bffaDabmZycTEVR6OHhwbS0NO49dJxODRPZfvoXHLj8AF/94rDII/u0ePjwIYOCgujm5vbPRrYVQCJJ/I3QpUsXXLx4EYcPH66wTFBQEKKiorBx40YAQEhICFxcXLB37154e3ujRo0a2Lt373+tjcXFxXjnnXcwc+ZM5Ofno3fv3li0aBHq1q0LjUaDX3755anqvX79Ory9vdGvXz9s2bIF2dnZcHNzQ0REBHbv3o3PPvsMgwYNgiRJKCoqgtFoxKuvvoqpU6fi0qVLmDNnDhYvXozbt2/DYDBUei9vb29ERETg4MGDyM3NRXFxMYKDg3Hx4kVERUXhwIED0Gg0oryfnx8SExMxb948DB8+HIsXL0b16tXRu3dvzJgxA23btsWZM2eQkZGBEydOICoqCrIsw2w2V/iso0ePxurVq6EoCnr27Ilx48bh6NGj2Lt3L44dO4ZffvkF9+/ft7nOresEGEIbQpLlJ+/g4mKob5xETP4hbN++HTk5OXZFJEmCRqOBj48PDh8+DGdnZ/FbQUEBRowYgY8++ghqtRoqlQoWiwUzZsxA8+bN0ahRI7Ru3Rq7du2C2WyGu7s73N3dcevWLdy9exeFkgbGyFbQeoRAZXBEcWE+jEV3cS59FYYlDUCdOnUQFRWFWrVqQaVSobi4GFevXsXChQvh4+MDs9mMq1ev4ttvv8WJEyfKbbvbM2NgqBlncz7nh5Ww3L0Jt06jAAA3N78HxeCEKnED/ngfK1NgjGoHY+3WAACe+wnVsn/EoUOHkJubK+q3TicqlQpBQUE4f/48VCoVunXrhtmzZ8PX17fcrh87diyWf7UT6uhO0AXHQqNRo7Co+I+2W8wgJLSr7YtXWlRDlH9Jv7dr1w7btm0DAMiyjG7duiEtLQ1hYWHIzMxE1apVsWfPHri6uoq6PvzwQwwePBiSJGHYsGFYsGABRo4cicWLFyM+Ph5fffUVAgMDodVqkZGRAbmCsXT79m24u7vj3//+Nzp06IDp06fj/fffR15eHry8vHD9+nVYLBYAQGJiItatWwcAuHv3Lp4bPAZHH3rCULUuSEJS/fEt6VQyCCCuhrvNsz4JCgoKEBISAkmScPbsWeh0uieu4/9l/O2I77nnnkNGRkal5LFs2TK8/PLLyM/Ph0ajwW+//YaIiAh89tlniImJQWRkJCZMmIDp06f/19u7cOFCTJkyBbdv3wZJHD9+HLVq1Xqqum7fvg1XV1cxuVy+fBlz5sxBWloarly5AgBish06dCjee+89yLKM4OBgVKtWDb5OYkQAACAASURBVN9++y08PDxQv359bN68udJ7GY1GtGjRAj///DOuXbuG2NhYnDlzBl999RWee+45yLKMn376CVWrVgUAxMXFwWKxYPfu3QCACxcuoHPnzvjll18QHByM1atXo1GjRjh69CgaNGgAvV6P4OBgHDp0qNJ2NGvWDJcvX0ZBQQGysrJQp04dvPPOOwgJCUFgYCBYorUQ5U1BkXBKnAJZ/eQferG5ADdWT0Dh1QyoVCpIkgSz2QyTyQRfX1+cPn0axcXFNtcYDAa0adMGw4YNQ+vWrbFgwQKMHTsWw4cPx4IFC2A2m1FcXAxZlmGxWODk5IQzZ84gLCwMOTk5cHNzw/i3F+M3KQC7MrIBEoWWP55HKjajuJh4eP4I7v+8AXkXToAkFEWBwWCAVqvFzZs34eHhgZCQEBw6dAiSJEGSJBQWFkKtVqNbt26YMWMGQkND8eKKg9hx6obNM5QlvtvfLQGLLXBt94ooc/XjoXBq8jwcwpoAAB5kHsCNdX98P7Iso3bt2jh9+jQePHhQ0vb/IUJZluHv74/Y2Fh06NAB3bt3h8lksmnDB9tP4M2tpyEpmkoXLZIE6FQKXu8Qhqq8hsaNG9uViY2NxeHDhzF8+HC89957tu+4uBjNmzfH/v37BSlNmjQJ06dPx08//YTGjRsjKCgIWVlZuHz5ss3Cpiz69OmD9PR0XL9+3eb8qlWrMGjQIBQUFNgsBnbs2IGWLVvis/3n8cbmUygwW1DZ5Fv6WV9oGFRJyfJx9+5dVK1aFUajEWfOnIFKpXriOv5fxVMsi/93odFoUFRUVGmZgQMHQqfTYdKkSQCA8PBwDBgwAElJSahatSoWLVqEmTNn4ocffvivt3fo0KE4f/48ZFmGwWBAVFQUnn32Wdy4cePRF5dB2YHr5+eHGjVqICsrS5yTZRkksXTpUsTHx+PLL7/EwoULkZ6ejsuXL2Pt2rXYunUr9uzZU+m9CgoKoCgKdDod6tSpgzNnzuDXX39FfHw8rl69iqCgIISFhYlVbGxsLDIzM8X1gYGBeOuttyBJEq5fv462bdtCp9OhXr16qF69OrRabbmTVlk0btwY+fn5uHbtGnbt2gVZlhEXF4e6devC3d0dZddtd88fR076xyg2Fzyy7tJQaEFnfwtM5hIpr6ioCGazGYqiYMeOHTh58iTMZjO2bdsGtVotpN379+9j48aNaNOmDSRJwpgxY+Dj44OUlBTk5+dj4sSJgvQAIDc3F4MGDUJCQgJCQkIQ1uklzPuF2HbiGgqLim1IDwAoqyGpNNCE1INP39n4dO/vyM3NRXp6OlJSUnDnzh0AwI0bN7B//36QhNlsRmFhIQDAbDZjzZo1qF69OhRFwf9h77vDorjW/z8z23dZdulNiggIqAgKiEGxi4gNscRC1KiosUXFgtGIsbdgj/Um9o4dNWpiiV1jQaMoUkQFAUHp7LL7/v7YuxPWXSy591tyv7/P88wDO+XMmXNm3ve8/dTRgx8cC4GNK9R5GdxvraoS1UW5ENq4cPukAgYAOGmIiHDnzh1UVFRw+/SLB61Wi6ysLCQlJWHYsGFQKBTc9+Di4oLg/pOw6OcnYAXiD0rqRECFWoM5x/5A53ELDI5JpVKYm5vj4cOHOH36tBHTU6lUaNSoEW7fvo2EhARuv4+PDwCgWbNm6NKlC9LT0zFjxoz3Mj2VSoV9+/ZxNKYm+vfvj4qKCly7dg1+fn7cOHXt2hVrT6dgXvJDVHyA6dV81nnJD7H9auYHzjaGfiyKiorQqFEjo0Xb/2X87RifQCD4IOMDgC+//BLr16/nfm/atAkCgQCff/45YmNj0aNHD3Tq1IkjHP+V6NmzJ6ysrFBSUoKdO3fi1q1bsLe3R3h4OJ4/f/7R7dRULb58+RJ+fn4YM2YM+Hw+WJZFnTp1UFVVhaqqKixZsgQlJSXo378/unfvDoFAgHbt2qFly5Zo164doqOja/0QtFotNBoNtFotXr16hbS0NDx48ACurq4AALFYjJs3byI2NhZ9+vTBuHHj0K5dOxQUFBi0M3HiRLRo0QJv3rxBp06dUFFRAZVKhWPHjiE/Px89evT44DN37doVr1+/5vrq7+8Pe3t7vHr1yoDh14Qi/x6qruwCqasA+sDHTlqQuhIFp9djfdwA5OfnGxzWaDTo0KEDjh8/DpZl0aFDB/B4PGzbtg1FRUVYsGABfHx8OGKvUqmQkZEBOzs7KBQK3Lx5k2N6ehw9ehRZWVkotPRFfp2WOun0AwSfYVmOCB75oxDNmzfH+vXrDb4FpVKJ77//Hl27doVAIDBqQ6vVovxlmm5cAJBWA6pWAVqNbhyqVSCtBlKv5lAVZKHs0SVQtQpvL+2CwNYNAitnXTvqKrx+msK1CYBbgGzbtg0VFRUQCARYvnw5tFotnj17BmdnZ8yZMwdr167FuHHjEBQUBDMzM7wmM+Q6foaC5JV4vioGz77vjRfrY1Fy95SuXY0a+Qfn4/naL5G1sAsqs3SanioNQdn2S7j4twCgU81XVlaiXr16yMnJQbt27QyevbS0FB4eHnjx4gUSEhLw7bffYtasWZg8eTIGDhyII0eO4NSpUzh69Chat26NGTNmmFQX6/HNN99AJBJh1KhRtZ4THByMO3fu4NWrV+jduze0Fs5YePwPZB9OxPO1Q/Ds+954+Y+xqHh6k7um5O4pvFg3HM+W9cKrPd+iuuQ1KtRazEt+hHvPP51WWVtb448//kB2djaCgoL+P/PT47/bqPivYtiwYQZJjWtDWVkZ8Xg8A0N6cnIyMQxDV69eJY1GQ05OTuTr6/tf2V06c+YMF09YE4cPH+Zi6lq1avVRsTf6Uixz5swhlmU5j89u3brRqlWrSCKRmLxm9+7dnPs4wzBcIK++ttm70BeDlclkxLKsQaqsd7F7927i8/lcUmt9mZn79+8TwzCUkpJCarWa6taty7m7673/3hf6odFo6OjRo9SvXz/uGoZhOMcQf39/evXqlVGxXH08pFAoJKG9B1lHxZPH9GNGRYx1iayTyCZqOg2b8h3ndDJ69GjauHEjV6VBn+hb374+K0pkZCStXLnSoL6bPtXW+4rv1q1blwQCARdL5zrtGMkatCaezIIYoYT4Fo5kGTFWF08Ys5TEbv7Eis2IlZiTtH4oOY3ZSl4zjlPdpq1Mts/n80ksFtfq1clKFeQ29bAuQXdoP6PjitB+78TxCUnk3NAgx6lzLQ5A+nkVi8WcU87cuXO5grICgYDi4uIM5n341hvkNu0YOQxdQy5xB3U5VIf/QKxMSfaDl5PL5INk0W442Q1YRDyZBdn1m29QUso6Kt6gDwyjqxNobm5ODg4O5OXlRU2aNOGcT/TB5gMHDqT09HTO4USfiHzgwIFERNSqVSsyMzMzqnWofzdlMpnJkI6nT5/SvXv3TL7Tw7ZcJ+eJ+2rNIWvXbz6xUoVuLCYfJLOACBI5N+TCSEZs++uZWdLT00ksFlNYWNhfbuM/CX87G99XX32F5ORkZGZmfvDcTp06IS0tzUAF16ZNGzx69Ag5OTl4/vw53N3dMXToUPzwww//9r5qtVrY2tqiWbNmOH78uMlzTp8+jdGjRyMtLQ0hISHYvHkzp3p5F0+ePIGXlxcYhgHLsrC1tcWBAwfQvHlzlJaWQi6XIysrCy4uLiavr1+/Pvh8PurWrYszZ86gqqoKderUQe/evTFlyhTY29sDAJKTkxEZGQmWZREWFoZff/31vc/55MkThISEoLCwEAsXLsTUqVPRqlUr5Ofn4/79+2jatCmePn2K9PR0TvWTk5MDa2tr7NmzB23btoVKpcL+/fuxb98+XL9+HTk5OeDxeHB1dcWzZ89Qp04dZGZmwsvLC3v37uXauXHjBkJCQt67kk17/gpnnpbgUU4JiivVMBcL4O0gx9TerfA27wUYRqe2IyIIhUKwLIvvv/8etra2GDhwIBwdHbFkyRIMHz4chYWFAIB69erh1atXKCsrA6CziVZWVsLS0hJfffUVmjVrhvv372Pq1KlGEh8A2PWaCZF7EBiWhSo/CwILRzB8AdSvs5G7Mx62vROgLXsDrboSkrpNAJZF4c/roCkthG3vBJQ/uYLi48ug1WoNpD6ZTIZmzZpBq9Xi3LlzRvft3bs3lF2n4PTDV/grXz5ptah4chX5B+cbHZNKpZDL5ZxWJjc3F0KhECqVyuA8pVKJdevWIaxDJFonXjRwYgEA9evneLUzHhbtYyHzacntf75mEKy7TILY1e/P/lSrkLcxFlKeFi9evMCZM2fwyy+/oG7dunj+/DlSU1Nx7Ngx8Pl8nYT5+jUEAgGIiBu3mnY4Kysr2NjYQKFQ4O7du+Dz+ZgwYQJcXV3h5uYGDw8PJCUlYerUqSgvLzcyP0RGRiI5ORlDhw7FkiVLYGFhAQAoKK1C6KJfjJ4VAF5uHgNFaD+oXj6CtloFq446KbK65DVerBkExxEbIbBwgIjP4vLUtrAyE330fNXEgwcP0KRJE7Rr1+6DNv7/dPztVJ0ikcgkITGFVatWIT093UBlcfjwYRQWFmLatGmoU6cOdu3ahfXr13MeoP9OjB8/HmVlZdi3b1+t53To0AGPHz/GhQsX8PbtWzRo0ACBgYG4c+cOd45Wq8XEiRNRv359ADp7wdSpU/Hy5Us0b94cgI7wKpVKbNmypdZ7bd68GQ8fPsSyZctQWVmJOnXqoKysDFu3boWDgwPs7OwwePBgDBo0CIDOTlebF15NeHp64sWLFxAKhYiPj8fGjRtx8eJFLFu2DOHh4Xj06BFSUlJgbW2NAQMGIC8vD4GBgbCzs0O7du0gFAohEokwZMgQpKamokePHrhy5QrUajWGDRuG6upqZGdnY9euXXj06BHH9JKTk9G8eXNO/QiA+1sTURHtMSKsHhL7+mPzoCAk9vXHiLB6UEp0RItqOMioVCpIpVIEBwcjOjoaz549g0ajwcCBA3H48GHExsYCAN68eYO9e/eiuroad+7cQXx8PNRqNeRyOVasWIHIyEjExcWZfFd5MiXEdZtw9iyhjSsYvl41yYABg+qiHEjqBULm3QKsSApWIIa8aRdUvXgIhmVhXr85SChDdXW1gddhaGgoDh48iPT0dKP7TpgwAXv37sXo1h4Q843H6WNAGhWkmRcRExNjMNYymQwRERGIiYlBcHAwnJ2da7XHv3nzBoMGDcLoZdsM9r8+tRbPlkbj5caR4JlZQlIv8MP9IYK8cQcUFhaiSZMmiIqKwk8//YSxY8eib9++OHnyJPz9/bFixQoUFhYiISEBKpUKarUaRISysjIEBARAIpHA19cXRUVFqFu3LuRyOby8vFBWVoaFCxdi/Pjx6NSpE9zc3DBx4kSo1Wrum3NycoKPjw9CQ0Nx4sQJALpvzc7ODlOmTEFRURH23zJt0tCUFUFd+OJP+6nBakT3vzo/CwBQWVmBhK0nPzgmtaFBgwa4dOkSTp8+jT59+vzldv4T8LdjfAKB4KMZn6enJ+rXr4+xY8dy+8zNzbFkyRIsXboUz58/R3R0NIYNG4Y+ffrg5cuX/7Z+ZmRkYO3atVi1atUHQwcAoEWLFnjw4AGuXbsGjUaDJk2awM/PD1u3boWjoyOWL1/Onfvw4UPMmzfPqI2GDRvi5MnaP4wWLVrAx8eHY2w///wz3rx5g9WrVyMzMxPR0dHYsWMHZ6vLycnhnCQ+BLFYjLZt28La2hqxsbGQSCTYtm0bzp07hytXrkAikWDJkiW4fPkyNBoNbt68ifT0dHh6ekIoFILP52P27Nn4448/sGbNGhQWFsLOzg4zZ85E48aNYW9vj759+3L327x5M7p27YohQ4YgICAAAoEAQ4cONflupKSkwMnJCadPnzbY/64kAuhW/x4eHmjatCkAwMbGBunp6QgPD0erVq3w6tUrmJmZITQ0FJGRkWjWrBksLS1RWVkJuVyOJ0+e4PXr16iursaLFy8gEhmvzs0bd4TwHRvcxxD9quwHEFjrCCSfx8PifRfw4sULjB49mnvHzpw5A4VCgWfPnoFhGM5BIywsDN9//z0AoLGzEt909oZE8Gmfv4jHIIifjazbF7Ft2zaDse7atSuOHTuGVatWwczMDCdPnsSVK1c4r05At2ATi8UIDAzEtGnToHTzNZCArMK/gvPEvbAbsAgSr+ZgeMZ2ynfBCkSAUrc4e/jwIaqrq1FUVAQ+n4+mTZtyzlUjR46Era0tDh06hICAAAQEBKBJkyaoW7cufv/9d7i6ukIoFEIqleLEiRN4/vw5WJaFp6cn1Go1pFIpGjZsCDc3NwCAh4cH7O3tIZPJoFKpkJubi7t37xo4W6nVaixZsgSWlpY4efWekbRHmmoUHFkKs0btILByhti9Kcof/QZVXga06iq8vbQbAAOq1n2DDF+EXScuwNPTE1evXv2kudMjMDAQZ8+e5RyN/q/ib6fqnDlzJjZs2FCrY8O7OHLkCKKiolBUVGTgQu3l5QWJRIK7d+8C0Hl2lZWVcR6Y/yp8fX3Bsux7DeTvw7179wwcRsRiMbZt24bevXtz8XvvYsGCBVi4cCEXV2UK169fR0hICO7du4eGDRti0KBBOHDgAPLz8xEUFISsrCyEhITg7t27nFOJRCLBZ599hrFjx6Jr1661js+sWbOwatUqFBcXc0Sxfv36ePHiBaeK9fX1xbVr1xAUFITr168bXDt//nzY2NjA3Nwcjx8/RufOnbFz506cPXsWffv25RjVd999xzkoTJ8+Hebm5pgyZQoSEhIgk8lQWWno0VlTlWVtbY2xY8di+vTpUCgUBnGAvr6+2Lp1K4KDgzFr1ix8++23Bu0sX74cEyZMgEgkQnl5Oe7fv4+ePXsiIyMDMpkMHTt25LxcAZ00IpVKwefz0blzZ3h5eeHFixe4oHZHdZ0Ao/EjrQZVLx6h8lkKFCG9wPD+VKOp8jLwamc8bKJnQOysC4cxf/0Qf/xjmhGzF4vFkEgk3DtfXl7OMUC9dEtE4Pu0gaT5AIAneK83JWm1II0KpRe2oCLltNH4AjqmxrIstFrtRztQ2ETPhNSzmcljr0+uhsDaBeaB3bh9plSdAFD+5BryD8z5qHvWBr26G/jTUefdfTXfo9q+AVPPbmFhgeZTt+DBmz+vIdKi4MgSaKvKYRs9k5vrklvHUHzzMLRVFTAP6oa3V/fDtte33Jx/5irHs+3TcfnyZQQGBmLXrl1cSNGn4MSJE+jSpQvGjRuHxMTET77+747/aIkPALp16walUom4uDiD/cnJybh//z5++uknAMCVK1dQUFBgIFX8Vaxfvx6pqam12vU+hHPnziEsLAyvX78GoJM6KisrMXXqVACoNeh70KBBKC4uRnFxca1tBwcHo1GjRhg8eDAAneTEMAzs7e2RlZWFhw8foqysDH5+fpBIJFizZg3mzZuHgoICREdHQywWo1mzZti0aZOBGislJQWpqakoKioymJ+nT59i9OjRKCgoQHFxMRfi8O6CYOrUqYiIiEBOTg5SU1PRpk0b7N+/H+bm5oiIiOCCs2NjYzF79mysW7cOCQkJmDBhAgQCARISEjBp0iQAgKWlJYA/CVeDBg3Asizc3NzQvXt3LFy4EBKJhJPSAEChUKB+/fpo2rQpVqxYgdmzZ+PKlSsGffz666/RunVrqFQquLi4wNraGmlpaVi6dClKSkqQnJyMHTt2oLq6GidPnsSYMWOgUqlQVlaGvXv3YuHChTh79izE5hYm54ZheRA7N4CmpAAlt/+0waiLXiJv7yxYtI/lCCAAvCoqMfoWBAIBRo8ejd69ewMAxowZg/j4eIwePRpjx47FhAkTEBcXh2nTpmFyjxC0qv4dzIt7oGoVtGpD6V6rroK2WoXyJ1fwasc0FP+ejMGDB6Nt27YG59nb20MikWD48OHo3LkzmjZtCltbWwPGURP6QPN2Ye8JZ9FqUV2UU/vxmqdWlhntmzhxItavX8+FmCQmJqJTp05wcHAAy7Jc3xwdHTF//nxkZGRwTFuj0cDf3x8ymQwvXryAVqvF5MmTAejeqczMTGg0GqOtNu1IaWkpqkr/9MgkIrxOXglN2RvYRE03WODIm3aB04iNcB63HdL6oYBWA4GNG3fczsIcv/32G27evInS0lJ4enoiIiKCsz1/LCIiIrBnzx6sWLHCaIH3fwF/O8YnFos/2SV33Lhx2L59u8F1Hh4eiI2NxahRo1BZWQmlUonk5GQcOHAAmzdv/sv9Ky8vx/jx4zFu3DjO/f9joVKpEBUVhTZt2qC4uBguLi5ISUlBXl4eMjMzUbduXQA6dcWBAweMrnd0dIRUKsWOHTvee5+ffvoJv//+O27fvg1AtyItLi5GUlIS6tSpg4KCAjg5OUGlUsHV1RUTJkzAnTt3oFKpsGnTJvD5fIwaNQoCgQAikQh8Ph+NGzfGL7/8wt0jMTERVVVVCAwMxNKlSzkVbFJSEmxtbVFVVcUtDObOnQsLCwtcunQJ+/fvR3JyMm7fvg0LCwts2LABYrGYk6j+8Y9/cLa28vJybNy4EQkJCcjPz8eqVavQv39/LqNGRkYGhEIh/Pz8YGNjg8zMTFhZWaG0tBQrV66Eo6MjSktLIZFIIJFIcPjwYbx58wZjxoxBeHg4OnbsiNLSUqP5bdOmDczMzODu7o4TJ07g6tWrEIlEkEqlGDhwIAQCASIjI3H48GHOkYJhGGg0Gjx79gwFL5+9/0WoQfSr3+bh1a4ZUIR+DrOGhgxHU1FqdKlarcayZcvw448/AgB27dqFs2fP4tGjR6iqqoKbmxvCw8NRUlKCpUuXYvvK+VDe34f5ITxUXt8Hx6pstK1vg7IHv+LNxR14sWYwCg4ugCo3DRqNBuvXr+fmWc9AcnNzUVZWhi1btuD+/fsQCoVo27Ytvv32W6xZs8bE42lx8OBBXDq+D1p1FTRlb1D2x3loVRUgrQYV6bdQ9vA8xG7+AACqVuvCLgCQtloXdvFPyUvEY+AsNyZjK1aswIgRI+Du7s6ppo8fP46XL1+ioqIC5ubmsLW1hZOTExYtWgQ3NzeIRCLUq1cP/fv3x4QJE+Dg4ABfX18UFhZi8eLFMDMz0427RoODBw9i0qRJaNu2Ldzc3CCVSk2GkAA6Zx7N62yI+Lp+Fp5aA/XrbNj2+lanqv0nqFoFVX6mzvHmbR5en1gFeWA38MS6+2rVVTiweQU2bdqEJk2a4I8//sDx48eRkpICGxsbDBo0yKQ0Xht69eqFzZs3Y+7cuViyZMlHX/cfgf82/9F/ExITE40y9n8IarWaBAIBrVq1ymC/RqMhS0tLg8K206dPJx6PR48ePfpL/QsPDydra+tPrtN36NAhzg2dx+PRokWLTJ4HgFq3bk0sy5KDg4NR9XV/f38KDw//4P2aNGlCjRo1Ih8fH5LL5RQQEECurq5ERGRjY0MzZ84klmXp9u3bpNFoKDk5mQYOHEhubm7E4/GIZVmytrYmW1tbLumy3o2/TZs2BveaMGECMQxDI0aMoKZNm1L79u2pSZMm5OPjQ9bW1iQQCGjmzJkGY6bRaLjKD15eXiQUCollWbp+/Tp3TkxMDFlYWBCRLjm5m5sbubi4cImriYhOnTpFDMPQ/PnzuX7WrE5x48YN8vX15dzhvb29Sa1Wk1qtJjs7OwoICDDok4ODA/n5+VFISAjXHv4Z9hAUFEQhISFc0uh3QwpYlqWwsDBacuw2ef0zvKLO2O1k3W0yOU/cRy5TDpNtn9nECERkEz2TnEb/RHylPSnbfGlcbmnSAVKERBuFFEgkEvrmm29oz549BIB69epF7dq1I19fX7K0tDRIqs0wDEmlUrK2tuZCTfSVQd5t993N3d2d1qxZQzdu3KCcnBwuf+iePXsM5r6iooIrwFxzE4vFNHjkWHKJS6I643aQyLkhMSIZMUIJCWxcybLTGINcqu9erw+v8JqRTAUlleTq6so9k76kVlBQEAUGBpKlpSUxDEMMw5CFhQVJpVISCoW0ZcsWrrxSRUUF7dmzhwYMGECenp4GpYwAcMVr9ZtAICC5XE4KhYJLBm9qzvUbT6Ykz2+OvzeHrPPXu0lg40aMQESsTEnmIb3IZcrhP+c8LonESps/26xBJzZu3EgKhYKEQiFNmzbtk+jPypUriWGYj87j+5+Avx3jW7t2Lcnl8k++rnfv3uTk5GS031ScXXBwMFlZWX2wxNC7+PXXX4lhGDp//vxHX1NSUkJhYWHcyxwWFmYydkgPhmHo4cOHlJ+fTz179uQKs65fv56IiOLi4j6qCsPt27cJ0FVByM7OpmfPnhGPx6OFCxcaxKvpCQCPxyN3d3f64osv6OTJk0Yf1oYNGww+dHt7exo+fDhXtywpKYkEAgGxLEtjx47lqg9069bNZL0/PR4+fMgxGJlMZlChgcfj0aZNmzjmtn79eo4o1Zy7BQsWEMuytGXLFo7ovtt/hULBlcBhWZa6detG69atI4ZhyMnJyaB6hEwmI19fXwoICCBra2sDomdlZUVBQUEUHh5OEomEK6Aql8vp6NGjRESUX1LJVUh4H9FXtOiva7cGgWQEYi6WTii3NJmQuibx9fPzo9DQUC6RtD7GrSZhr41Y17aZmZnRsmXL6MyZM1xx2aVLl3LP2qNHD+rbty+3ADDFNPVzahs9g1ymvL8CfG2by5QjZBf9jUHxWgsLCwJ0sa7v4u7du9SsWTNiGIYcHR25MdBXzbC3tyc7OzsyNzfnFgj6uFFTm1AopAYNGtC4cePo/PnztGHDBpOFhQHQoUOHdDGL8Z/+nK7TjpHbtGPkNXSJMUPl8ahHjx6UnZ1NGo2GEhISSCwWk1wupzVr1nyQDugxd+5cYhiGtm/f/tHX/J3xt3Nu2bx5M8aPH2+kgvoQcnNz4ejoiAsXLqBFixYGxzp27Ig7d+4gNzcXLMuisrIS9vb2aNq0Kc6ePftR7etj9oKCgjiX5g9hy5YtXXXWlQAAIABJREFUnLu+XC7Hvn37EB4e/t5rWJblHFMAXT6+UaNGYc+ePTA3N8fw4cOxePFiqFSqWlUv1dXVaNSoER4/fgw7OztOTVdVVYWnT58ane/l5YXU1NRa+3T//n34+/tDo9EgIiICaWlpaN26NY4dO4acnBxYWFigffv26NatG2JiYgDoVM2ZmZn44YcfavUuy83N5RIyd+jQAdu3b4dcLsc//vEP7NixA1euXMHLly9hZ2eH4OBgZGRk4OnTp4iMjERSUpJBW7169eK8DmNjYxEYGIgbN25wxwcMGICkpCRoNBqDGC89HB0dAYDz/BWJRLC3twcRIT8/n0vBde3aNU4lrdVq0b9/f+zZswcSiQR+fn4oLS3FkydPYNUjHiL3oA+mrTINQnnqFZOxdHw+v9bMRmKxGO7u7ggPD0dQUBACAwPh7u6O1q1bG6SwGzx4MPbv32/yG7O0tERhYSFkMhmqqqpQXV0NhmEgEAiMvGQFAgHCwsKQmJgIf39/LmdpTZOD0N4TdgMW/KXcqiIeg8zN46HKTTPYP3v2bCO7VWVlJRISErBo0SI0btwYpaWlnIqWYRgu+5FGo+HGT6/K1dtRGYZBq1atoFarcenSJZMxiqZw9+5d+Pn54W72G3y+8Soq1B/vo6CHRMDD7uHNsGDyKBw8eJC7r7m5ORiGQXFxMZo0aYJVq1ahadOmGDt2LDZv3gxra2usX78e3bt3/+A94uPjsXjxYuzfvx9RUVGf3Me/E/5P2PgAnQG+SZMmmDBhgtGxpKQkFBcXY9KkScjKysKePXtw7tw5nDt3DosXL35vuz/++CPS09MxYcIElJaWmrS9vYuCggLOwaS6uhqxsbF48+bNB5keoPv4an5s5ubm2LFjB4qLi9GjRw/OQ2vQoEEmx6m6uho+Pj54+vQp+Hw+cnJykJmZiYcPH0Iul3Nu8fps7hKJBLt27TJq58yZM1Cr1Xj27BmCg4MhEonQsmVLtGnTBnl5ediwYQNevnyJ/Px8DBs2DKdPn+aYnlQqRXp6Ojw8PLBq1SqTz/nw4UN4eHjA0tISmZmZ3HN17twZffr0waFDhzjPzuLiYnzzzTd4+PAhVCqVSS+1vXv3om7dupg5cyZ69OiBmzdvol69enB0dASfz8fOnTtRWVnJMQ49QdHj5cuXUCgUAHQet5WVlcjMzERVVRW++OIL5OXlwdHREV5eXtw7wLIsdu3aBScnJy5344MHD6BWqzEwwIazW30qtOoqvL2y1+Qxe3t7Lmga0MU16p19VCoVUlNTkZiYiDFjxmDKlCk4cOAAMjIyuPP5fD5Onz7Nebu+671YWlqKdu3aQSQSYffu3WjQoAHXNqB7Px0dHSEQCKBWq3Hu3Dn4+flx7+K776T6VRqKzm7m0qh9LMQCFrhzECh8ZpDKz9bWFm5ubvjqq6/QokULODk5cV6uixYtgkQiAZ/PR2hoKJYsWYIbN25gzZo1iIiIMMj9qk9M7uLiwoWkEBHOnz+PrKwsSKXSj2J6ERERKCkpgVar5cJIRHzTTj+1QSJg8U1nbzR2tsC2bdsQGBgIlmWxbNkydO3aFSqVCizL4smTJwgNDYWHhwdCQkJQUFCAkJAQREVFwcvLC9euXXvvfRYsWICRI0eiV69eRqE//3H4nxQ3/wr27dvH1Yj7VFy8eJEYhqGcnByjY6tXryaGYUgsFnPtJyYmGtmV3oVEIuHSWn2MamHp0qWcasnd3f2jUpXVBMuydO3atVqPV1RUcKoamUxG33zzDWVkZNCsWbMoKCiIu/e7dpygIF2ts3379hEATn00YMAAo3vk5OQQAPrss8/I3NycPD09CQClpKRQSkoKMQzDqRKTkpLI0tKShEIh+fn5kVKpNEoztmHDBgPV48WLF0kgENBnn31msF8oFNLu3bupefPmxOfzuTRmc+fOpaCgIJLJZAZ18oiIMjIyaPHixdSpUydycHAwqbarqS4UCAQkEAjIx8eHfvvtN9JoNPT27VsDFVZERASlp6dTeno6AeDqIhLp6hYyDEPjxo0jIl3B3fbt25tUf9XvMozqTjn0SSqvulMO0ZQNRyk0NJQaNWpEcXFxJtWdvXv3JltbW7KxsSGGYahly5Y0d+5cCg0N5WxS774DYrGYkpKS6OjRo1yhVRcXFwJA7du354q1vnu/OnXq0OrVq+ngwYPEsixVVupqyY0bN46rmai/1tTG5/PJzD+CnCft/6Da0+2f6eacWn1OYrGYunfvbmBj029KpZJatWpF48aNo61bt5JcLqeQkBBKTk6m4cOHU8OGDTlVrFQqpUaNGtGIESOM1PhVVVUkEAhoypQpFBQU9F4VsIODA3399de0detWEovF5ObmRvb29sSyLLEsS/b29uTp6UkWQV3JferhD6o93eKPkffME7TtSobBO/327VsaMWIElZaWEpHO9rxx40aqV68e9zwsy5JcLqfJkydTWloaffbZZ8QwDAUFBXHmh9rwxRdfEI/H4+pPnjt37pPNPv/b8bdjfEePHiWhUPiXr3d0dKS+ffsa7Hvy5Al5eXlxTIHP53N2p/DwcJLL5VRWVmbUVnl5OUc8GIYhNzc3g9yNNZGVlcXZtXg8HmeT+1TUfCFrQ1RUFMlkMrKx+dMQLhQKOSadkpJCGo2GFi1axBExLy8vIiI6ePCgQU7M3Nxco/Z//PFHjhHoGZS3tzcR6T5ChmEoKSmJGjRoQAzDUHR0NJWVlVHDhg2pe/fuRKRzONJXlMc/7Wp+fn4UExNDLMtSdHS00X1dXV2pV69exDAMnTx5kry8vAzsOgzD0JAhQ6hLly7k4uJiUPlcX6TVFONfuHAhZWdn088//0wMw9Dq1auJx+MZFPF8/vw5Z8OqW7cuMQxD5ubmnHONHhqNhpYvX84RHpZl3+ss8rEE33XaUXKJO0Bm/hEUHBxMO3bsIADk4eHBEbulS5dSUlISKZVKA6Z06tQpcnV1JZZlacCAAVRRUUGPHj2i0aNHm2RI5ubm1LlzZ872bG9vb2QH1NuA381BK5VKad68eUREdPnyZc4pRC6X07Rp0wzakEgkJJfLOduq0N6D7KJnkPu0I+Q6+aDB8ztPOkDOcUlkHRVPQnsPbr71Y8vn88nS0pIaNmxIQ4cOJR6PR3Z2djRo0CCSyWSccwuPxyNnZ2fq3r07rVu3jrNRmsLjx4+5d6zmd/Qu02ZZlkaMGEEtWrQgW1tbrk9yuZwaNGhA/fr1oxEjRpCTk9Of7dh7kF30N+Q6+SC5vbP4qT8jmbxmJNOIbTfobnbt9n5TSEtLo27dunFOSvq/PXv2pJMnT5K3tzcxDEMRERHvffYePXoQn8+nYcOGEQA6duzYJ/Xjfzv+dozv9OnTxOfz//L1K1euNHJ+uHz5Mpmbm3MvtVAopMePHxORjkDb2tpSkyZNjNpKT083uEahUNClS5eMzouLi+Ne+LZt25pkoh8LPp9Pv/76q8G+y5cv08iRI8nb29vgw4yIiKB169ZRXFwcR7gGDRpkUBX+2rVrJBAIOCl38eLFpFQqic/nk5WVlck+6Cu864kPAEpKSiIinbOOnpj6+/sbrC6lUqmRVNypUycu4bbeMw8A1atXj6ZPn27wcUZGRpJUKiVPT086fPgwJ3XW9FTUVyPXM26WZcnW1pY+++wz+vrrryk5OZl2795NDMPQlClTOEKvl1IsLCxo7NixZG1tTf369SMiXRX5/Px8rqr2d999RxMnTuSenWVZEovFRkRRv4WEhFBEREStzE9o70Hew5aR14xk8vzmuBER9PzmONlETafQrv2NrrWzs6Nbt26RSqUyGNfz588bOGZ07NiRfvjhB1IqlSQUCmnq1Knk5uZGSqWScnNzqW7dumRnZ8ctIkxtDRo04J6DZVlq2bIlWVpaGkhI0dHR5OLiQu3btyeGYah169b09OlTAycg/ebo6Gi0j2VZcvH0JWVIL7KKnEi2vb4lq8iJJA/uSSJzK86beOXKldSuXTuunTp16rx3gWFvb089evSg+fPn05EjRwyk9JrIzs6moUOHGkj4egcnvYZBvz8oKIg0Gg15eXmRvb29AU1JS0ujxMREioyMJHNz44TezZs3p6ioKGoT0Y3cIoaRTbc4someSVaRE6lel5H01YQpdPny5U/2DtdDrVbTokWLuDHm8/mcxLds2TJydHQkHo9nRA/00Gq13EIdAJe8+z8FfzvGd/HiReLxeH/5eo1GQxKJhGbPnm2wv6ioiFspAqCff/6ZO5aWlkZ8Pp/i4uIMrvnll184Yjts2DB68+YNZWZmklwupzNnztCDBw+41beZmdkHJbWPgd5VPyYmhurWrctJIU5OTtSzZ0/avXs3VVRUEMuydP78eVKr1eTl5UXm5uYUHx9P5ubmJBAIaPDgwRwDTk1NJblcTtnZ2fTlV+PJNXwodZq9m2x6zaShmy7SD+fSqKBExxgqKyu5j18kEnEq0UmTJlF8fDwJBALi8XgUHBxs0O+3b98S8Gf1Bj1SUlIIAKeG7N27N12+fJl69uzJjZ29vT21bt2a3NzcjKQ1UxKLj48PLV26lFu8mML06dOJZVnq1KkTd01VVRX179+fJBIJeXt7E6DzinzXlV1PoAFQQEAAF24BgJMuIiMjKT8/n0JCQjgVem1EWb/Fjp1Izb/8lhx7TqMhP10n6y4Taeyaw1RQUmnA3N/d9Ez7XURGRpKPjw83bnomPHHiRO738uXLSaPRkIWFBdWpU+e9KkkAnKcqALK1tSWxWEz9+/fn7vnVV19xxy5cuEBVVVVGi5Oa4/fuxuPxKDY2lmPAd+7cIRsbGxo8eDD3rvP5fG5+HBwcuDAafUhFTEwMrVy5koYMGULAn6pZmUzGMX5u0SEUklKpJIVCYcQ4a847wzDEsiz16tWLcnJy6Pbt2yQQCKhHjx5UUlJCCoWCmjVrZjQHSUlJJr1mmzZtSlZWVhwzVSqV5OvrSyzLkp2dHaei1qtIO3bsSEuXLqUXL158HKGogVu3blGbNm249gCQs7MzDRkyhFvwx8fHGzDZoUOHGsyRXC43YsL5JZX0w7k0Gr/7dxry03Uav/t3A1rxvxl/O8Z3/fp1Yln2X2pj+PDhtUozegmod+/eRPTn5Hadv59ses2kPonHucmNiYkhgUBgYANs1KiREXEeN27cX165qVQq2r17N0VHRxu429etW5diYmIoOTnZZNt16tShoUOHkqenJykUCgO75vLly8nS0pJ4PB7169eP3r59SwfO3aShP13TqV0mJ5lUvcRuu0GDJ80ilmVp0qRJdO/ePUPJRSikuXPncrFQNfHTTz+RWCw2+YxCoZAYhqEuXboQwzAUFhZG/fv3Jw8Pj/cS4saNG5ObmxvHbMrKyighIYH4fD7VqVOHbtwwLOOSnZ1NSUlJNHv2bOrfv7+BG3xtm5OTE40bN86kNMcwDLm4uND+/fupe/fuHPEFdKrjH3/8kZNK9FuTJk1Mxvfx+XyDEAP9okoikZiUGGpuKSkpJsd10KBB3DxkZmZSgwYNDPquf1drbjKZjBQKBSmVSqqoqCBHR0fq06cPV8rq3fP18zNt2jSys7PjyiIFBgZSx44dja6pTSqu2d7x48e5cYyKiuLGxcLCwkB9D+hseZMmTaKcnBzKz88nAFRRUUG3b98mHo9HM2bMICJd+SylUkkikYjmzJlDb9++pfHjxxtJuAKBwOQ7JxKJyMXFhYKCgigqKori4uJo2rRpxLIs9evXj1JTU4nP59PQoUON5mH06NFG863VarnjKSkpNH/+fIqIiOBUp/p72tvbk6urKzk6OnI2SZFIRJ6enjRgwADas2ePSYnNFCoqKmjatGkGqnCpVEqhoaEkFAq5EAh9aFLDhg0NynIdP36ciIjuPCui4VtvkNc/6UJttOLOs09T0/534m/H+PTOE/8K3r59SyzL0uHDh00ez8jIoKhhX9c6uV4zjpPXjGQKmrCBjl7+s/ZWUlKSwQsulUrp5cuXn9S30tJS2rRpE3Xu3JlsbW25+mLe3t40cuRI4vP5dOTIkQ+2ExUVRQKBgBQKhUk7HRHR+vXrycbGhuQBncltykFy+1AsUfwxcp92mFafvEtERO7u7gaENCIigoiI1q1bRzKZzOBeffv25eyIepSUlBgQY1MxUzwej5ycnKhZs2YmibR+Zd6yZUs6f/48rVy5kgYPHsx93EKh0GiFb2VlRfXr16fWrVuTmZlZrfXz9IuDkpISTnqouWrW94/H45GNjQ33PiUlJRnEsLEsSxMnTuScZt4NjtYz4ODgYINr9P/rnYhMMV4zMzPq1q2byfmdMmUK2dvbc7+zsrJMxpnp71WvXj3q1KkTCYVCrgZjeHg4NW3a1MCRZ/v27R9kxu8yk/Xr19O6des+6nxTalEej0eBgYHUtm1bAkBz586lkydPUqNGjTi76/bt24nP59OBAwfIzMyM2rZtazAeFRUVRgsRAOTq6krDhg3jFgI1Gd/y5cvp9OnT9P3339PIkSMpPDycGjVqRA4ODgY245pSvZOTE3Xu3JlGjx5NiYmJJJPJOAcw/Zy977tt0KABFRUV0fbt22nIkCHk7+9PCoWCe/fMzMzI0tKSzM3Nub4qFAoKCgqiuLi49zrj6XHmzBmuhqb+HahpagB0i67ff/+d1q9fzznr/HgxjbxnnvjLjjn/W/C3i+NLS0uDl5fXv1xJuHXr1sjLy8Mff/xhdGz71UzMS36EymrNe2uWMQwg5vPwTWdv9PLXZWp/t1/vq48HAK9fv8bWrVtx5MgR3L17F0VFRZBIJPDy8kK7du0wZMgQLmYP0IUZ7Ny5Ez179qy1TX0uSX2Vcltb21rP3X41E7OP3IeadC7WxbeOoizlLFT5mZD5tIJ1F+PwD7GAhXP+DZxZN4vrU3V1NbRaLX777Tc4OTnB1dUVarWaq1fm4eEBR0dHuLu749y5c3j+/LlRnkmhUIh69erB29sbZ8+ehVarxaVLl9CwYUPUq1cPPB6Pc7338/PjQgMM+iYWw9bWFg4ODhAKhbhx4wY0Gg2X0Ppd9/yMjAy4u7sb7NPHmvn5+eH58+eIjIzE2LFjERwcDIFAAGtra+Tk6FKK8Xg8zJkzB/Hx8Vx+yHcTXz9//hxlZWUIDQ3F5cuXUV1djW7duuHYsWMQCoWwt7dHdnY2iMjkey0UCrkad1VVVWjVqhXatGmD7777DlqtFjwej3Npr4nly5djxowZ6N27Nw4dOoQ3b/7MF6nPr1kzlMHCwgJFRUUIDAzEiRMnYG1tjRkzZmDZsmUYPHgwNm3axJUa+hhXfv18nD17FvPmzcOJEyegUCjw9u1bfCrZSUlJwYULFzBmzBjMmzcP8fHx3LGMjAyMGTMGp06dgkajgVgshoWFBZ49ewaWZbFp0yasWrUK9+/f5xJN68MtLCwsUF1djdLSUvB4PFRXV6Nly5bIyMiAj48Pfv755w/2bc+ePejXrx/at2+PsrIyXL58GV5eXqioqMDLly8N3nN9CS5nZ2c4ODjAzc0Nnp6eaNiwIQICArBlyxYsXrwYRUVFRvfRarW4du0akpOTceXKFTx69Ah5eXlQq9UQCATg8/nQaDRQqVRc/l0/Pz907NgRn3/+OReLWhNv3rzB1KlTsWXLFpO5RuvVq4dHjx6BYRj0m7kW93geqDRRU7A26EIxfDAwxO2jr/lvwf8o2/0LyM7Opn9Ht+/du0cMwxi59m67kkHeM5Pfu5p5d6s/M5nsQv9MHyUWi8na2pqkUqlRBomsrCyaPXs2hYSEkFwuJ0Bn/wsODqZZs2ZRZmbme/stFouN0kLVRFVVFXl4eHBSRG1epkQ6lYX3zBMGz2ITNZ1sen5DZgERJGvYrvbnnpxEIkcvunv3Lt26dYtLSxUaGkpqtZpYlqUOHTqYtBvV9LAbNWoUJSUlkZWVFTVu3Ji++OILCgsLo3r16hldp5fcRCIRderUicvAYWdnRytWrKDAwEDOiy0gIIBWrlxJFRUVNG7cOC71WU27n1qtpoCAgFolDxcXF1q7di3x+XwqLS0lHo9HXbt2NbCT8Hg86tu3r4GEZm1tzWWK0WPnzp2cJ6T+OT7//HP6+eefjfqgf+6aKlFvb286dOgQeXl5UcuWLYmIKCAggHuHEhISuHslJydTp06djCRolmVp1qxZBs5VKpWKmjdvbnBOTU9l/X5nZ2eys7MjmUxG06dPJwsLC85N/2NSnAG66vPvO96pUye6fPkypaWlcRKSXtJetmwZl3quNpSVlXHSNMMwnJSkb18ikVDfvn1p79691LJlSyOV8+eff06vX7+m69evE8MwnxRqtHPnTmIYhmbPnk29evUikUhEa9euJYZhuN83b96kbdu2UXx8PPXp04eaN29O7u7upFQqjebK0tKSPD09qUWLFtS/f3+aNWsW7dmzh1JTU41MGzk5ObRhwwbq168f+fr6choMvT20ZhYaT09PiomJoX379lFVVZVBO/pQpnc3X19fuvjHMyNaod+su00mvlUdYgQi4ivtyW7AQoPj3jNPfLJ36n81/nYS3+vXr2Ftbf3JK0ZT8PDwgKenJ5dp5W72G/T54QJeHF+Nysw70FaWgq+0h0WrQZDUCwRp1Cg4sgRVOWnQFOfBrt98rkQKq1Xjh17eCA/yxuPHj9G2bVvk5ubC398f7dq1w88//4zU1FRUVFRAqVSicePG6Nq1K2JiYt4rkb0LqVSKTZs2oX///kbHVCoVfH198fr1a6SmpqJBgwb48ssvsWjRIpNtxW67WWsl7qIL26ApLjAp8QEAabWwLM/G7A51EBUVVasEzrIszMzMUFxcjNDQUGg0Gq4ckVAoRFVVFVezTavVwtPTE46OjnBzc4O3tzfu3r2L3bt3w97eHiKRCGq1GiqVCl988QXWrVsHtVqNFStWYNQoXdVqfQLk1atX4+rVq6iqqoKnpyc6d+6MM2fO4MGDB/jiiy+wadMmDBgwALdu3UJubi4qKyu5lbleKrGzs8P9tCw07DoMTg2D8TK/COqyt9AWPke4lwLpf9zlnkUkEkGr1XIS6NGjR9GlSxduHO7cuYOmTZti6tSpWLt2rUHpKF9fX0ilUlRWVuL+/fs4duwY7ty5g1evXmHbtm34/PPPsWHDBri5uWHatGkYMWIEsrKyIJfL4eDgAK1WC5VKhYCAANy7d88g0wgRwdzcHGKxGA8ePMD9+/dx7tw53Lp1C48fP0ZOTg5KSkoMzgd0kqxegtRoNNi/fz9sbW25rEfdu3fH2rVr4eTkZHCdHjwez6gf74NcLkdJSQkUCgV69uyJH3/8EXXq1MG1a9e4e8yfPx/Tpk2rtY2RI0di/fr1RvtlMhlmzpwJQJe8OicnBzKZDGVlZbC2tkZkZCROnDiBwsJCfP311/j1119BRLh169Z7+/wuNm7ciBEjRmDJkiXYuHEjUlNTERMTg507dyIxMdGgLqgpaLVaZGRkwMPDAxMnTkRBQQGysrKQk5ODwsJClJSUQKXSJejm8/mQyWRQKpWws7ODs7Mz3N3d4ePjg8aNG8Pb2xtXrlzByZMncfXqVTx+/BgFBQXQarUG8yEWi+Ht7Y0OHTrA3NycG6eaEAgEaBG/FRlquRGtqMi4jdcnVsKm+1QIHb2gKdVVieDL/yybxjBAuK8d1g38cGHh/y787RhfeXk5ZDLZv4Xx7dy5E1988QWKi4shlUoRu+0mTt3NwturB2DWqD14ChtUPL2JgiNL4PjlavDklij5PRlCew8UHFoI626TOcann9zGJTcwfvx4AxWctbU1AgMD0aNHDwwYMIDL8v5XIJPJsHbtWq6YrB4qlQo+Pj4oLCzE48ePYWNjg44dO6KwsBA3b940aqegtAqhi34xKo6px4cYHwBQtQrP1wyGtsKwDJJUKkVFRYVBXTMigp2dHfLy8iCXyxEbGwt/f380adIE9evXR3l5OczNzXHx4kWEhoZybR08eBDR0dFgGAZarRb79u1D3759IRKJEBwcjGvXrqGsrKzW+mgXLlzAsmXLcO7cORQXF8PS0hIlJSXg8XjQarXg8/n46aefUFBQgLi4OJSXl+tSewW1QYFtUyi8m+vUejWKopK6CsQwqHh6E5L0C8hPvQmRSGTAzOrVq4fU1FRODWlnZwcPDw+wLIvr169zKc+ysnTVtevWrYucnByoVCqOYZw6dQpdunThSjJFRUXhxo0bEIvFCAoKQlhYGDZu3GhQm5LH4yEwMBDNmjVDUVERtm3bBpZlIRQKUVlZCR6PB6VSCWdnZ/j4+MDf3x/Tp08Hn8/nMvvPmTMHc+bM4VTV+irv9M8qEwMGDMDWrVsBAO3bt39vWj+RSITIyEhERkZi4cKFqKysxPPnz42+X1dXVzx79ozb36BBA8jlcjRv3hyJiYlYsGCBSab322+/Yd68eTh79qzBN9ewYUOMHz8eCoWCy4wEgEsz5uPjg8WLFxssThYvXoxvv/0WVVVVmDlzJr777rtan6s2LF++HBMnToSjoyNycnIgFothZWWFZ88+UJGjBmQyGRITExEbG2vyeF5eHm7fvo379+/jyZMnyMjIwMuXL7nSX5WVlZwKXCKRQKFQwMbGBk5OTlx1kvz8fI6p1lbmTCKRICYmBhk5Bcj0GwqVxpjm5m6Lg8yvI+SNO773mUR8FpentoWVmXFh5v8J/O0Yn35CNRrNv6VgrFKpxJAhQ/DNnIW1MoKXm8dAEdoPMu8/CbLJopgaNbJXD4K2opjro97O5OfnZ9TuX4GZmRlWrFiBoUOHcvtqMr0nT55wRWpXrVqF+Ph4kzkX151/isQzj/8lxqdVV+HNxR0ouW6YF3PIkCFITU3F06dPkZ6ejr59++LBgwfIzs5GWFgYTp8+bXLufHx84ObmZpDr1NHREQEBAThz5gyXT7G0tBQCgQAWFhbo1KkTtmzZ8v5B+yfu379GsyBLAAAgAElEQVSPxYsXIzk5mat1COjSU7148QJSqRRDhgzBvXIFyut3QqVa894CrQwAsYCHAKRj15zRAHTEwtfXF3fu3MHatWsxbNgw1K9fH0+fPuVW6u7u7lzu07y8PE5KB3SLhK1bt2LgwIF48+YNLCwsUFVVBaFQiEePHmH8+PHvtTvpFxlCoRBqtRpEhJiYGHTs2BHt27eHvb09d65Wq0WDBg2QlpaG8PBwHDt2zKCtH374wWgRJ5VKIZVKMW/ePCQkJCA3N9fkIlQikSAyMhK2LvXQqNtwPHz5FruTDiOseTB+SdoGNus6KoryuFyZptqwtbVFXl4e+Hy+QR/u3LmDOXPm4OTJkygvL+e+NbFYjBEjRmDFihXYvHkzFi5ciCdPnkChUKCqqgqVlZVgGAYikQiDBw/GkiVLjBah4eHhuHz5MsrLy+Hm5obdu3cjKCio1vE2Bf1iYNCgQdiyZQs6duyIU6dOffT17u7uaNWqFVda6q+gtLQUd+/exb179/Do0SNkZmbi+fPnyMvLw5s3b1BRUQGNRgOGYSAWiyESiVBcXGxSc9Ns8AwU1fnMuIK8VoNnS6OhbDkApXd/BmlUkHqGQNnmS4NySwAg5rOY0MELI8I+vWjufwX+drk69QSztqKPn4rY2Fhs2rQJ+289N3lcU1YEdeELCG1qd1DRQyQSYs2JW0hLS8M//vEP9OvXD0ql8i9XYTeFmklzgT+ZXlFRkQHTA4CYmBiUlZUhNzfXqJ1HucW1Mr2PBSsQwdrDz6jgaJMmTdCyZUsUFRXhzZs3uHTpEjIyMtCvXz+cPXu21gXLV199hV9//ZX7vWXLFrx69Qo8Hg9SqRRFRUUIDg4GoHPEyM/Px7Jlyz66vw0bNsTWrVsxd+5cg/3FxcVQKBTo0aMH3NrHoMwrHFUaei/TA3QGkAq1BpfK7eHabgBYlsWRI0eQnp4OjUaDiRMnQigUIi0tDe3bt8fChQuh1Wpx/vx5rg09ce/WTVdpnGVZDB48GHK5nFM7BQUFQSgU1ups4eDgAIZhOAYSHx8PhUIBR0dHMAyDiRMnYuDAgQZMDwCio6ORmZkJpVIJHx8fg2NZWVnYsGEDqqurYWdnx+0vLy9HQUEBRowYgZycHBAR5HI5ZDIZl7cTAJpF9IEiMg6nJWFIPPMYh+/lQOIRjBv5gCykD8wHrkCXhYchtPestYJ4Xl4eAJ2qdcyYMejduzeUSiUCAgJw9OhRlJeXQ6FQQCwWw8nJCc+ePePUtsOHD+cke5VKhcGDB3OqwilTpmDPnj1QKBTo0KEDtwgpLi7GmTNn8NNPPyE7Oxv29vZo1qwZ5wj3MUhNTcWvv/6KNm3aYMuWLXBxccHp06fx/ffff9T1gM4E86/SDH0NwlGjRmHFihU4fPgwbt26hezsbJSUlHCOUr///jvWrVuHkSNHmmyHZVkIbFxN0gpN2RtAW43y1EuwG7gIDkNWQvUqHW8v7zE6t7Jai0c5Jf/SM/078bdjfHpUVFT8W9qZO3cuKisrcfzSHeMVjaYaBUeWwqxROwisnD/YVlU1ITW3BIWFhTh79iwOHTqE169f/9v6CugYnz57vEqlgre3N4qKivD48WMDpgfopFm5XM6ppWqiuNJ0Bv9PRWmVxmi1PnnyZCxbtgwqlQpOTk6ch9qOHTsgFAohlUo524Srqyu8vb3RtGlT7N27F1VVVWjZsiW++uorjBo1Cl5eXjh69ChGjx6Nu3fvokOHDgB0RFGpVBo988ega9eu2LZtG5YtW4a4uDj4+fmBx+PhwoMs/Hj3LV4eXornq2Lw7PveeLE+FiV3jVfrb37bhayFXVCReQeMQATJZwPh26ITOnTowD1vWVkZNBoNEhISkJycjDlz5mDo0KFGDEifzBrQEXmRSITy8nKsXr0agC4ptlqtBsuycHZ2xtdff42EhASuWkBubi4aNGgAIkKrVq2wYMECAMDjx48hEAhMqtm+++47HDlyBGfOnEFpaSn8/XVFX1NTU9G0aVO4ubkhJSUFRISCggIAOgasT2JeE/oq8w8ePICNjQ3sQnvhpU9vnH1cAJWGjL4rViCCBiyuvqiA3YAFyDXzBJ/Px+TJk3Hv3j2sWLHC4Hwiwpo1a7B//35OndyoUSP89ttvCAsLg0qlgpWVFezs7HDw4EFOLc4wDBITE1FaWooffvgBZmZm4PP5mD17NgoLC7Fnzx5kZWXBx8cHPj4+iIqKgpWVFaKjo+Ho6Ij/x953h0Vxdm/fM9vZZelLX0C6iFJEQSxYgxILil3RGEVjQUXFEhW7McbYu7EkRhO7JmI3iS0qilFsWMGGSJe6LLvn+2PfHVl3bfny/n7xu777uuZSZmafeeaZmec855z7nHP27FmcPn0aDx8+hJOTExISEt5Y+QLQadAtW7ZESEgIunbtCoZh8PjxYwwZMgTjx49/78TPwcHBH2Qa/bsQCoUICgpCfHw85s+fD7lcDkA3x4SFheHgwYMoKyuDl3+gyd8z/9HqzEM7gi+zBs/MAuZhXVB539i1AgAvq0ybVP83wH/3Kf9O/FPCRCgUon379rh26y7g8uoBE2mR/+sigMeHdVvTqyFT2LZrH5bseuUbYFkWa9euxbVr11CnTh34+PggICAALi4uf8tUyzAMR/Dw8/NDSUmJSaGnR0BAAFJTU5GcnGywXy42/ehJqwH0G2l1FQRYHhiWZ/p8VbnRPjs7O7i7u+P06dPcvuzsbOTn5yMvLw95eXnIz89HYWEhioqKUFRUhJcvX6K0tBRmZma4dOkSbt68icrKSmRmZoJlWSxcuBDz5883MMUUFRVxphqhUAihUMhl4pdKpZBKpTA3N4eFhQXkcjmsrKxgY2MDa2tr2NnZwdPTEwqFAhMnTsSQIUNwhqkLhieEPLw7bNqPBsMXQF3wGM+3TYbQ3hMiBy8AgLooBxWZZ8CTWXN9qVLXoNIuBEAqAHB0eaFQiJSUFAwfPhxEhKlTp2LLli34888/ce3aNWRlZSE/P9/AlFc7HAJ45Zdyc3PDtGnT8NlnnwEAVqxYARcXF5w7dw49evQAAPzxxx8QCoV4+fIlXr58CZFIhCdPDK0Z+/fvx4wZM7B06VI8ePAAVVVVmDRpEgYMGMBZE+rUqYPu3bujZ8+eCA4OhlgsRmJiItatW2fwXIFX1hexWIyZ207iq8OZUL1X5R0GrEAM69aDUadhQ3z99Sx89dVXBqEKtWFmZga1Wg21Wo309HSD8mLFxcWws7NDXl4exGIxAgMD31mNIC4uDnFxcbh+/TpGjBiBkydPwszMDHPmzOFCXyIjIzntNykpCT/++CO++uork0SVzz//HEVFRbh27RqUSiVGjhyJkpISfPfdd2jXrh1iYmKQmZnJla16E1q0aPFBGuLfRWFhIdLT05GRkYHMzEzOx0tESEtLQ0xMDBiGQeup3wOwMvo9TywDz9xw3nnd+lMbcrHpMmn/G/goBR/DMNxD+iewfPlyhI5aDpmL7m8iQkHqMmjKi6HoPgMM7/2HyVZuhiq5HC9f6ggfWq0Wz549w969e/Hy5UtUVFRwkxyfz4dYLIZcLoe1tTUUCgWcnZ3h7u4OLy8v+Pv7IyAgwGCVra8X6Ovri5cvXyIzM/OtWs8nn3yCZcuWGe33c5BDxH9utBovOfsTSs6+KkNUfuM3WET2hmWzvkZtiHgMJiYNw033aqxcuZLT/Hx9fXHlyhWDcz08PDjzm6+vL0JCQtCuXTuEh4dzsX4AsGvXLvTs2RMCgQAtWrTA6dOnkZWVBVdXV+zevRs9evRA06ZNcerUKRw/fhw9evRAeXk5hg4dCqlUisLCQhQXF3MTf0FBAR49eoTKykpUVlZCpVKhuroaarWaiz0EANbMAi7D48GwLIR2brV6zoABg5qiHE7wFR5dDauogSg4spo7i8BA6t0IU2bNx7zpkw2ecUBAAG7evAmGYeDm5sbFmQE685pem9P3xdXVFaWlpaioqOBKJ61btw6jR49GQkICRo0ahfj4eHz55ZeYMGECNmzYgPT0dDg6OqKmpgZqtRoODg5o2LAhxGIxHj16hOfPn+PevXtYt24dfvjhBwgEAiQmJnIlffSlc/r164dNmzYZPBNAR9DSl7oyMzMzEs4AoLV0xcIjmSg4ttYkKxoAtOoqFJ3ciIrbZ0DaGgjtPODQbwHuWzSAnW9D5N8xZFKyLAsHBwc4OzsjPT0d48ePx7lz53DmzBkDS8OjR4/AMAwaNGgAc3NzPH361Kh/b0K9evUQGRmJS5cuoVevXpg7dy5mz56NuLg4LF26FLa2tkhISMDgwYMxevRojB07Fl999RW2bt2Kli1bAgBOnjyJLVu2YPfu3Rg3bhz4fD6WLFkClmVRXl6O/fv3w9PTE6GhoXjy5IlJzVmPqKgo1NTUoLi4GJaWlu99H7WRn59vINReJ8Do2dR6dqiVlRVEIpHRvMowDOTaMoj4NibNnbLANii9/CskdUIBHh8v0/bBzMvYJyrms/BzNP9b9/LfwEdHbgGMi7H+E/DtMgIqn7YAT4CCwytQ/eIh7HvNASuUGJxHNWoAhKdrh8Cmw2iIXesBPIHOv6JWofjMj3h5wZDscfjwYaNaey9evMD169eRmZmJBw8eIDs7m6tfV1xcjNLSUqhUKs5kIxQKIZVKUVRUBJZlwbIs+vfvj4CAAE6LdHNzM9Iis7Oz4e7ujvLycoOP7V2szveBtqYaT//D6tQTDPRB0ADg4uKC0tJS+Pj4YPHixfj999+Rnp6OzMxMPHv2DCUlJdBqtRCLxZyWGBAQgHXr1nH33L9/f46irg9xOHXqFCorK/Ho0SM4OzsjOjoaJ06cwIoVK7iwhndh5syZXAA4AFhH9oRF0z7QMjrNtuDIKpRnnADVqCC094R936/ACiUov30G5dd/gyJuGp6sGgSbDomQuOvMhG8i++ghkUhQU1ODmpoajiGp//zktRZLK1asgLW1NdavX4/ffvsNVlZWyM/PB8uyqK6uxsyZM7FmzRoUFxeDYRhER0fj7NmzsLCw4FiipqBfjcvlckydOhVdu3bFgAEDcObMGQQGBmLfvn1GwfwAMG3aNM4vumfPHpSUlGDQoEEgIvTr1w8NGzZEamoqbts1h9bOB6Vpe02yovmW9sj/5RuQVgPrtsPAimWofvEQIgcvkFaLirt/In/vfKPrN2vWDF27dkVKSgpevnwJsVjMEVVkMhnHfD169Cg3hoCuaG63bt2QnJwMLy+vt74P+iLOixYtglarxdKlS7FgwQK8ePEC4eHhWLZsGRo21AnvwsJC9OrVC8ePH0doaCi2bduGkJAQtG3bFosXL0adOnXw/fffo2/fV4vF6Oho/Pbbb5BKpXB2dkZGRsYb+1JaWgobGxsMHToUVlZWSExMNFjc5uXl4fLly9z88fDhQ+Tk5LxVqDk4OMDV1RVeXl4ICAhAgwYNUFpail27duHUqVO4c+eOwdjpx8Te3h6VWj7EPRdCbWKqIE0NCo+vQ/nNP8DwBZD6NYNVy8/A8IUG5/1/Vuc/AB6PhwsXLnAv4j+Bnb8cxvhTldCUF+Pp6kE6YVbLvGcdPQKygJZ4smoQNC8NHd3Ow74D39IeLGmRvawfnGzkePHiBZdBgYggkUgQEBCAjh07IiEhwcjP8ybU1NTgzp07uHnzJm7evImUlBSwLIuAgACUlJSgpKQElZWVXCYNHo8HsVgMc3NzTos8deoU2rdvj27dusHPzw8BAQGQy+VvjeN7J0iL8jvGE5WjoyNKSkrQokULHD58GESEli1b4uTJkyabefbsGU6ePIk///wTGRkZePDggcFq3cLCAi4uLrC2tsbp06fxxRdfYP369RCJRJg/fz5ncpo1axZmzJiBnj174scffzRpRtZqtZg4cSIWLVrECRylUomVK1fieLkz9v317LVb1ED19DaqHmXAIjwOVFONnM2jYd9zDviW9kaCDwCsS+7iympjJqz+Pagd3yaTyWBrawuZTIaKigo8ePAAgI7Orq8E/rpPiWVZ8Pl8CAQ6s1FFRYVB7N3r2XD0EAgEsLa2hkajwZUrV5CamoqxY8eipqYGYrHYIBRDj8LCQjRu3Bj37t2DRCKBVqvFtm3buPASOzs7LpTibQspPStaaKdEzpYkuIzYAlZkrPFQTTXWxSggZmoQExODoKAgXLhwARqNBgKBABEREcjOzkZWVhYA3TN/Pe6suroaS5YswcSJEw2q0fN4PPj6+mLs2LGIj483KF67evVqJCYmory83GA/ABw7dgzjx49HRkYG3NzcMHPmTMTHxwPQ+V67d++OO3fuQCgUoqCgAFFRUSgrK8Pt27eN7q9p06a4dOkStFotOnfujJ07dxqdk5iYiBUrVhgsjLy8vFBSUsIthuk/mWdqCzWlUglPT08EBAQgODgYvr6+Bt/AixcvsH37dhw5coSLESUiKBQKBAYGom3btlAqlejdu7dRnwAg9ttDuJL39kxWb8L/j+P7h8Dn8/H7778b2Pj/Cbj0ngW+WzDA/A3ODxEq7vyJvL3zALxKexUREYGjR4/i+++/x65du5Ceno6SkhLI5XIEBQWhW7duGDhwIOdYfhOqqqrg5+eHR48eITk5GV999ZXROYWFhbh+/Tpu376N+/fvc1qk3tfB5/OhUqk4GrOZqz9sus/mnNQfAq26Crk/TkL183tGxz7//HOsWLEC+/btQ+/evcHj8SCTyTBlyhSMHz/+rb7NCRMmYNmyZaiursakSZNgbm6Oy5cv49dff4VGozEIihaLxWjYsCHq1auHiIgICIVCDBgwAEqlEhcvXuTMRIWFhRg2bJjBRBMeHo7vv/8e3t7eAIBBW9Jw8rZp5l7B4RUQ2CpRU/ICrEgKy6a6ycGU4Ku4ewF5u2cbtcGyLHg8HkJDQzF06FD0798fPN6rhdWxY8fQoUMHSKVSTJkyhfPJHjlyBDExMTAzM4NIJMK6deuQnZ2NI0eO4Nq1a3j27JnRtf4OJBIJl05LLBZDrVZzadmsra3RsmVLrrJ8bURFRWHJkiU4V2iGJSfvGQk+TXkRnqwaBKdBy6B6dgcvL+6B2C0I5Td+A09mBYvIPlyYkFatwqdKoIW9Gn369OFCl9zd3VFWVsbFgKpUKjRo0ACXLl3CokWLMGbMGKN+8Xg8nDlzBi4uLli8eDG2bdtmEO8ok8kQHR2NlJQUtG3bFi1btsS2bdveOD7Z2dkYOXIkDh06BKlUioSEBMydOxfff/89EhISIJPJUFVVBbVajYyMDJPWqGfPnqFZs2Z49OgRampqUKdOHQgEAjx79gwqlYoLP6kNsViMLl26cJpacHAwvL293/oN1dTU4NChQ9i7dy/Onz+Phw8foqqqCjKZDF5eXmjatCm6d++Opk2bcu0UFRVhxIgRHMmqNtLS0pCvlWL0gYdQmYjlexckAh5+TghHfZe/Z7b9b+CjFHwCgQCHDx9G69at/9F2k+Ysxe5iFzAC8Qf/1pQgYBgGx44dM+pnfn4+1q9fj/379yMjIwMVFRWwsbFBWFgYevfujV69ehmsPPU+PX3M0xdffPFBwbWJiYnYuXMnN5HV1NTgwYMHuHHjBvZm5ONMuQJa9v39mKSuglnmEdz+db3RMZFIxJnkGjdujHPnziErKwvz58/Hpk2bIBQKMW7cOEyfPt3o462uroa5uTksLS2Rn5+PKVOmYPbs2fjrr78QEhKCvXv3IjY2FmfOnMGECRNw48YN1K9fH1lZWcjLy+PMX3oEBwcjJyeHu29Ax+jcvn07pFKpwbXH/HzFSOPToyB1GRiBCFWPr0NTWgD8p9/aipdgRWaQh8fBIjwOAFCWcRIFB00TE3g8HsdqlclksLS0hI2NDRQKBR4/foz09HQuC8fRo0chFotx//59eHl5oW3btvjtt984Dcba2holJSUwNzdHjx498MMPP+CPP/5A8+bNOT/NmzTAunXr4tdffwWfz0ebNm1gaWmJYcOG4erVqxCJRPjxxx85rdvDwwMymQy3b9+GWq2GSCQyCiViGAZe/eeg2qmBwX7S1ODFjhTwrRxhEz0SJed2oPjU97CI7A2LJj2genobL3bOhOOAxRDY6ljTZddPovjQUhARgoODcfnyZbAsi+7du8PJyQlLly5FWloaQkJCMH/+fEydOpWzLtT+ZqytrZGUlISpU6ca9OnkyZOYP38+zp49a0CQc3V1RWJiIkaMGAGJxNC9URtVVVX48ssvsX79epSXl4OIkJCQgKlTp8LT0xPV1dUQiUTw9vaGWq1GQUEBp6kBusWnVqvlTOz6ZzR58mR89tln8PT0xIoVKzBu3DjU1NRgxowZSElJeWN/AODWrVvYvn07Tp48iVu3bqGwsBB8Ph/Ozs4IDQ1FTEwM4uLiTC6uU1NTMWrUKM7a8Ppz1ce9njt3DiOW/ISDz0SoMmXzfAP+rbk6P0rBJxKJsGfPHsTExPyj7Wq1Wtg07gKbNkNQ8wGRHoxGjfxj61D21yGjY25ubti8eTOioqLe+PuHDx9i3bp1SE1NRWZmJqqrq+Hg4IAmTZqgV69eSEpKQkVFBe7evQt/f38MGjQI8+bNe+/+paWloXHjxlCr1QZaBgDcvn0bkQMnwbrVYFS/I3aNtFpAU43CE9+ZvFfglaarF0BEBJlMhn79+qFFixZITU3Fjh07wLIsRo4ciXnz5nFEioSEBGzduhWVlZWIiYlBRkYGsrOz0ahRI6hUKtjb2yM7OxuZmZnYtGkThg8fbjB51dTU4Pz581i4cCF++eUXk6tnPe29QYMGiIqKQps2beDk5ITFh69jzdnHqCgpRFX2VUi8GoHhC1GV9Rfy9s6DbadkiFz8gVqCJGfLWFi1HgxJnVCwQsk7fXx8Ph9ubm4IDAzkGIgvXrxAYWEhsrOzDVh1psbV3FxHDigpKQHDMFxA/88//4wePXpg0qRJ6NevH+rXr4+qqip4enri/v37Bu24u7sjOzsbXbp0wbZt2+Dh4YH+/fsjMDAQ8fHxEIlEqK6uhlAoxPHjx/H8+XP07duXS7RuY2ODCxcugM/ng8/nQyaT4cmTJ/jip2sGGjORFvkHFkKrqoCi2zQwPD5eXtyHot83Qzl+N+dGeLFzJsTuQZCHdQag05jdHx1GWloapFIpVCoV1q5dCwcHB3z66adYt24dBg8ezF0nPT0drVq1Asuy+P3337lEEQ0aNIC7uzv2799v8lkAOjOxm5sbysrKUF1dzQkjsViMyMhIzJkzB+Hh4Xjy5AlHFLl79y6ysrKQk5ODu3fvGj0ruVyOmpoaLhOR/r0PDQ2Fh4cHWJaFWq2Gu7u7gbY+adIkLgyFiBAQEIBbt27h+vXrBvGRL1++xK5du3Dw4EFcvnwZT58+RU1NDaytrVG3bl20atUKvXr1MorLrI2XL19i4sSJ2LRpk4FArqmpQdu2bbmwC/07plar0aJFC/Tr1w9f7ToLQaOeH5TA/98m9ICPNI7vn2Z16sGyLGJ85ag89yMkAh7ewsz9Tz8AEZ95o9ADALVajVatWnHVBEzBw8MD8+fPx9WrV1FVVYW//voLsbGxuHr1Krp3747Hjx/DzMwMSUlJUKvVb/TjvAlhYWHg8XgGGVGqq6sxZ84cBAQEoPDCfrTU/oWKu39CwDIQ8w1fC61aBSGPQcXdP5H305dvvFdbW1usWrUKKSkpcHFx4SaF8vJyrFmzBr1798YPP/wAlUqFyspKLFy4kMvA0rhxY2zYsAHV1dUICwtDjx498OjRI/z555+4dOkSli5dipMnT2LGjBkAdLkiq6qqOId8WVkZEhMT0bp1axw4cMBgQoqLi8OTJ0+wYcMGeHp6Ij09HZs2bcKAAQO4PJDjuzXVTQIMg9Irh/Bk5UA8XtILRb9thFXrITDzbgyeRA6ezIrbwLBgxbJXBCiGQXnGcZPjIhQKsXjxYtjb2yM1NRXfffcdrl+/DolEAmtray4Ho37B0KlTJ8yePRs7d+6EUChE69at0blzZzRo0IDz/ajVaqhUKnTt2hXV1dWYNWsW/Pz8uAm8qKIG8sZdYfNpEuy6TYPNp0kocw1HwqgkHD9+HBYWFsjLy0O9evUwfPhwALrQBCcnJzx+/BirVq1Cjx498Nlnn+Hu3buIiIjgQiP0/sf8/HyIxWL8svtV0HJtVrRd7BSOFS1QuBu/NK99ZNqqcly7dg08Ho8TWmZmZoiNjcWAAQMMhB6gS5aQm5vLVTf45ptvAOjCeEz52Wrjxo0bKCgowLfffouZM2eiS5cusLOzg0qlwokTJxAREQGGYeDq6oouXbrgm2++wdmzZ6HRaMDn88EwDNauXYtt27Zxz00qlWLevHm4ffs2PDw8sHr1amzZsgV2dnachUNPYquNAwcO1BoShotHfP78OUaNGoXg4GDIZDJYWFhgxIgRuHXrFlq1aoW9e/dymuXp06cxc+bMNwq9Y8eOoX79+rCwsMCaNWs4/y7DMOjQoQNyc3Nx9OhRLo5S/47x+XxUV1djyJAh6FLPBj8nhCPSTQYetEZzhZjPQsRn8Ulde/ycEP6vFHrAR6rxmZmZYf369QasqX8K+fn5UCgUWL/7CNLKrfBbZh4YwKAUB6NRAwyDTwKdMTzKCzERgUaxUizLQiqVorS0FMuXL8eGDRtw7do1NG/eHNu2bTNZIqQ2qqqquNImmzdvxo4dO/D7779zpVa8vb3Rrl07JCQkvBe71dPTExEREdi6dSvOnz+PXr16ITc3F1VVVRxLDgCeF5dj39Uc3M4pxcsqNf44dgjSmhKc3DAP7o62JtOfJSUl4dtvv4W3tzcePHiARYsWYfTo0bC0tERVVRVUKhU8PDygUChw6dIlmJmZoWvXroiMjMSPP/6Is2fPGpA49Cv92vv0Kbjq16/P0du3bNmCnj174tatW0bhE02aNMG+ffuQkZGBmJgYuLi4IC0tDQzDGFHEWTG47kcAACAASURBVJZFUlISjlV5oNjMlTNlfghIq0V0oCMufDMYV69eNThWm2QhFArB4/FQVVVlIJwZhoGvry8OHToEDw8PFBQUwNpaFyfo7u6O6OhoTJ48GQEBAbC1tcXz58+51bqlpSUeP34MKysrjBgxAna+DbHm1AOwLoG6BOC1fLhatU64V96/hJd/7kT187tG9yIQCLgMQbGxsbCzs0N2djauXr1qMkyAz+cjeuwi3BF5Q1WjfSMrmjQ1eLb+C0gDW8EiogdUzzLxYkcKHAd8C4GNKxiNGq3sKrFpYl8wDIOLFy+iYcOGsLa2hrOzM65du/bWZ/D1119j8uTJaNq0KTp16oSUlBR8//33uH79Ou7du4esrCw8f/4cBQUFnJanfyYymQw2NjYcUcTLywvl5eVITU3FnTt3uOcnEAjg5eWF27dvY82aNUhISECnTp1w/vx5XL9+HaNHj8aePXvA4/HQr18/REdHY/jw4SgoKMCYMWOwYMECBAYG4tatW0ap2DIzM7Fv3z4cO3YMGXezUOlQH0KFByRya1hJxajvZoMve7eGn4fLW8ehNsrKyjBt2jTONAvoEoJrtVpUVVUhNjYWa9eu5d41QBcT6eXlZZBGT/+u5uTkcBltzO0c0T15ETdXyMUC+DmaIy7E5V/D3nwTPkrBJ5VKsXz5cgwaNOi/0n5ERASqqqpw5coVFJSpsCv9icHDPbZzM26lbsKBndsQExODcePGGQScyuVylJaWwt7eHs+fPwfLsnj69Cnu3LmDgQMHIjs7G7Gxsdi8ebPJhNW1hd7du3cNJmpnZ2cEBwdDJBLh3LlzeP78OUQiEfz8/BATE4OhQ4earP8XHx+PM2fO4MGDBxgzZgxWrlzJfcy1X+zar8OtW7cQEBDAhY54eHhwjDo99ISZzp0749y5c0hMTMSsWbMQEhKCS5cuQSKRGJgjIyMj4e3tjR07dqC6uhr16tXDihUr0KxZM65KQ+/evbFq1SokJiZiy5YtmD59OhYuXAgvLy/UqVMHOTk5yMrKMplGimEYLimvra0tnJycYGtri61bt3Iffm1IpVJuMh8981ucFYdxtQk/BFp1FZxu7sDM0YMQFxfHLRBM+cT05BGNRgMHBwf4+vri1KlTBnFULVq0wHfffQdPT08uaffVq1fh6emJpk2bYuPGjeDxeKisrIRWq8WwYcNQXV2NvRn5kDWPB8MTvj3lmlYLraYaRW8xW79PVQW9FiOzdYTVgBWoKSt6Kyu6Oi8bBYeWQZ2XBb5cAcvm/WHm20Q3Vv+hvAf66BJ237p1C/7+/jA3N8fz58+5cBytVovs7Gykp6fjxo0buHPnDh49eoScnBy8ePHCgJYvEAhgbm4OGxsbODo6ws3NDT4+PlAoFBg2bBhOnTr1XiS54uJizJs3D5s2beIy2QCvqkps27aNY0TW1NRg7ty5WLZsGYqLixEVFYWgoCCsWrWKq+AhFovRrFkzXLp0CYWFhVx7Vl5BsG3eFzV2PuDxeAYhBGI+CwIQ5WuH4S280MDVcAFXU1ODXr16YcCAATA3N8fEiRO56iGALilBXl4eKisr0bNnT6xatcrI73fjxg2Eh4fDysoKzs7OOH/+PHdMJpOhtLQU69evR0JCAiIiInDu3Ll3jt2/ER+l4DM3N8fXX3/93jFbH4qLFy8iPDwcjx49gouL8eqqRYsWOHXqFMRiMfbu3QsAiI2N5cxVN27cQHp6OgYMGIA6derg7t27EIlEKC4uhlgsxo4dOzBy5EgUFRUhISEBS5cu5fxcFRUV8PX1hUqlwp07d4y0Ezc3N3Ts2JFLZ1VVVYXt27fj559/RlpaGgoLCyGVShEYGIjY2FgMHjwY1tbWSE1NRadOnThhFxcXZ5KlV1ZWxhE/oqKikJubi1u3bgHQ+U30q26BQIBdu3ahc+fOUCgUyMrKgpWVFZo1a4aLFy+isrLSYDVrbm6O5ORkbNq0CQ8fPkT79u0hlUoNmJYuLi6YMmUKpk+fjqKiItja2iI3NxcrVqxAYmIicnNzMX/+fKxevZoTpvqYRqlUiuTkZCiVSty7dw8PHz7Ew4cPcfXqVaP4pNqQSCRcMDsAyILaw7r15x9EcNJWV6HopGkB4urqiubNm6Nv374YM2YM7ty5wx3T58gsLCxEZmYmGIaBQqFAQUEBl6HHysoKEokEOTk5aNCgATp16oRZs2bhp59+Qv369ZGWloaFCxciMzMT1o06QRjeG+w/0Hc+n48ZM2YgOzsbqampePr0Kdc3Ozs7o/yvYrEYTj1SoHEI+FsaM7RaVN2/CLvMfZBIJEhLS4O9vT1yc3MREhKCkpISFBYWory8nNPURCIRp6nVFmo+Pj749ttvcf78eYwaNcpkAocOHTrg1q1bBoV43wfdu3fHoUOHcPjwYaSkpHAljAAdUcXLywtTp05Fnz59wLIs9u7di0mTJuHOnTuckKwNNzc3+Pv74+rVq6jTbgAKlC3+tv/s888/x+bNm/8znDqJKZFIEBQUhIyMDKhUKvTv3x/Lly83GUB/4MABdOvWDeHh4fjtt9/AsiyaNm2KP//8EwDQuHFjJCUlIT4+HiqVCsHBwUhPT/+g8fvX4H0L9/2bIJfLafHixf/VayiVSurSpYvJY66urgbFLQ8cOEA+Pj50/PhxioyMJJlMRoWFhXTx4kWSSCTk4uLCFYK8fPky187ixYtJKpWSRCKh2bNnU2lpKbm4uJCdnR0VFZku3Ojm5kbDhg17Y79LSkpo8eLF1KxZM65IqaWlJbVq1YoA0KlTp+jp06fE4/Fo6tSpFBYWxhUgBUCZmZlERJSXl0cMw1BqaioREWk0GnJwcCAA5O/vT46OjkREtGbNGgJAgYGBXIFVAFSnTh2D4ppCoZBKS0uJiGjv3r3k4OBgVAgUADk7O9Pu3bu5dgEQj8cjuVxuVJhVIpEQAJo8eTJXnFOj0dCaNWvI1taWO9fS0pKWLVtGGo2G5s2bx7X5+rX1myyoPbmO20XK5ANvLUCsTD5AruN2kSyovVEbLMtSaGgoubq6cv1kWZYbExsbG4PitQBo4MCB9Pnnn5NUKuUKier/D+gKHOv7zefzaevWrVRSUkJt27YlkaMPuU3YQ1Zth5LQwYvA4xsVErZuP4r4lo7ECMQk9ggh5xFbyG3Sr+Q+YS9JXf1NjoWVlRXFx8dzBZvr1avHFYnV95FlWZo5cyb99aiIvCb/8kFFnPWb67hdun6b6INAICC5XE6urq4UFhZGvXv3phkzZtDGjRvpjz/+oKdPnxoVZyXSFW0GdMWRKysrDb4RlmXfWtDZFPbv308Mw9DRo0eJiGjr1q3Esizdu3ePli5dSu7u7gbPlMfjkVgs5govm7o3GxsbKisroy3nHpDvBxbA9puWSj/8+ZDOnDljVOTXycmJunTpQlKplIRCIQ0fPtxgDF7H/PnziWEYGjJkCLfv8uXLxLIsJSUlkZOTE3Xv3t3gm5bJZB80fv8mfJSCz8rKihYsWPBfvca6deuIz+cbVSmuqakxqAxubm5OK1euNDiuVCrJ1dWV1Go15eTkkL29vUFV5JkzZ3LnazQamjBhAvH5fGIYhszNzamkpOSN/apTpw4NHjz4ve/j6dOnNGPGDAoNDeX6zOfzyczMjH766SdKS0sjABQVFUUWFhaUl5dHRES9e/cmBwcHItJVKg8KCiKRSERpaWlUVFREfD6fvvnmGyIiio2NNfqgzczMqH379hQXF8dNXgUFBQZ969+/v9HvHBwciGVZEolEJBQKuclLP3bt2rUjPz8/YhiG2rZtSwBIrVbT1atXKSIigptgeDwetW/fnp4+fUpERKWlpTR//nwKDAw0Ejj6rWHDhrR27Vpde4+LqNPXv5B78j5ym7D3tUl6N7mO30O2sZPfOFkDIB8fH4qPj6dp06bRxo0baePGjZSSkkISiYSEQiFZW1ubnBD1lc0XLVpEPB7PqBK9qTHr+u0hcp/0C9nFTiG7rl+SLLi9geCz7z2PWDMLcvx8JSkn7CVZcHsSudbjBLiyz2yTfXF1daXHjx+TSqWixMRETvD6+/sTy7JkY2NDrVu3JgsLC5JIJLpFQ9KuD5rAPZL3Ud+UNfTzzz+TpaWlkdBLTk6mfv36Udu2bSk4OJg8PDzI1taWzMzMDBYwLMuSWCwmKysrUiqVJBKJyMrKigQCAQkEAho9ejTt2rWLOnbsSNbW1u/9DRHphKVEIqH+/fsTke67NTc3p759+9Lhw4dpyJAhVK9ePYNFTu337E2CTyKRUFh0HPlNO/TWRYtt54m6KudCCQlsXMmu65e6Zzdut8l3UD8WSUlJpFar33pvffv2JZZladmyZdy+yspKksvl1KpVKyIiqqqqot27d5OXlxc3hzAMQ8+fP/+gcfy34KMUfDY2NjRr1qz/6jW0Wi1JpVKaPHmywf6ysjLy8vKiPn36EAC6ffu20W+LiorI3NycmjRpQkREKpWKgoODuQ+BZVkKCwuj8vJyIiIqLy8nR0dHEolExDAMOTs70+HDh032y8vLiz777LO/dU+dOnUie3t7AkBeXl7c6o3H45G9vT35+/uTRqMhlUpFAoGAli9fTqWlpeTm5kZyuZwePnzItTV+/HgSi8V0+fJl7mN/fVu0aBFptVqSyWScENu/fz/XxowZMwzO5/P5NHXqVBo7dqxRW82aNeOuI5VK6fjx41RaWkoASCQSGax09Sv5rKwsGjlyJLm6uhLDMGRmZkbe3t6cBl77uhcuXKCcnBxavHgxRUdHk6Ojo+5ZSeRkEd6NPPrMoOZTt9OQjWfo0wlLSGhuzZ1TexVce0LTa2k2NjYkkUiMBK5QKKQ6deqQQqEgPp9Pfn5+ZGZmZtSWXvC9LhT0m9jCjpTj9xhMlPImPQ0mT3mjWJKFxHB/O4/Yohuvoet1+ybsJYXSk1xcXN6oDQuFQvL312mGISEh3Lv8+nkfojF7JO+jH/589V4dOHDAqL0vv/zSpEZXGwUFBXT+/Hnatm0bzZs3j4YPH05OTk4kkUjI39+fe0devzc+n09SqZQUCgV5eXlRw4YNqX379jRw4ECaMmUKrV27lo4ePUoNGjQge3t7unPnDs2aNYucnJy4Nng8Hrm6ulLnzp1pzZo1Rgu8AwcOcONWe+PxeNSoUSNqP3cPuU/+9Y2LFucRmwksnxTdZ5By4i9kF5dCDF9ELqO2ktvEA+Tefy7Vr1+fPD09OQ3c39//nQJPpVJRaGgoCQQCOnbsmMGxiIgIsrGxMWqjpKSEANCMGTMoNjb2oxV8H2U4g77G1n8TDMNg4MCBWL16tcF+qVSKu3fv4scff4STkxMWLlxo9FtLS0tcuHABFy9exKBBgyAUCpGeno7u3bsD0PkmsrKyoFAocOTIEfj4+ECj0eDFixd48eIFAgMD0b59e/j7+xvZ0F+vx/ch+PTTT5Gbm4uBAwfi7t27qKqqgkAgQKNGjVBYWIhbt25BKBRCoVCAiODh4QE3NzeoVCo8fPgQ7u7uXFsLFiyASCTCnDlz0KlTJ4jFr/xKen+lvjTL7IVL0GHctwhM+AaDf7iERqNXYvXv93DwxCkAuvpjFy9ehIeHB+bMmYPFixcD0Pk/9DTx06dPczXu5HI52rRpw8W1VVdXY8CAASgoKMCuXbuwc+dO2NjYcIVE9WnPKisr8fjxY+Tk5MDKygrr1q2DlZUVampqEBkZCUdHR0ybNg05OTmv7iGmHUrO74ZPwZ/4Y3Yv9PPU4OA3Y7Fu+bdcbGZtX6ZQKMTRo0ehVqsRGxvLZfTQZ55RqVTIyMhAUlISqqurudyYfD4f5eXlEAgERgmi9f5HfRXx1yEPavdOEgoAGDqOdP9X5+lye/J4PPi064/nz5+/8f2qrq7m/L36XJO1Yzb1KPvrEHJ/nISKu38CGjUEr80yesp7QwcBnv0wAZUZr8r1zJw5k7t/d3d3MAyDhQsXQqFQGBXKrQ1ra2s0btwYvXv3xuTJk7Fy5UqMGTMGQqEQN2/eRFVVFZYuXQqtVguWZfHy5Us8ePAABw8exLfffovBgwejadOmXHzl6dOnsX79eiQmJqJdu3a4evUqcnNz4ePjg+nTp+PZs2cQiUSoU6cOmjRpgrCwMLi4uKCoqAhHjhzBxYsXuefVsWNHo1y9gK4E1aXrmbhXIQIRYObbBGY+EWAlhoQTTWkBWLEUEs+GuoxLXmFgBCLUFOcADAvGqR7uZD9Dbm4uZsyYAbVajZs3bxq9R7Xx4sULuLm54f79+7h16xbatGlj8AwuXryI06dPG7WxatUqyGQypKSkYM+ePQa1Gj8q/G9L3r8DR0dHSk5O/q9fp6ysjFiWpZ07d5o8Pnz4cFIoFG/8fWpqKjEMw5kEiYimTZtGgM6X1aFDBwJ0ZsHXzZv37t2jsLAwYhiGIiIiKCsri4iI/Pz8qE+fPn/rfrp27UoAOH/Nli1biM/nU01NDTk7O1NiYiIdPnyY+Hy+gRbn7+9PSUlJdOfOHYP2fvrpJ2JZlrKysigvL89Ig5u/bhsN+T6NfKamks9UQ/+Fcvwecpuwl7wGLqC6TdubNAfp/9ZrPK9rQ3qfolAopNDQUJJIJMQwDCmVSgoJCeFW5RYWFtSmTRsKDw83aE8gEJC7uzsFBgYSAOrQoQOp1Wrq1q0bp8VZWFgQAJLL5VRSUkJSqZQ6d+5MRDqtF6+t4vl8PkVFRdEvv/xCDMPQggULqGvXrsQwDH3++ecGmsvnn39OQqGQAgICqGPHjkREdOnSJc6MZGVlZVIDfH2z75JspE29rvEpes0hViInx0HLyXXcbpIFRRPAkG2nCa/MaR2TjNqOjo6mn3/+mdavX8+NBf6j6Q0cOJAaNmz41r41at6a+s/dQjYxSeQ1aBHZxCTRF8t2091HOVRUVEQTJkwgHo9HV65coSFDhhDLsvTdd9+RQCCgTz/9lADQiRMnqEuXLsQwDAUFBXHfwrtw5coVYhjGYJ9UKiWxWExyuZwuXLjA7ddoNHTu3DkaM2YMhYaGcv5x/XvQoEED2rp1K124cIH8/PzIwsKCRo8eTT169KCoqCgKDAwkpVJJVlZWJBaLjXx9pjTNnj170pQfThp9G68/O2XyfhK51iO7btNImbyf7Lp+STxzG86krBy3m3rN3PBOrViPtLQ0kkgk5OXlxfnd9Th//jyxLEsrVqww+dsGDRpQ27Zt3+s6/2Z8lKxOV1dXxMXFcZrBfxNt27ZFdna2ARtPj8ePH0OpVOLRo0dwdTVdqHbJkiVISkrCgQMH8OmnnwIAFi5ciOTkZK6yeEVFBfz8/HDmzBkjFueFCxfQv39/3Lt3DzExMbhz5w5CQkJM5tR7G65cuYLQ0FAuEH7WrFmoX78+bG1tcfLkSVhYWGD27NkQi8VcMHNERASGDx+O7du34/z588jLy4NEIkHdunXRsWNHDB06FFFRUZBKpbh8WVdORl8NwqLhp3CIHg6VRvtWhhpptSBNNcpObUHfxm548eIFduzY8cbzxWIxLCwskJubaxAfB+gYbGKxGEVFRVxKMLVajfz8fE6LUSqVGDRoEHr16gVfX1/ut2fOnEG7du0gEAhQVlZmUPcPAJdVv7i4GDk5OWBZFosWLcLEiRO53KdTpkzBN998A41Gg549eyI0NBTjxo3Dvn37oFar0bdvXygUCvzxxx/w8PBAcXEx/Pz8kJubC2tra650kr4yhUQiQdeuXbFnzx4UFxdzoRH6vJ96TdOu2zSYeTc26G/RqR+geZkP209fJcwuvfwrXl7aD62qEvKwTig5vwuKuOm6CiMwnWe0drmkfzPeVAeO/pMUQH8f+r/fNu3pz9dblvR5YfXWFpVKBbFYzGlDDMNw16/9fz00Gg0qKyuNEo7zeDwEDP4aJVa+BvtNPrurR1F0fB2ophoMTwDbLpMMyv/EBjljcc8gvAvbt29H//790aZNG6SmphqkDayoqIC9vT2aNm1qkOxCD61WC5FIhG3btnHWq48VH6Xgc3d3R0xMDFauXPlfv9bt27dRt25dXL9+HXXr1jU6bm9vj7i4uLf2JSEhAZs2bcJff/2FgIAAlJWVwcHBAeXl5XB0dMSxY8cQHR2N/Px87N69Gx06dDBq48CBAxg6dCieP38Od3d3ZGZmGmWSfxuUSiVcXV0hFApRWVmJo0ePwtLSkotjEgqF2L9/P/r06YPi4mJ0797dSABVVFTghx9+wI4dO5Ceno7i4mJIpVKuHt7XX38NuVwO9zb9oA2K/SBavVjAYnCIFSbERrzxHIZhOIq7RCKBSCTiSiC9Dn2+xNDQUJw4cQJ5eXnYv3+/SZOTHvn5+ahfvz5yc3NNTvYMwyAzM5NLbH3t2jWsX78eK1asAMuyXFWATp06YefOnUhOTkZRURG+++47HD58GJcvX8a8efNQUlLCCW29MJPL5SgvL0ejRo1w7tw5jB49GqtWrYJGo0HHjh2Rm5uLp0+f4smTJ1zaOb0wt+s0AWZ1Wxj01dTkWRvqwqfI2ZQI5xFbwBPrYkkrbvwGnP8eLMuioKAANTU14PF4aNeuHRYtWgQzMzOMHDkSBw8eNBAcMpnMZGIDQJc16NKlSzhy5Ah69OiB4uJi8Pl8jBw5klu4Xrp0CWFhYXB2dsaTJ0+4oq8+Pj4QCoW4ePEibt68CYVCAY1Gg927dyM5ORlqtRqTJ09Gv379uPyX+kTmRASNRoPIyEgMGTIETk5OmDZtGpcbs7q6mnsGlpaWGDduHAIDdYWo9W2tW7cOJ0+exLJly7ig7zFjxkChUGD8+PHQaDTcue/adu3ahb/++guAbjHh7OyMAQMG4LYiCmnPDLNQvf7sKrP+Qv6+BVD0nAWhgyeqn99D3q7ZUPSYCaG9zlTe2k+B7wYY18GrjWnTpmHu3LkYO3YsFi1aZHS8YcOGePToEZ49e2bSTPrrr7+iS5cuqK6u/ltFtP9V+F/TNf8v8KHMxv9b+Pj4UOvWrU0eGzRoEEftfxuaNm1KMpmMsrOzydHRkezt7SkyMpIYhiG5XE63b9+mvn37EsMwb703Z2dn4vP5JBKJaMqUKe9l3pgzZw7x+XzKz8+nr7/+mszNzSkpKYksLS25cwBwhJ2hQ4e+s00iXcjDggULDEgXtr6h5DrOmNXnPOw7EtcJJVYkJVZqSeYhMaRM3v9elHY9I1a/CQSCNzIzfXx8KCQkhBiGIScnJxKLxeTk5MSxO98FjUbDme+io6OpcePG3LX0DLfacHd3p8jISEpMTCSxWEwTJkwgkUhEPXr0IEAXDqA32ZqZmZG/vz8FBgYSwzDUqFEjjqADgAICAkij0dCoUaO4a3bv3p2aNGliwG6tvX3yySe04EA6eU46wJnFlOP3kDw8jqQBLUk5fg+3z/HzFaSc+As5f7GRRK71SB7RnRt7rym/0pBFP78izPyHlFNSUkInTpyg+vXrE8Mw5ObmRsnJyQToSEXx8fFvfBb6Z2dubs6xIPX7hUIh/f7771RWVkZyuZwjf82cOZMWLVpEFhYW5OXlRQMGDCBXV1ej0CKNRsOxTJVKJZ0/f547dv36dZo6dSo1adKE65ve1NixY0favHkzZ+K7ffs22dnZkUwmo7Nnz3JtnDlzhhiGoa1bt3L7lixZQjwej2M+fwjGjBnDme8dHBzok08+obi4OAoY/PU7zdSWLQeRxDvc4ByJdzhZthzE/T3mpytvfac7d+5MLMvSxo0bTZ4zZcoU4vF4Ru6M2ujQoQPVrVv3g+/934iPUvB5e3tTfHz8/9j1du/eTSzLGtnDiXS+OACUk5Pz1jY0Gg25uroSy7Jkb29PpaWlpFarOVq2QCCgw4cP065duzi2n6k2g4KCqGPHjjR9+nQSiURG4RSvIz8/n/h8Ps2ePZuIiHJzc3UCytaWEhISDPYBIA8Pjw8ZGiLSMb0EAgGNHz+ewidsNMnmE9cJJWm91qQcv4dcRv5AAjs3smqTYMTys42dbDR5isViA+amfnN2dqajR4+StbU1paSk0ObNm0mpVHJCT3+ek5PTG/20ptCiRQtycXEhlmXJ19eXAFCbNm2MztuwYQOxLEvjxo2jli1bGvgoRSIRF/c4YcIE8vDwIAcHBy48JiMjg+zs7Dg/Ze3Yvdr3qFAoKCoqiiIjI8nMzIyEQiE3FmPHjqXKykpq3i6GY3VaRPY2GieLyN7kOuYnEti5EyMQESu1JHl4nMHCw3X8HmIlcgMfnrW1NRdvGR4eThcvXiQi4nxvu3btIiIihUJhcD29z1S/devWjdLT0w3uz97enlavXk316tUje3t7UqvVtHz5cmIYhgYNGkS2trbk4OBAycnJtGHDBuLz+Sbj0O7fv8/FFYpEImJZlhiGIRsbG2rWrBn5+vqSj48P+fj4UMuWLU0+b7VaTTExMcQwDH355ZekUqnIwsKCoqOjuXNUKhWJxWIaM2bMe79HtdtfuXKlyYWBvHE3XcjMWxYt9n3m6/yzny0jt0m/kuPApcSKzUnRcxa5TfqVfKem0po/7pm8dmVlJQUEBJBIJKIzZ86YPOfUqVPEMAytX7/+rfdhYWFBKSkpH3z//0Z8lILP39+fevfu/T96TSsrK/riiy9MHrOxsaGxY8e+9felpaWkUCi4lb4e9+7dIx6PR3Xr1iWWZWnJkiWUm5tL3t7eJBQKjYJsQ0NDKSYmhoh0H+OQIUO4cIQ9e/YYXbdJkybk6upqsE9PXMnNzSUiopYtW3IfYkZGxrsHwwQmT55MYgs7qjPJNIWdb+NCiu4ptej1XUkWFG0cyPzaBKzfrK2tycXFhTw9PYmI6MSJE1zAsKWlJbVo0YKIdAuMNm3aGAi9Bg0aEMuy5ODgQFu2bHnnvYjFYlq+fDmdO3eOayc7O5tOnz5NEyZMoMjISIMAeWtra2rUqBF17NiRGIahgQMHkkQiIY1GQ8OGDSMej0f79+8nMzMzsrGxoSZNpyHhjwAAIABJREFUmhgF8NeOP9yxYweVl5eTlZUVt2A5evQo8fl8cnJyIj6fTzExMXTixAmSyWRkZWVFrVJ+IvfJHx44XnvBYWVlZTTunTp14t4TIl3MF5/PJ7lcTtOmTaMhQ4ZwGpy1tbWBwP7yyy8NhOHcuXNp3LhxBIDOnz9P8fHxJBQK6dGjR1z7n376KfH5fHJwcDBIVGFubk5jx46lEydO0PDhw6l+/frcYkEikZCbmxtJpVJiWZbGjBnDWULmzJlD5ubmxDDMW7UZIqK1a9dyyRLkcrlBDG/fvn1JLpe/l4WlsrKSNm/eTB07duSe85u0YpmtIyf43rRocZv0K1m1HapLPiCUEN/CnqxqaXs+U1Mpv7TKqB/Z2dlkY2NDtra29PjxY5N9LS0tJalUSp06dXrrPd2/f58AGIVqfKz4KAVfYGAgxcXF/Y9ec9q0aWRmZmbyxe/Xr5+RcKmN0tJScnBwIEdHR7p8+TLx+XwaOHAgd3zz5s0c66929oRhw4YRwzDUs2dP7rphYWHUvn17g/aLioqoc+fOxDAMeXl50blz54joVaaJK1cMzSByuZybmJs3b84F2/r5+f29wSFdlgeL8DhyHbfb5ORq/ckIkga0JNdxu8h5xGYS2CrJLnaKseAbt5vMG3U1EAh2dnZERHTx4kViGMYgq83OnTs5Qd67d2/y8vIikUhEx48fp8ePH1OnTp2Ix+ORubk5+fr6Eo/HI1tbW1q9erXJ+zh9+jQxDEP79u2jJk2aGExCDMOQQqGgZs2aUXBwMIlEIqMEB8HBwaRQKIjH45Gzs7OBgNOzSW1tbalXr17EsqyBpqdQKEgikXCTUGhoKH3yySdE9Cp+yt7enpydnalRo0acKZXH45FbSPO/nTXFbfweCmjW4Y3mSqVSSdOnT6fBgwcTy7J0/PhxatKkCZctRM9kFIlE5OPjwwlwkUhECoWCzp07R+Hh4ZwmBoDs7OwMMgPpodFoyMzMjPh8PgmFQurTpw+1atWKe8b6cY2JiaHly5cbmR0XL15MYrGYLC0taefOnXT+/HkCdKzM98GiRYs47fH06dNERPTw4UNiWZa2bdtm8jdFRUW0bNkyat26NXd/IpGI6tWrR/Hx8dS8efO3JiFoPeMncv87z23Sr+Q++Vca+kOayfdY34e3ZWxp0KABOTg4vFOgjxw58q0M9o8NH6XgCwoK4ijl/1NQq9UkEAhozZo1Rsdu3LjxxtVQbaGnN5Xqwxy+/vpr7rxevXqRWCymbdu2EZ/Pp6ZNm5JarabDhw+TRCIhZ2dnysrKovDwcGrXrp3JPmZnZ3N+w9DQUJJKpdS9e3eDczQaDfF4PJJIJFzar969dSvNgwcPfvC4bNy4kZRKpW5C7zjujR+o0+DVJLT3JDC6la+0XmtSTjQ9UdvEJHFZWWQyGZmZmXHXs7S0pAkTJhj04eDBgwYTyZAhQwwCbysrKykxMZGkUinx+Xxyc3MjHo9HlpaWNHfuXNq+fTsNGjSI6tevz/mC9P8KhULy9vam1q1bE8MwNG/ePHrx4gXxeDz67LPP6IsvvqCIiAhycHAwStGm1z4OHDhAQUFBJJfL6eDBgwbaHcuy5O7uTkVFRRQUFMRpBmvWrKGhQ4caLKj0E6qpyVMgEJBb634m/atv1fbG7TZIucbj8cjGxoYaNGhAbm5u5OzsTD169OBMskqlktauXUvNmjXjBDaPx6Nhw4YRy7I0YcIEAkB5eXncvTRp0oRyc3OpoKCAPvvsMwOBqtdEKisr6aeffqI+ffoYhHBIpVIKCwujsWPHEo/Ho7Vr177znaysrKRevXoRwzCcGXT79u3v/F1eXh4JhUL64osvqFOnTsQwDE2aNImCg4MNFoVPnz6lOXPmUJMmTUgul3P9DA0NpSlTptDt27dp+fLl3HehHwdTGrWVlRUJHbw/+LnpN79ph+jqY8P0huvXryeWZalr165vFWhJSUnE5/PpwYMH7xwbd3f3vx1G9W/ERyn4GjZsSB06dPgfv263bt3IxcXF5DFLS0ujLC8lJSVkb29vIPT0WLx4MTEMQ7/88gsR6QSSm5sbeXt70/Xr10kmk5GrqysVFRVRcXEx1a9fn/h8Pnl6er6RaKPHlStXuJir1q1bG5iqtmzZwk3qVlZW9PTpU1IqlcTj8d57HMrLy2nUqFFkZmbGmXGEQiGFjFlnenKdeIB4cjuybN6flOP3ksvobSTxakzyxl1Nnm/XbZqRpqU3wcbHx5OTk5NBf7799lsCdGnXZs2aRRKJhCQSCc2ZM8fgw8/Ly6O+ffuaJIpYWlpSTEwMSSQSSkhIIBsbG4qIiCBnZ2dq164dDRs2jNzd3Q1+IxKJyMXFhaKioigpKYkOHDjAjY1YLCahUEjTp08nIt3Cyc3NzYAIFBQURN7e3tSzZ0+uj7NmzeIE48KFC0kgEBARcSZFACb7rzd3u7fpr5tEPyDPqEQioZ49e5Kzs7NBm/b29sTn88nb25vzf7Vu3dogJs3aWpfBJjo6mgICAqhRo0ac1YJlWTp37hy30EhMTKSCggJOGOjvUy8YhEIheXl5kaurK6c5bdq0iRubbt26kbOzMxERVVdXv/Ud1Wq1dO/ePY5QExwc/FbNh0hnSXJzc+P+1vtwAdCAAQMoJCSEE8oWFhbUtGlTmj9/PueLf/DgAcXGxhpod5aWljRw4ECjbEG1N4VCQbN/+p38/mauztpITEwkhmFo2rRpb73XEydOEMMw72X6r6ysJIZhOB/v/wv4KAVfRETE/0oQ5dOnT4lhGM6UWBvdu3c3IIaUlJSQQqEgR0dHLjXZ6xgyZAjx+Xy6fv06ERHl5OSQUCikgQMHUlFRESmVSpLJZNxxPZvO2tr6remIbt68ya1W9YSaPn36UHl5OWfuA0AbNmwglUpFDMNwvrO34ebNm5z/TN+GnZ0dLViwgPLy8igscYXJD9Ql8UcCQK5jfn4l3Lp+SQJbpcnzFZ2MA8NrT/CALqj+k08+oTp16nBahz611f8h78vjoir3/z9nmRWGAYYdhn1TwAVFUEARcUFJRXCLVExU9OK+5L6UaWqlmWuZpqbX0lyTzPSayy3TTE0rNfcNERSVjGAc3r8/pvM0hxncbvd7r/f3eb3OC2bmnOc85znnPJ/ns73fJpMJ/fr1YziXbm5uzFLSaDQICwtD8+bNZQXuoigyi02KCVlbf0ajESkpKWjTpg1zV1ovKKzFbDbD2dkZYWFh0Gq1OHnyJGbMmIEWLVqwid4a6FmhUKBu3bos1nXq1CnZ5DlhwgSZhWBvXKTi/cTERHToNQhe2ZMZSIDMNTZ2C8MZDW2SKhtXvV7PwMwla8Xagh01ahQmTZoEIkJ0dLRsASAIAoYPHw5BEBAVFQWNRoP4+HgAlgVHdna23ThXaGgoAgICQGQBbJ42bRratm3LINFEUcS1a9fY+8FxHNLS0qBQKPDjjz/aHf+qqio4Ojqic+fO4Hkeer2eJQVZe1msZfr06RAEARcvXsThw4dRUFBgAzPWuHFjLFq0SAY2YTabsWzZMpli43keKSkp+PTTT9m1cRyHl156Cbm5ubI2vb292eJszTcX/wCqfrTLOvAPS89a6UmxbUEQHgu+XVZWBo1G88ThokWLFkGj0TzRvs+LPJeKLzk5GSkpKf+Rczds2FCWnCLJ0aNHwXEcysvLmdLz8fGpVelJkpycDEdHR+YmlRA/1q9fD5PJhOTkZIiiiPnz52PQoEEsgUClUtXqvgkJCUFsbCz7vGrVKhYLIiKEhIQgPDwcXbp0wbhx48BxHLp161ZrHzds2MAmamlCjo6Oxo4dO7BixQrUrVsXRJYMtdpifKLeE84t+sB/7FYYh6+HJiwB2rot7Mablnz1CxYtWsSSFdLS0lh5gD1rxx5WpvUkJPVbwlKcOXMm+vfvj6ZNm8LNzc0ugHB4eDg2bdoEhUIhi0MFBQUhPj4eoaGhUKvV2LNnj90x27Jli93+xMbGQqPRMAte+j4gIEBmkVy5ckX2u1arBc/zEAQBWVlZNhaxFHeU4mgTJkzA9dJ7yJ60FCE50xHRfx4MHUbCpWlXqJws1lRhYaGNMvLy8kJcXBy8vLzwwQcfgIhkDBHWSlayVqytUcmSJSL4+fnJ8FWtyxnUajWSk5Ph7+8PwDIZ5+XlySwqjuMQGRkJPz8/7N27V2Yta7VatiCsKQ8fPpT1x9XVFREREXjllVcgiiK8vb2xb98+ABaFsXz5cqZ4JdQcb29vhIeHQxAEFBcXIzMzExzHYfTo0QAsYYWsrCyZ9evj44M5c+bg/PnzLP7JcRx69OiBXbt2ISQkRLbQcHBwsMk2LpgyB95dpyB8UiEiaiC6REwqRMCYLQh8aQa+v1TKjrl37x5CQkKg1Wpl7C+1Sd26deHn5/fESC/x8fFITEx8on2fF3kuFV/Lli2RlJT0Hzn33r17wXGc3dW+TqfDhAkT4OHhAV9f38cqPeBPF6efnx+z4oYMGQJRFHH58mUAFsuwNhR/Kett/fr1OH78OObNmwdBEHDjxg3ZeXbu3CmbNBISEuDr6wudTgetVmsTN6usrMTYsWPZZCXFo9LT07Fjxw506NABSqUSHMexCdrB4GUDlixt3n0XQGWMttTxaZygjUyC35A1tvuO2YzRE6dh2rRpGDBgAPz9/fG3v/2Njb01HJS9MQkICECvXr3w+uuvo3379ggKCrKZuK03URSh1+uZ5Wg9ttJ1SRBvkuurqKgIZrMZ3bt3B8dxLPPS+p5K1rn1JqXHnzx5EqIoyibNr776ih3/zTffQBRFu67HmopfFEUYDAZwHIfGjRvLwIb//ve/s7GKiorCuHHjwPM8A9dWq9U27e3duxf3799nMT3JfR8VFcUUXc1n0NHRkZUS1FyQdOzYEdevX8e8efPA8zz27t2LgoICCILAxts6acRsNiMwMJAtZiIjI+1Cfmk0Ghloek2pyYwgUeiUlJSgXr16ICIZjZaUSLN161Y8fPgQ9+/fh0KhkN3bFStWyJ4L6Rq7du2KCxcu4PLlywgODma/denSBZs3b2YucpVKBZVKhc8//xwvvPACQkJCZMrnww8/ZIq6tPx3LN13DsPXH8PLHx7G8PXHsHTfOfTKG8QWF7du3cLZs2eh1+vh7e1dqwfCWgoKCqBQKGSZtI8TlUqF5cuXP/H+z4M8l4qvTZs2SEhI+I+d38vLy245Rfv27VnW2ZMoPUkkNoemTZuy72JiYmRukHfeeUf24tepUwczZswAz/PMbSeKInietymtkF5YlUqFvLw8DBkyhE0kPM9Dq9WypJ1Lly4hIyODWRfcH5xw+fn5GD58OJv4rOvPrDnnvLtNfayr5lFxJ48uE2XXKU3a0uRu/X29evWwefNmrF69ula2AAcHB8TGxmLUqFFYtWoVkpOTmSWxZs0arFq1CpMmTZLRJ9UsmLdWso6OjoiLi0OnTp1QUFDAcDibN28Ok8kEk8mEN954wy7uqHWpyJdffilbiFhPgtYJINZKz/qzXq9nVkNeXh7zGFRWVmL8+PHQ6/WysZAUooeHhyxBxjrRRhRFODo6YtOmTez3HTt2MA5DNzc3lsxR29aoUSN4enrC1dUVzs7OcHR0ZOfIysqC2WzG7t27IQgC1q5dyyws6xqyevXqoX79+tBqtTLuSyJi5+c47pGF5NLz7ejoiO7du7Mx5DgOCoUCRqNRtqiryX/ZoUMHlsV4/fp1dOnSxUb5Tpw4EYDFOpfoeogInTp1wt///nf4+fmB4zjExMQw9g3r+yT1v7q6GuPGjWOLkNDQ0FqvS8LDlYAvRFFEXFzcY5kYgD+T6tavX//YfSXZt28fOI57bEz1eZPnUvF16NABjRo1+o+df968eVAqlbKHraysjCWUlJaWPuJo+3L69GkoFApW5iABIlvX17z55pvs5ZJq9o4dO2YT99Hr9ayofcaMGbJSCWlVKKXHS1teXh5b1UurbT8/P/Tv3x8NGjRgE4a02tXpdEzRxsTE4K233gLP83j/012InPz5Mym+gNGbUCexrc1kGhkZieHDh7OYi1SkLv2uUqmYdVRQUICtW7di27ZtePHFF9nko1AoUKdOHYwYMQKFhYVo1KgRq6k8d+4ca9s6fiMBiltvgYGBSE1NRf369eHn5wcnJ6daaXxqfv/WW2/hp59+Ys+NxGP4+uuvQ6vVIiUlBTk5OY9ULNIWEhKC1atXs74WFRUhKyuL0ewMGDBA5hqUYuLLli2TtaPVatGxY0eUlJQw0lIiQo8ePZCWlsaUZ81sUp7nZc+jVKwvbdJzsmnTJiiVSri5ubHnJykpCUSWLOiSkhI2kYeEhODEiROIiIhAdHQ0nJ2dWbazdduSwrLHW3n79m3MmzdPtr/U97y8PBw/fpztu2vXLhBZFnE6nY4lepw4cYK5NSXrWBqrgoIC3L59G127dgXHcbIxbt++PVauXMk4JdPT09nCaPDgwbW++2PHjpUtUqQEHnvyyiuvyK5NqVQ+kcuypKQEarUaOTk5j93XWrKzs58o/v+8yXOp+Dp37owGDRr8x85vNpuhVqsxY8YMABal5+7uDj8/P2i12mcmyf3888/B8zwLwB88eBA8z8uQWSRrxNvbm60Y79+/L1vBS+4YKS6xePFidOjQAWFhYawd6aW3TrKQtpiYGLRo0YJxyEnWnLQ6l3jEli9fzibxH374ARzHwWw2Y803F586Q804ciP8UnoiNTUVqamp4DhO5kaVNjc3N7Rs2RLNmzeHQqGAq6srHB0dceDAAajVapkykMRkMuHjjz9Gx44dmcWqVqsRERHBsgeJSBYXBSwQVU5OTvjqq69kEz7HcejYsSNu3brF9t23b59s8pIsE+vUfFEUITg4wym+C9xeGA3PrtPg/sJoOMV3gTHUPgO6vc3V1RVarRaFhYX4+uuv0bhxY8bjuHjxYpjNZkybNk02dhzHMfeWpJQ1Gg0DZbh+/Tpeeuklu+dTq9V4++23sXfvXvadhIIiLZCCg4PRqVMnNG3alC2IrNtITU3Ftm3bsGrVKhYDVKlU6NKlC9q1a8dAADiOYwXpRITRo0fjzJkz6NatG1vsSFagn58f5i/5AFmTliIidxa8u0+HIWMkXBO7Q+HoglGjRuH8+fMALKAN1nBdDx48gIODA7Kzs2EymZCbmwue5xEUFCRjJpFcyNZwZpcvX2aIPkQWr8KcOXPg7u7OyghOnTqFgIAAqNVqm1rFmnLq1Cl06tSJPSN6vb7WfQsKCmTx1Ue5e60lPDwcAQEBTxzXk8RgMGDkyJFPdczzIM+l4uvatSuio6P/o32QYJWsld6DBw/Qrl27fwnPbv78+eA4jhG2Tp8+HTzPMzfZ0KFD0aFDBwQHB0Or1eLYsWO4dOmSbJKxtobeffddmM1mqFQqvPvuuwCAGzdu2LisOI6TreprEqcqlUq0aNECGzdutPvyTJ48WcZqveabi4iYVPhYMtIAq7R6yUKSmLPVajW6d+8OpVIJR0dHqNVqKBQKdO/eHVevXgXP89i2bRsyMjLAcRz0ej1jyH6UPHjwAMuWLUOrVq1sxiEmJobFVocMGQKj0YiWLVvCaDSipKQEPXv2lFlyKSkpMqQY602qNd2xYwecQ+qj+cSP/qBo2iF38TJG9wlQetkuRGpuzZs3l7k+Y2JiWLG1JCdPnsTChQuh1WoRGxvL4lCAhZqH4zhER0fb3Hfpf+neT5w4kVl3MTEx0Ol0cHJyYqU4Us2oBJTg6OiIqVOnwmw2s9iq9XMkiiKrf2vWrJksJpaUlIS1a9fKnl+NRsMAGM6cOQMXFxckJiYisFELuHeZCP/Rm2wSqsIn7UDohM8wYM0RHL9icWEGBgaiX79+AIC7d+/C2dkZBoOBPctr166VLYIEQcCUKVNkXp3Lly/LMj1TU1NZcpj0LNy7dw8bNmyAQqGQuTYfJyNHjoROp8P06dNtACokMZlMiIiIAMdxyM7OhlqtfiJF1r9/fyiVysfCKtaUoqIiEFGtqC/PszyXiu/FF1/8l1BG/gopKytjfnaj0cgy8nbv3g2e520QPZ5GpDIHSdklJSXB1TsAC/ecQe57XyFz3hcY+vfvEZvzChSOLsjJyQHP8ygsLMSAAQNkk6TBYMDChQshiiL27NnDYmE1N6kWr6aVkJaWZsPObE/i4uIQGBiIF154AYGBgVAqlVB6hcI9cwKMozfBf7R8cjL+Mdl7dZ3CgKl5nkdoaChWrVqFqqoqzJkzBzzPo2PHjjCbzTCbzVi4cCG8vb1Z7LFhw4YALJmrHMdBqVQ+MYiwlEjh7u4OQRBk1q/knpNg5qwVi8lkwoQJE2TZpPZS9d3d3ZkFHDGp8LGQYta1dfbuUU3Xac04olKphLOzMwICAtCoUSNkZGRAoVCgVatWyM7ORsOGDWWcelLZRqdOnaDVatG4cWOYzWbEx8eza2rXrh1ee+012fXt3LkTffv2lSHRuLi4sCzRiooK5mLneR4mkwkbNmxAs2bNbK6hUaNGePPNNxEeHm43WUmyqCIiIpgb1r1ZFwSO2fz4tP/xf6b9t27dGnFxcQyHk4iQnp6O9PR0WbKUIAho1qwZ3N3doVAoMG3aNFy+fJmFAYgIycnJmD59OiuD6dOnD7p27QoiYoqpNnjD2kTi96tNbt++DT8/P+h0Ovz000/M61QzsaqmSOhNn3766VP1B7DAELq4uDz1cc+DPJe0RH379qV//vOfdjny/q/k7t275O7uTkRE5eXlMgZyjUZDc+bMoSFDhjxz+82bN6fvv/+ePv/2J1r93U3adeq6hedLULB91CJPVSYTlZ/9llp6VtGqt18lR0dHxooNgJRKJeMgq6qqIrVaTb///jvjfKusrJSdVxRFSk1NpZSUFJo3bx6VlZXRgAED6J133mFUJadOnaLNmzfT/v376eeff6bi4mJGYaPX60kQBKqsrKTy8nICQKKDM2mjU8kYHU+Orh50/vQpSo2NoK9WzqZbV86TRqOhqqoqGfN3fHw8HTlyhObMmUOjRo2yGZ/du3dTbm4uXb9+nYKCgmjOnDn0448/0vTp00mhUNC6desoKyvrkWP88ssv07p16ygqKorUajX985//JCKiV199lV5//XWqqqpi+3p6elKzZs0oJyeHfHx8qFu3bnTz5k1q27Yt7du3T0bLo1KpaPTo0fT+++9Tsz7j6LQ6kipMT85pB9PvdGfPB/T7qS8pKSmJ9u3bJ6MB4jiOSktLydXVle7fv0+pqal07Ngx6tWrFwUFBdGePXvozJkzVFZWJmOHtxaFQkEmk4l0Oh2Vl5eTXq+nkSNH0s8//0zr16+nwMBAKi0tpd9++4169epF69atI5PJRA0aNKBjx44REZFer2f3uE+fPvTLL79QZWUlzZ49m1q3bk3z589n49CnTx8islD+bN26lQYOHEglJSXseoiIAFBMTAxjd7cWJycneuedd4hCk2n2rrNPNZ4aBU9RpjO0/4OZ5ObmxljkJfHw8KA333yTDh06RB9++CHdvXuXFAoFjRgxgubPn8/2a9q0KSUnJ9PixYupqqqK+vbtS/Pnzye1Wk03b96kevXqUUlJCfn6+tIPP/xArq6uT9S/TZs2UdeuXen+/fvk4OBg8/upU6coISGB3Nzc6Pjx44yzc9CgQbR+/fpaqblu3bpFRqORcnJyaMWKFU86XEwiIyMpMjKStmzZ8tTH/tfLf07nPrv079//mVgE/iopKyuDwWBgWWI1IX+k5Id/RcxmMwJa5cB/9KdPAD68HcZRlhiZXq/HkiVLcObMGdnqnqysArJjPcTHx9sUBJvNZgwbNgwKhYJZWNYoGw4ODjKXqFKphNFoRGpqKtq3b89W8CdOnIBKpcK4ceMwevRoODg4wGw2o2nTpsyysF7tS1iitaHJW/dPFEUG8C25LXNzc20wTmuKtBLeunUrlEqlDCFEaluK9ahUKjRr1gyhoaGsn0qlEl27dsWePXtk4MzS5uzsjJ1HfkbouC1wqNcagpM7OKUGCo8geHSdhoBxn8Gr15tQBzYAr3a0lHhEJMK3YDVL9HEw1rGxglQqFZRKJerXrw+z2Yxdu3YhPz9f5vpUq9WIiopi9XU//PADuy4Ju/Kdd95hJSpEloxH69iWtNU8v9FoxPjx47FixQpoNBpm9f7www8QBAHvvfceVCoVevToAcACkm6v7nXBggVwdHTE6NGj4e7uXqtbV0oe4TgO4QmtETJ2c63jGTDuM7h1egWiwc/ym8EI9y4TETDuM4SO326X8koqpbh58yYEQcDixYtx+fJlVvJAROw9kpKkhg0bJvPoSIwq4eHhOHnyJIvtPSkEYN26dWutS960aRMEQUCLFi1snuUHDx5AEASbZ1d6foODg585McVkMoHn+Sfy9jyP8lwqvr/97W+s8PX/Wu7cuQODwQB/f39UVFQgKCjIBj5t27ZtzMXzrCK5x54qQWTURgS16c1cVY+bxEJDQ+Hs7Ay1Ws1wQYcOHYomTZrIstWkpBbps4RkkpqaijFjxuCNN94Az/Os72vXrmWTqFKpxPbt2zFr1iyWUDFu3DgAkBX01tyeNGifkpKCevXq4f79+2yiF0URaWlpUKvV8Pb2ZnV4kpSWlkKlUiE3N5e552reK7PZDCILWsfQoUOZgnBycsKCBQvQt29fxg5Rc4xVKhVEUURU/jvwH7UR+sSe8M3/AP6vbIN79hRwSg188z+AR9dpcOs8DsYRn8A4aiMcYtKgDoplbk+Josn6XkjKz/pe+Pn5ISMjA1OmTGFA1zt27IDJZAIRyUprPvroI6jValRUVLBYX3JyMisXkcpaysvLsWXLFlm9nXRevV5fKz+gIAhQq9Xo3Lkzhg8fjj59+kAQBBQVFaG8vBzLli1Deno6WywolUpERERg4MCBmDVrlt02vby8MGnSJITmzobf8E9qHU/fv30I4kV+c+7CAAAgAElEQVR4dJ0G/1e2wz17KjhRBb8hH9VKeSUxnSQlJcHX1xf169dnvzVs2BB5eXkMgNvFxQU8zyM3Nxcmkwlmsxm9e/cGx3EyDkuz2YxevXqB4zjk5+c/8vm9dOkSi4/WFMld/Ci3aWZmpt0s0D59+kClUskSsJ5G1qxZw+Dy/hfluVR8I0aMeGTK779Lbt++DYPBIEPZWLNmDQRBsMEBVCqVj+W3qk2OXylD5OTP4dJ6oGWVKogyYkr/MZuhjWgGwcmSoejZc6ZM+dlb2VpvmZmZ+OSTT5CXl2eDemJtfVlbcGPGjMGmTZvw4osvgud5+Pr6smy14cOHw8vLC4AlcUAURRb/USgUePPNNwH8mVQhKRnrAmIfHx9wHIf27S0sAbUxYdSUL7/8EhzHsfH38fFhMRqpcFkQBJbYAwCRkZEswy09Pd1uMlJBQQGICNOmTWMA1BKItbe3N7Zs2QIAWLJkid0xHjh0NMIm7rC7QFG4B8Kt83ib771y54NTamTF/KKDs03bgiAw/rhdu3bJ+m02m/Hiiy+y2B2R/BUfM2YMPD09ERwcDFdXVygUClZeMGnSJJtxkMiJpa1x48ZwcHBA586dWRvSfZRixCkpKYiJibEB7rZ+xqTs5ObNmyM/Px+zZ8/G1q1bZTFmCQqNiOATHFEr5ZU0nl693wKv1ct+4zVO8Oo11/Ju/EF5FRYWhvfffx8nT57EnTt38Mknn8j6Fx0djZycHObVkJJ1AEss2dHRERqNBgaDASqViuHt1pQNGzYwkPPa4s6ZmZl2F/ESe8ejuDYBi6Va8znYsGEDSz56VklJSfmPloz9u+W5VHzjxo1jE+3/ldy+fRuurq420FKAheanZspvUlISGjdu/Ezn6r/6CALHfwb3zAlw7zIRjg3TbRSfS6v+8MyZDcHBRab4AsZtt7uylSbM2pShh4cHU3CFhYWPBPQtKSlBu3btWCF43bp1ZUStv/zyiwySSyK8lbL8Tp48ie+++w5ElqJmyaKRUGh2794NIkJwcPATjZeDgwMrLWnVqhVzrW3dupXR5BBZCt7/9re/QaFQMEZ2nU7HjrW+PuuxatOmDasZu337NssitXbRqdVqpKWlYe7cuViwYAFyZ69FqB0Xtd+QNSBBAZ/+S2x+c2nVH0qfCFkCkEuzrnYVB/Ano4e9zMHPPvuMWWinT59m32dkZECtVsPJyQklJSWMbd7b29sGlqqiooIpNQl6S7J6BUFgFraEQUpkYYyPj49nik2n08HBwQG+vr44cOAAtm/fjjfffBODBw9m7OkSeLf1Qsjagm7RogXq9xhtFw7Pejz9x26FyhgN96zJ8B+7Fe5dJkLQGWAcuZGNZ3L/6WjdujUEQYCjo6PsHtapUwfZ2dlQKBRwcnLCrFmz7C6+Nm7cyCx9o9GII0dsaYEkKSoqQlBQEFQqFcvUlkRifLFWbpWVlWjYsCGUSmWtcHg1JSkpCXXq1AFgKUtRKBSPtTQfJ1qtFm+//fa/1MZ/szyXyS1TpkyhpUuX0q1bt/5Pznfnzh0KCwsjnU5Hp0+fliWyEBGNGjWKli9fTvfu3WPfffLJJ5STk0OVlZXE8/wTn6v010pKnP0Pqnz4Z/C+bP8aMt8vJbeMETb7X1vUh9wyRpE6oB77Dg+r6NqiXKquuG+zv1KpJJ7nqaqqisaOHUvLly+n+/fv05QpU2jixIlP3E8iovPnz1PPnj3pyJEjZDQa6cCBAxQQEEBERK6urpSXl0f5+fkkiiJ98cUXNGjQIKpXrx49ePCAvLy8qLi4mH777TcqLS2liooK2rt3L6WkpBAR0YwZM2jy5MmUkZFB27dvf2Q/unTpQidOnKDz58/TtGnT6N1336Xbt2+z30+dOkV9+vSh77//noiI2rZtS4WFhfTTTz9RTEwM3bt3j5ycnIjIknwRFBREV65cISKizz77jBo0aEBVVVVUWVnJ/q5evZoWLlzIzsHzPPE8T7GxseTp6UmHuAjS1k2R9RPmh3Trk6kkuniToV2B7LeqWxepeN14cs+aRGpjNPv+15P/oHtfLKCHDx/K9s/IyCAAtGfPHuJ5npo1a0bV1dVUXV1NZrOZqqur6caNG3Tx4kUiIvLx8SEPDw86ceIEAaDw8HAqKytjCSZ6vZ7u3btH/v7+LDFKSm4hIpYUpVQqWdIPz/NUXW2bZMLzPCkUChJFkTiOI5PJRJWVlaTRaCzj8MeU8/vvvxPP8yxpiohkCUWS6HQ6Spu8hr6/I8q+tzee5Sd2Udnu9wgPq4gTFOTWeRxpQ+PYMZqbJ2nntJ6UmZnJknSILM/r3bt3Sa/X09SpU2nYsGE2/aiurqZ+/frRqlWrKC8vj1599VXKysqib775htLS0uiTTz5hiSe1Hffyyy/T8uXLiYho5syZ9Nprr9GDBw+I53m6efMm1a9fn0wmEx09epSCgoJs2rInP/74I8XExNCxY8eoY8eOpNVqbRJ4nkaOHz9OsbGx9Ouvv5JWq33mdv6b5blUfK+//jrNmzePSktL/+3nKi0tpYiIiFqVHpHlBXZ0dKQPP/yQXnrpJSKyPOxqtZpWrlxJOTk5T3y+pfvO07zdZ/8lxUcPq+jXQx/T7YMf2+xfXl5ORETDhg2jFStWEMdx5OvrSwaDgRYvXkwVFRVUUVFBv/32G/3+++9UUVFBlZWV7K/1VlVVRb/99ht99NFHpNVq6bfffiN3d3cKCgqiw4cPU0JCAhERmc1m+v7778nR0ZE8PT1l2biiKJKHhweVlpaS2Wwmg8HAJvB79+6R2WwmpVJJSqWSqqurCRYvBduk9s1mMwmCQABYVqu1/F8/5u5Zk0kbFm91/moq3TaXqit/I4+sycQJf07iprIbVLx2HDmn5JJjdKqsnd9++ZZKPn3t39ZPSclZf5bGUcqytVZgjxLpGeB5nnQ6HXEcx+5DWVkZ6XQ6UqvVxPM8cRxHd+7cIQDk6elJHMcRz/N0+fJlWZsKhYJeeOEFUrQaQoeuPmDf2xvPikvHqXTLbPLo/iopvUKo6uY5Ktn4Gnl0m05Kz2AiIqo4d5hubXyViIgCAwPp8uXLBIAp8dDQUJo2bZrNO3vr1i1q2rQpXb9+nT755BPq2LEj++2rr76iF198kUpKSmjUqFE0c+ZMu4vdzZs3U48ePchoNNLXX39N9erVo7Zt29KqVavoyJEj1KJFCzIajXTs2LGnVjjR0dFUXFxMv/76K12/fv2JM0rtSW5uLv3jH/9gi7//RREfv8t/nyiVSlnq+79LJKXn5OREZ86cIaVSaXc/tVpNbdu2palTpzLFJ63+Fy1a9FSK7/TN+zKl90wiKon0vnZ/0ul0ss8A6Nq1a3Tt2jVKTEx85lNKlkFJSQmzIr799lvZecrLy2Vp/xzHUXV1NdvfbDbT3bt3mfWkVqvpt99+o6qqKhJFkZRKJZsgpQla+nvjxg3SarXk5uZGFy9eJH9/f3J0dCRBEEgQBDpz5gyZTCZq0qQJ3bp1i3755RfWDzc3N3r48CHdvXuXBEEgg8FAUVFRdPDgQRo2bBiJokiCIJAoinTs2DHatm0bpaWlUXp6Oh06dIg2bNhgMx7VldaTNOh24QIyP7hLHl2nyZTew3u3qPjvk0if2MNG6RERkanC5itRFOntt99m5TKbN2+mrKws+vTTTykzM5PtN2TIENq6dStduXKFWrduTbt37yYioqSkJPrnP/9JS5cupQEDBtD9+/fJxcWFcnNzafXq1fTgwQNq164d7d+/n3Q6HTk7O9PVq1fZPQPAlJx12cz7779PiYmJFBYWRllZWfTBBx+wvjRp0oSUSiUdPHiQfTds2DDauHEja/vSpUs2Vo7JZKKtW7dSUvgLROT+yPGsKr5AKmMUqbzDiIhI5R1OSp8Iqrh0nCk+c8Wv5OXlRWFhYXTgwAHiOI5WrlxJubm59Msvv9DQoUOpT58+NGjQIOrbty/NmjWLvvjiC+rRowf5+/vTlStXyMPDQ9bHlJQUunHjBs2ZM4emTJlC7733Hq1cuZI6deok2y8zM5OuXr1KzZo1Iz8/PzKZTPTWW2/RRx99RH369KF27drR9u3bn8pDJEnHjh1p1qxZtHbt2n9J6RER7dq1S6bY/xfl6Uf4v0DUarVdF8tfKaWlpRQeHk56vf6RSk+ShQsX0sWLF+n48ePsu0GDBtF33333VH29//vDx+/0BKLSOZMgCLLvBEGgc+fOUVFREd2+fZu5A8PCLBPF/PnzbSyqx239+vUjf39/2XdarZZZaePHjyd/f39q27YtmUwmSktLIyLLBDpixAgym81UVVVFVVVVFBcXRxEREVRRUUEPHjygX3/9lR4+fEgajYYqKirozJkzdOfOHSotLaWSkhK6efMmFRUV0bVr16hfv36k1WrpwoULZDAYqFevXnTq1Ck6ceIEtW/fniorK+n06dN08OBBOnv2LB06dIiNS2lpKd29e5c8PDyourqajh07Rg0bNiR3d3eaO3cuzZo1i2bMmEHe3t60fft2mjp1KqWmptKUKVOY0gsPD6eGDRuyNk0ll4irttzLO18sItPtq+SRPYV4hYrt87C8lIr/PoF0jTJI17C97T0UeWodF8VchOy4hw9p2LBh5OHhQY0bN6atW7dSs2bNqHv37lRUVMT2u3XrFjk5OVHfvn1p7969tG/fPiIiOnjwIDVu3Jjy8vKIyFIj16FDB9q8eTMBIGdnZ9q7dy+ZzWZydHSk5s2bU2FhIZnNZtq8eTMREZtcAZCLiwsZjUYqLCykgIAA2rRpE61cuVKm+AYNGkSHDx+m6upqKi8vpw0bNtCPP/5IRUVF5OHhQTzP1+raGz58OHVq0ZhUIv/I8VR5h1HltZ+oqvgCERFV3TxPlVd/JKVHIBERVZsqqarkEt28eZMp4GXLllFubi57Dz7//HP69ddfKT8/n1avXk0ODg7UpUsX6tChA/3yyy82Ss9axo4dS3fv3qVWrVpRZmYm1a9fn7maJfHw8KBz586RXq8nIqKWLVtSr169aNSoUbRjx45nUnpXrlyhuXPnkqOjI338sa2X52nk/v37VFRURCNG2HqX/qfk3xY9/DfK0qVLGc3Iv0NKSkrg4uKCoKCgp0JgiYqKQnJyMvtsNpshCAI2btz4xG10mbvVJoDv1Ky7LLnFehN0hhrJLZbN0GGk3SQWpVKJyZMn49ixYzh9+jQ4jgMAVrKQnp7+VGUY0dHRMiDt06dPg4hw8+ZNTJ06lWX1jRkzBr6+vlCpVOA4DrNnz4YgCLhz5w47VgIHtgYSBiyA2hIqS22ZnlevXgUR4ZdffkF8fDzDkvzmm29kafqSdO7cmSGL0B9p7dL/Pj4+aNiwIWJiYtj+ixYtApGFp8+a42/kyJH2KaO0eviP3gTfQSss3wkKcAo12wwvjII+yZIxaf09p1BbQW8VorT8d9y7d0/GwSdRAI0ePRrt2rVDcHCwjHpJr9cjKioK7u7u0Ol0DNVn+PDhICIMGTIEGo0GTk5OSExMhJubGztWSkrheR5ZWVk245yTkyOD9pK2Fi1aICIigu03YcIE8DyPFStWYNKkSWjVqhUbM+mvVPIijaerq6sM7NpgMEAQBJSXl6PoTjnCJhY+cjwDxn0Gl9YDITp7g1NqIOo94dLy5T+Thf7I6oyNjZXxUwYHB2PmzJmyhK7i4mKEhIRAFEWWcRwcHIwPP/zwSV4LnD59GlFRUSwpyHoeKS0ttdQl/pF45e7u/tRwYpKYzWb4+PggJiaGZZiXl5c/U1sAMHPmTOh0umc+/nmR5zLGt2rVKho8eDA9ePDg8Ts/pUiWnouLC/3888+PtfSspbCwkDIyMujOnTssyN2oUSPS6XT01Vdf2ex/6NAhKi0tZSu1devWEdVpTS7NXyISFIRqM1G1me4eXEfm8ttkSB9CxAvE8QLhoYmIQNeX9SdD+2GWhAhBYXH9wUwPDn1Mi4dmUa9evei3334jURQpISGBDh8+TFVVVbLYTnBwMN26dYt0Oh3dvXuXNBoN7d+/n6Kioh57zY6OjvTGG29QQYEluaBPnz60Z88eunbtGhER1a1bl27cuEH37t0jQRDI3d2doqKiaPfu3eTr60t169alL7/8krXXoEEDEkWRvvvuO9l5vvvuO4qLiyMvLy+ZVWMtRqORmjdvTm5ubrRhwwa6cOECeXh4UGJiIn3++edERHT16lXq3Lkzff/99+Tr60vnzp2jL774grp06ULV1dV06NAhmjt3Ln366ackCAINGzaMbt68abk3f4hOp6M5c+bQgAEDqGvXrrRp0ya74+LddQpVedYhIs7m98cKqsnlwVWa2T6IPDw8yGAwUEJCApWVlbH4W0hICJ0+fZpZCaWlpeTr60uRkZEUGhpKW7dutRsSEEVRliyTnJxMS5cupREjRtDx48fp1q1bxPM8lZeX28SaDAYDBQcH03fffUccx5EoiiwmS0SUnZ1Np06domvXrrF4srOzMzk6OlJxcTHbVxAEMhqNdPHiRXr11VfplVdeIaVSSZs2baKsrCwSBIFWrlxJ+fn5pNPpyGw2U8zgd+miSUfPNGNVV1O4QwUdmNWHHj58SA8fPiQfHx9q164d3bp1i/bu3UsVFRVUv359at68OS1ZsoT8/Pzom2++IQ8PDzp//jwNHTqUvvjiC9JoNNS7d2+aPXs2OTo6PvK0n3zyCQ0YMIAqKytp1qxZNHz4cOrduzetW7eOFAoFbdmyhYYMGUKXL1+mtWvXUnZ29lNdVlZWFu3cuZOKiorIycmJXF1dKTs7m957771nGCSi+vXrk5eXF33xxRfPdPxzI/9Zvftssm7dOqjV6r+83Vu3bsHZ2RnBwcHPjLXp5uaGl19+mX1esmQJVCqV3X0TEhJsrAWNiwcCxm5BwLjPoE/sabOy1if2tFh6Th42v/nmf2Apdxi9CX3zhwCwIGdI5K2///47qqurkZmZyXAYNRoNcnNzZVxlUns6nQ5NmjRB3759sWzZMptC8PLychCRjADTYDBg+PDhACwWHP2Rkp6VlYXU1FSWAv71118zUl9r1ujDhw+D4zj8/PPPNuO1cOFCVvtlT8aPHw8nJyfs3LmTgSEbDAZWbDxgwACGB8pxHA4dOgTgz/IFLy8viKKIFStWsBR76/H18fHBtm3bAFhS2h9VHuLk5ISvT19/ZoqmsImfsXpMtVrNLDofHx/GTq7RaNCqVSvZGOzatQscxyEjIwNEFpxL6Z5KjBfe3t5wdXWV9V+hUKBRo0bss1artRlfyZqX+mTP0g0NDUXLli2RnJwsYzBwdHREQEAAeJ7HiRMnWJvOzs6YOXMm+7xnzx52jLUV27p1axy7cueZxzNy8uc4cbUMiYmJEEURqamp6NGjB7vH/v7+yM7OZuwdHMchNTUVe/fulY1BZWUlxo0bx4rZU1JSZNdjT8xmM0aOHMmeMWl8pZIaAMjPzwfHccjJyXliBoUVK1aA4zhZH2fOnAmVSvVM4BkSEtLTeKieV3kuFd+mTZtqVSbPKsXFxXB2dkZISMi/BDA9Y8YMGWq6BP1jTU3yxRdfyCCRpE2aSAJyZjwWgLe2TUKoKC4uxu3btxkslzUJKgBMmjSJKTfgTzejyWTC/fv30bt3bxBZUEMCAwPZJCQBc0dGRqJhw4YQBAF79+5FZWUlzp07x9ycDx8+ZBBiixcvBgB07NgRfn5+SExMZKj+9evXt4FVqlOnDpo1a2Z3fKWC6pqM8YCFnonjOOzfv5+50E6dOoX169dDp9NBo9Fg8eLFmDdvHjQaDTsuNTUVfn5+AIBu3brZVWLShOjt7S2rN+M4Di+//LJsf7VazSiAnoWiKXJyIdZ8c9FGuUpQblu3bmUuOp7nMWjQIBw7dgzDhw9HTEyMTCFJcFvz5s1Dx44dbei8iouLMXfuXGi1WhtFJpEUOzk5MfAB6TdJYajVari4uMjAzyXl2qFDB7zxxhtQKpXo3r07TCYTBEGQ1bPVrVtX5lLdtGmTDRoOz/Po3LkzAGDmJwcQMs42HPAk4wmA1S1ao9mcPHkSWVlZ7LwGgwGtW7dGnTp1GAhC9+7dZfWQUl+lfQIDAx/LUi7dNyJCYmKiTVH7jh07oFar4e/v/1hGhHPnzkEURYwdO1b2vQS1N3Xq1EceX1v/BEF4auqi51GeS8W3Y8eOvxRO569SeoDlwVMqlawYG7CwqaelpWHmzJksnmLPWmjXrh3OnTvHkFueRfEZR22EU6CFsunFF1+Ep6dnrX2VJqu2bdvCbDZDoVAwglvAogxdXFyg1+tx+PBhmM1mfP/993jzzTfZalliapeuied5NGnShMVvpCJYqVh32bJlACwEulIMhMiCHSmJxPpcEwNVEgkpf/PmzbLvq6urERgYyFbVwcHBjHqnV69eGDNmDGNYDw4OxsmTJ3HkyBEQEXr16sViV9b3Ji8vDzt27ECTJk1s7ld6ejrmzJnD6JI4joNWq5XxvgGS8vv8sZir1mwCknTo0EEGG0ZEuHDhAuuntRL29PREbGwsOI5jipqIGIJQvXr1mAKxlgsXLuDtt9+2a7lKxe72WOmtN61Wy+J3eXl5svZ3794NjuOwYMECNGjQgMVfAaBTp06yWOrgwYNZm1IcUILEmzx5MjiOw0vTlsJ/9KePpbyqOZ737t2DIAgQBEHWv61bt0KlUiEoKAj79u1Dr169GKSaj48P4uPjGdGxh4cHhgwZIlNaFy5cQMeOHRkJcH5+vg1J7tKlS9lCIikpCUajEYIgYOjQoTJFc/v2bURGRkKhUNTKlG42m+Hl5cWYSWpKQUEBnJyc7P72KElPT0dUVNRTH/c8ynOp+Pbs2QNRFP+StiSlFxoa+i8rPUl69uwJb29v1r5EvGmNeShZUFIA//Dhw7I2npXM1Sm2A4gIb7zxBhQKBRYsWFBrP+Pi4pCQkACNRoOwsDAEBwczcGFJKisrGRN3zVVkaGgoevbsya7T0dERgYGBNpaDhNHJcRy6du2KOXPm4MiRIwxkWSJr7dGjB1uJSy6z2kSyJi9evAiz2Ywvv/wSgYGBNhBZUVFRzEW7bNkyhjEp9VFSckqlEgqFAjzPIzo6mk3m9ib56OhoNGzYkH1OSEhAZWUl2rVrh1atWqG6utqmvyeulmHgmiMIn1Rog8FqHPUpAsZsRtb8L3DiapnsuKKiIqjVajRs2BCJiYmyfri6urKkCyILvJqU9DJu3DgQWRjjJXF3d0enTp2Qn5+PJk2awM3NjVk50rhJ90n6fsmSJejTp49M8UmK2MXFhfFC1hyjyMhITJ06FXv37oXJZMLMmTNZ36y9NdOmTYOrqyuKioqYNUZkIbr18vLCgAEDsGzZMlsKJq9QeGZPssvH5z96E8InFWLgmiOy8UxPT2dILdJz1r9/f3Ach9zcXBtL5+zZs+jTpw9bEHl6eiIqKgouLi5s3GfNmsXmjcrKSkyaNAmurq7geR7Jyck4evQoI48dNGiQbEG3YMEClmQkgWVLIh3To0cPm35lZGTAwcGh1iSWiooKiKKI9957z+7vtYmTkxOmT5/+VMc8r/JcKr6DBw/arNqeRYqLi6HX6xEWFvaXKT2pXeusLfayKpVs1ZeTk4Nr167hwYMH+Omnn+y28zSWQsTkQsbjJllEjyOqDA4ORr9+/VBUVAQvLy8olcpaMVAXLVoEQRDQqFEj9sKpVCqsWbMGAJgVwv1BkilhBVZVVWH//v3QarXw9/dHnTp1oNfr2cSq1WqZspRW44MHD0ZhYSE4jqvV5VNRUcGsTT8/PxARY263dvNZi8TSbk+ZSS7Ddu3aySyOmvtIhKxSBuyAAQOg1WqhUCjQtWtX3Lhx45HPRmn571i67xyGrz+Glz88jIThS+CZkoP4FmngOA7169fHd999h1WrVqFjx46Me1AURYSGhsLBwYGxk7u6umLJkiXgeZ4pv+zsbEyePFnWbxcXFwZfJooijEYj0tLSMGHCBOzbtw/l5eXsWidMmIC4uDjZ8ZKXQlJwc+fOBcdxuHv3Lruu+fPn24ypg4MDW1io1WpZXHDSpEkoLy9nMUlBEBAcHMwAwXv06IGSkhKkpKTUGkvlOA7NWrbBjE8PIab/XPj0eBX9VxyErkkXdMjqIVuAHD9+nGFaKhQKrF27FmFhYVAqlU8U0zp37hz69u3LFKebmxsCAwNZ/Dw2NhZr1qxh79v27dtlHH4DBgxASkqKDY9oZWUl49OMjIyUzQU7d+6EWq2G0Whk5MhLly4Fx3GPZS7Jzs5mi+8nESlMYZ1l/b8sz6XiO3r0qIwN4Fnk5s2bTOn9KywK1mI2m/HOO+/I3Ew8z7NJx9HRsVb3RW1ibSkE/pH0Im0RkwplK1vrZABps048qSkGgwGvvvoqAMsLGBpqSabYvXu33f3Pnj0LT09PODg44NNPPwURoby8HCaTCd7e3iAiLFu2DF26dJG9dP/4xz/AcRxKS0tl7V24cAHvv/8++vXrh8DAQDZe1hObk5MT+vTpg0WLFuHMmTOy4z///HPZtep0OpuFhiRXr15F586dZW3bm0it/9apU4f1h+d5BuAdExMji/eYzWYsWLAAXl5e4DgOSUlJj014kERKQmnfvj0SEhLYJC8tnIYMGSLDgmzXrh0aNmwIo9HIJmHpr/U1Sf9L92Xu3LkgIly6dIm19e2332Lo0KGyJB5HR0c0atQIBoMBLi4u7Hu1Wo3ExESWUGPPJda9e3cQWVjbpeN27NiBGzdu4MMPP0ReXh57F2qOv6+vL/r374/27duD53kMHToU586dk7El1Nyka1mzZg1LVvrqq6+YxTpy5Eim/EJCQhiGq7OzMwRBQGBg4DOVEVy4cAF5eXnsPXdxcYGXlxcjc27VqhV27NiBoKAgqNVqtGzZki0sWrVqhbKyMrttNmjQABzHoXPnzswiLSsrQ926dSGKIubMmQNBEDB58vjcc6MAACAASURBVOTH9lFafFvnFjxKCgoKHhkW+V+T51LxnTp1itWfPYsUFRX9pUqvrKwMffv2lbnZpAnM0dERAwcOxKRJk+Dg4PDM5zh7+QZ0TbogZfxKpL26EYYOIzH3s+MoLf+d9aGmlSKK4iOBstVqtczFIlHxcBxXKyq82WxGZmYma//q1asspta1a1eUl5dDEARZvVPjxo2fCLDbaDSiRYsWKCsrY0DQ0upacrVxHAedTlcrpdHQoUMZzx8RYeXKlahbty44jpNx1j1KAaampspYudPT0yGKIpu0Bw8eXOs17Ny5k8Uuw8LCZDFTSa5fv46ZM2fauC5DQkIwfvx4rFu3jmWetm/fHrdv38a9e/fw8ccfo0mTJhAEwcYarbkAuHjxIogsr3dCQgJzDXfp0oXFl6xjgRzH4dq1a6yPBw4csFkIeHh4ID09HQqFwiaOKYnEvJCSkgKlUgmO42Ru/Nu3b7O+Sxau5F4OCAh4ZKZszftWVVWFkpISKJVKDBliyWJeunQpa1+r1WL8+PFYuXIleJ7H1atXkZ+fDyIL1dFfkcRx+fJlDBw4kL0DOp2OjTXHccjMzMTZs2cxbNgwqFQqRv+UmJhoE94ALJRmBoMBSqVSlu06dOhQpmSftN8pKSmstrK2eW79+vXYsWMH/P39kZOT8wwj8HzKc6n4Lly48MyKr6ioCE5OTggPD/+Xld7Ro0eRkJAgeyGlCaVx48Zwc3NjGWsPHjyQpdA/jVRXV6NNmzYgIrzwwgvo06cPiCysAdKKdsSIEdDr9TKutoyMDAiCYJP5JQnP8zY8YL6+voiLiwPHcY+c4KW4pTRhExGuXbuGfv36wcXFhe1XUlJik3Jdmxw8eFA2RuXl5cw1GRAQgC+//BI//PAD3n77bdSpU0d2rdaWg6QceK0eTvFZCOv9OoL6zIbhhVFwiu8C/7C6bGKy14a0+fj4QKfTQa1WY86cOQAspTQKhQKhoaGPtBbOnj3LYqN6vR4tWrRAbGwscxfq9XokJCTILFy1Wo1Tp05h//79mDBhAlMK1hasNMFGR0fD09MTKpUKiYmJaNasmaydoKAgiyuwWTMZIXFkZCTy8vKwa9cumM1mJCcng4jsZgEqFAqmiKRxCg8PhyiKtU6+0dHREEURcXFxcHJygru7O5RKJc6ePQsAePfdd5liatu2LQDAy8sLo0ePxrlz52RsCdaLEnsKsX379vDw8IC3tzd7l62TY9RqNfz8/ODg4ICePXsiPDwcCoUCaWlp/xY+z6tXr6JDhw7s/FqtVpYN3aBBA5SWlqKwsBD16tUDx3Hw8/PDokWLZONpNpsxYcIEiKIILy8v7N69G23atIFGo4FGo4Gvr6/Mcq9NpPKTjIwMKJVKnD9/3mafqKgoliAVGxuLtWvX/qVj8t8qz53iGzNmDLp06QIiYmSXTyp/ldJbvny5zHqwRp4YOXIki4EtXrwYCoWCnSs0NBSZmZnPdD5JATg4ODDrR61WM9epu7s7Bg4cyKwbSSF369YNHMfZUJxUVlaCiGzohzIzMxEZGcmYn1NSUuxOcpJbUYrjODs7o7KyEkqlkvHvAUBubi48PDye+FqTkpIQEBDAPq9duxZElto9yc04aNAgNvaDBw+WWX8GgwFKrzC4d5loN/HBOOpT+I/eBLfMCdD61WGr85qb5NrMzc21if8WFRUhNDS01sy7I0eOoKCgAFFRUTLFynEc4uPjWbzmgw8+kPEfWrtV3dzcEBcXh4EDByI/Px/Ozs4QRRGDBw8Gz/Ns8dOgQQNMmDABRIT4+HibUoDk5GS89tprzEqXFDgA/PDDD8xKqXmPc3JyZATEEsGtVOt56tQpu/dvwIAB8PT0hCiKDB0nODgYGo0GQUFBzAUpKfDdu3ejXr16MuUsKXlJ4UnjJSHOSAuhmsztGo0GDg4OjKW+UaNG6Nu3L5RKJVQqFQICAnD9+nWsWbPm31IH/Oabb7JEmevXr6OgoAA+Pj421xQSEoLZs2fj/PnzyMrKgkKhgEajQd++fWUUU/fu3ZPFnHfs2IG7d+8iJiYGoig+EkXmypUrSE9PZ/dPo9HYhAoAsLIlaazj4+P/8nH5b5TnTvHVTBhp0aLFEx1348YNODk5ISIi4pmUXnl5OQYNGiRzZ0qxhKSkJOzfv9/mGLPZDK1Wy3zyU6ZMeeo04ytXrshS1qVVn/TZ0dGRxdCKi4sRHR3NeNWkpI8WLVrY8LZJdXs15aOPPmJZdydOnICDgwOCgoJYerbJZELz5s1BZIG+MpvNTClHRUXBwcGBTaJSTZEUR3wSKSoqAs/zrOwBADw8PNCjRw8cPXpUFsdTqVTIy8tjLiAigmt8JwS/svWxqe7+Y7fBOGojHBuk2yVL5TjusfEfybpISkpCbm4uQkNDmbLw9vZGp06dsHr1ahQXF2PdunXMErU+j0qlYkpt/vz5NiAB1vLWW2/ZxHGlzzzPIyAgQFaETUQsMzYjIwM+Pj7geZ4BBoSFhYGIbNyxixcvBsdx2LlzJ5u4OY5jC86YmBjwPG83A3Dbtm0QRRGbNm0Cx3FISUlhylgQBBYbffvtt2VKX/pd+izFu/bt2wfgz3dp0qRJqFevHou/SlnLly9fxvLly/Hyyy+jSZMmNpmmGo0GTZs2RX5+PoOfexTn5NNKbm4uOI7DW2+9ZfNbWFgY/Pz8WEmEtSXdqFEjrF69GtOnT2fkyQkJCfjmm28AWGoMpeeb53n0798fJpOJQeVlZmbaXZgeOXJElsil0WjYAsJaFi1axMY8NDTUbvzxf1GeO8VXWFjIXnatVouvv/76scdcv36dFV0/rdL76aefZDEjaXN3d8fkyZMf+/Lk5+cz15+EOfmkiQ8AcO3aNfTu3Zs9+NYTs5OTE9q2bYuWLVsiPDycYW9K7UuKh8jitgsPD2ftrl+/3u6qt6KiAkTEXFMlJSXw9fWFk5MT/vGPf8DDw4NZnFVVVbh8+TKILEktRBYXnoRIsWzZMpnF+6QycOBAaLVadtz7778PjrNgdVrXi1lPmL1790bnMW/D3w5Z6aO2oLFbWDZszc1gMCA2NhYvvfQSFixYgB9//BGVlZXYuHEjunXrBqPRKLPW0tPT8frrr2PcuHFIS0uD0WhkixaVSsWyKbOystgkWLduXWbV1paefuTIEYwYMQINGjSwWzowZcoU2f4mk0lWfqDX6xEUFITMzEykpqbCyckJW7ZsAREhLCxMduzhw4dlSq1t27asnYSEBBgMBgCWLE5BEFCvXj3ZZFlVVQUiwrlz55iiJLK4oL28vODv74+ff/7ZJkQgbZLS5nle5qKfO3culEolTCYTjh49CiKLu7c2+emnn1ibI0eOxLBhw9CiRQsYjUamECTLOjY2Fr169cKiRYvYc/+kYjKZEB8fD1EU7SaSXLp0SfZOFhcXY+TIkTAajTJlL4oi0tLS8NZbbzGl7+PjwxQ2YPH8ODg4wMHBAStWrMDevXuh1Wrh7e3NSiRWr17N/j99+jQ7D8/zuHnzpk3/JLAHZ2dnu7//r8pzp/iqq6tZpldsbGyt+82fPx9paWk4f/48dDrdUyu99evX2yRD8DyPtLQ0GcTW46S8vBw8z7NVdWBgoE2t3JNI48aN0a5dO5SWlqK0tBTx8fFo3bo1zGYzVCoVFi5cyBSgvfMLggCFQoG+ffsCsCDMuLq62j2XwWDA+PHj2WeTycQs7cDAQEyaNAnOzs4ALIrd09MTs2bNglKpRFhYGBQKBdatW4eAgAB06tTpqa/VZDLBwcEB/fv3x6FDh9jLW7duXTRu3NjGnUdEUHmHwzhqI1xaD7RAfQlircDe+qQcyyTbY4bF+hu1ESqfcBiNRsTHx7M24+Li0Lp1a3h4eNhYaqIowtnZGUajEb6+vrJEEGs35fr1622KmSU5efIkkpOT2bHdu3fHgwcP8NFHHyE7Oxv+/v5sYvT09ESbNm3g7OwMtVotU4Bubm42sRkJlk4qxCayQMUVFxez2lEikqXPl5VZMoOl2BsAeHt7sz5wHIeCggL224ULF+Dn5weVSiUrCdDpdPDz82P91mg0EAQB/fr1k2Wt2lN81ltcXBzmzZuHS5cuwWAwIDc3F4DFDctxHGMdrymFhYXMim/fvr3dfdzd3dGzZ09MnjwZ7du3Z6UiUt/0ej3q1KmDzMxMzJw5E4cOHbKxrKwXhTVRXSTp3LlzrfHEkpISjBkzBv7+/mx+kRb0nTt3Zl4MtVqN3r17o6SkBCaTCf369QPP8wgJCcGBAwfQoEEDiKKInj0tEIcdOnRg57h37x5iYmJAZD/D+9ixY+A47pGehv9Fee4UH/DnKkXCTbQnwcHBEEURgiA8cUzv999/x5AhQ2wsCi8vL8yePfuZ44Kpqaksu2rs2LGy5I8nFS8vL9kKuGfPnoiMjMSHH34IURRZEsn27dttjj116hRzi3Ech48//hh5eXkICgqye65WrVqhUaNG7PPYsWPBcRzLNAwLC0NcXBzrV//+/eHs7IwBAwYAsKRGS2P3rC/UO++8wyahhIQElkwjiiIyMjLQtm1b2eTpmT0ZAa9sg3vmBLh3mQjHhul2FZ/PwPehcA+A4OjKFF/guM8wYM0RnDt3TrbYkdoXRREuLi7M2rW28qzdc9LEpdPp0LdvX6xYscKue8laLly4gFdeeUWmzHmeR1hYGF5++WXs3LkTZrOZLT5cXFwYU4Narcbs2bPRrVs38DwPo9HIrA7pHqrValaHp9frIYoiyyYNDg5m/TCbzQgJCYHRaGQT/PXr19lzI/XNGm5MOq5fv37MFSoVzqvVapw4cQJms5kpz8cpupqbFH+S3seFCxdi586d4DgOS5YsAcdxOHDggKw/gwcPBsdZcEy9vLzg4+Njd9wbN26MNm3a2HxvNptx9OhRzJkzB9nZ2YiOjmYIRZJSCg4ORkJCAkRRhIeHR60lQxJa0ZIlSx75DACWbNdx48YxJWhtrSclJTE3aJMmTXDw4EFcu3YNTZo0YVnHktKTvAvWEIVmsxl16tTBRx99hJLy37Hkq3MYtv579P3wMLrPL0TGmHdYdvj/L/JcKj7AQqNTm2vo7NmzMoSO5OTkR7okL1y4YON64XkeHTp0qHUl9zTy448/guM4nD59GiUlJSAiuyDMjxKlUoktW7awz9OnT4fBYEB0dDRSU1ORk5PzyCSSjz/+GESWWIFCoUBKSkqtJQbz58+Hg4MDKisrkZiYCEEQsGrVKgCWOJPkZpKogGbNmgVBEGT4hw0bNmSxrtqgx2qT1157jUGASTRGXl5eUKlUaNOmjcyNFx4ejpbpHeE/epNMwdVG5aQOioVH16kQnDyY4gsY9xmCXtkKXmM/0cXaTTlx4kTs378fDx8+lPX5zp072LhxI1566SUW55MSW3ieh7OzM+rUqYOmTZuiUaNGCAgIYG5QZ2dneHl5QafToaCggNWZtW/fHpcuXYLZbEaDBg2g0+lYWjsRwc/Pj8GDFRcXs8VAeHg4IiIikJGRgWPHjjHF4ezsjOnTp8uuTVIcmZmZUKvVskl86NChzOqQFpHW8GLWsmDBAll8ztvbG2fPnpVlmz7NplKpUFpaahe3Mzs7G4AlEUrycFhDfUmJOd9++y2IyAYTEwD69u1b68KvNrlw4QKWLVuGlJQUEFliddLYqlQq+Pr6Ijk5GQUFBVi/fj0mTJgAjUbz1GUT+/btY0rv/7F33uFRVN0f/2zftN30QhJISAihhBJK6KggRYoEiAhIV0QEFBGkiIIi/MCCoAKKqBQRkN6k95deQo8hCRBCeq+7m929vz/y7pglAcG3+b6P3+eZBzJzd+bOnZl77jnne86pfO9eXl6SidzPz098+umnYs+ePXY+Xdv2IPfhl7M3xOBlR0XY32N/q4sHHr36nIhN/svH96eEbcUSvWCrGPH9WfHGuoti6ZEEuxXLpEmTpBfA2dlZqNVqyUleGVu2bKlSW8zPz08sWbLkn56otU6dOuLZZ58VQlSQToYOHfrYv7X53Sr7Unbs2CFNsEePHhUqlUp8/vnnjzzP5MmTJY1EqVTamUQqIycnR0CFj0uv19sx+CwWi5Rpw9fXV3h6egpfX18RExMjtSktLRUKhUJ8//33okmTJkKhUNiRVR6Go0ePCm9vbyno3zaRLly4UAwbNsxOwwsICJDi5fw7DxO1p27/XcHn2WeqcAiNErWm7qwi+AInbRIuLftWmUAqx7Y9LsrLy0X37hV+w2eeeUa0atXKTlhXnsw1Go2oWbOmpNGuW7dOZGdnizVr1kgZbWxMRZs288MPPwgXFxcRHBwsnnrqKbtrJyUlST5pDw8PcePGDbFixQpJW7EFq9uYsDZfmlwur6I9+fv7i9q1awt/f38pD+uDWnxJSYno0aOHkMlkokOHDlUqjjxM06tsqq3O7PnNN98Iq9Va7W/DwsJEfHy85D+bO3eulOEkISFBaDQa8fbbbwshhHBzcxNTp06t8oy+/fZbu0Tlj4vZs2dXMflmZ2eLdevWiXHjxon27dtLdSdt9+bl5SWaNWsmhg0bJpYtW/bIhWBZWZnQ6/USKamgoEDMnDlTEni2TafTCaVSKWVbqm6cbLG4/0iu2P9V/NcIvtjkPPHKqnO/u2L5280U6WPr3r27+Pnnn8XKlSsFID7//HNRXl4uxo8fb/dB2rK/P05szB/Fhg0bhFwuFyUlJWLChAnC09PzsX978ODBKinaMjIypFX8tGnT7NiUj8Kzzz4r3XflPI6VsXnzZgEVhJjKWpwQv5UNunHjhp1GVpkxOmnSJDv26vTp04VMJhNdu3at1lyck5Njl/tSp9OJCRMmiPXr19sxWCuzWwHRuHFjcfr0afHGuotVPuIHBV/gxA1C6eYnlW56UPDVmrpTTFh7XixdulTAbySLJxF8Fy5cEG+99ZaIjIy0Mw9qNBoxZsyYKgHL9+7dEytXrhRjxoyRNCObb0qpVApPT88qLE6bnysiIkIEBASI0NDQavvi4eEhmcfCw8PtQhPkcrmwWCzi/PnzkjBr166d3ftje79cXFykAH5bcLZtAbdkyRIpKPvAgQPi119/rVbDq67yg0wmE998843d35VdDAZDxULWdqwyM9TmX83IyJCYy4MGDRIWi0W88MILwtXVVbqXmJgYO5Nu5bEHnsh90b9/fyGXy6sUNa4Ohw8fFoDYsGGDmDp1qujatatdXlObFaBBgwaiX79+Yv78+eL8+fOidevWwt3dvdoUioWFhWLWrFlSNp5HbY6OjsLDw0Ms2X/1D1cH+V/Gf4Xge5IVS+2p20S74dMkQkFsbOxDV5Y+Pj6SCe/fAVdXVzFu3DjJd/K4JsDZs2dXS0SBityMOp3uieIZg4ODpTGwlQyywUaT1uv1IjAwUERERIhly5aJ48ePi5o1a4qQkBDh5OQk/u///k+aiBQKhZ1PwdXVVUyYMMHuvCdPnhQuLi7C3d1d7N69W5w+fVps2rRJhIeH2wm8qKgoiRhR+VlVR2ixCYinZ63/XcHn0qKP0LcbLP1dneAb+cNZsXr1akkTSEtLqzbhtBAVK/O1a9eKmJgYKeOILRNKly5dxOeffy6ysrLE3bt3Rc2aNYVGo7EzVVcHPz8/MWHCBFFWViYOHDggxWRWF2toM7NpNBqxa9euKgsUFxcX8dVXX4mjR49Kv6+sZY0bN05kZGRImoktFtPWx7feekuq+xceHi46deokmaChgvoul8vFG2+8Ycd8ro5xW6tWLTvhZdsOHjxYUXnBUS9cW8eIJq99LkJHfiK8er0tGsa8KRJSKtJu2UpFKZVKMXToUMnX7ODgIF1v69at4tatW0Imk4mff/5ZGgfbQu3B8RFCCIVCUW0Y0oMwGAyiUaNGQq1WiyNHjvxueyEena3IYrGIM2fOiLlz54ro6GhRv359O7Omg4ODCAkJEd27dxfvvvuuOHDgQBVBWFRUJGbPnl2lZqRta9KkiXhrziIRNm2bcGr0rFDovIRM7SBU3sHCO2aW9M57vzhHKN0DhEypEZqaEcL/te/+Lvx+qZIw/X8Jf/oK7GtO3+Gj3TcpK7c+9m8cVHJmPFePriFO+Pj48OAtRkdHs2zZMry9vf/Z3X0kpk+fzuLFiykuLsbPz49evXo9VqXkvn37kpCQwJUrV6R9sbGxNG3alJiYGLZs2UJRURFarfax+yKTyaR/r169Sp06dWjbti2XLl3CYrGgUqkoLy9HpVIxefJk/P39GT9+vFRpuzKcnZ0pLi4mICAAo9FIVlYWer1eqnRtNpuxWq1VnkPlvjg4OGA0Gu0qhjs7O2M2mzEYDFV+o1Qqeeedd5g8eTLv70lia2yq3fG8Y6uxFGbj2XMiAKnfjcdSlAN/r1ZuLS1ErnFE16o/+lYVVa+jm/jjcn0zy5YtIyMjg7KyMqkC+d27d1m9ejX79u3j2rVr5OXloVarCQoKok2bNsTExNCtWzepGnplWK1WRo0axcqVKxk0aBCrVq2qtl2PHj24f/8+sbGxjB49mu+++44XX3yRtWvX8sMPPzB06FCuXbvGxIkTOXjwoDSetorqarUad3d3atWqxdmzZxk7dixvv/0248eP5/Lly9y7d8/ueq6urnh4ePD+++8zbNgw2rVrx4kTJ2jatClpaWkoFApUKhV37tzhxIkTtGzZEq1Wi8Viwc3Njc2bNzN9+nROnTplV9Xd09MTV1dXfH19KSkp4dKlS9LzHDNmDJ988gkAT/UdhrJxD+KLlAghkKs0v41ZuRGFQoGvNQfL1V+4deYAp0+fJikpib59+2IwGJDJZEyYMIGEhARiY2Px8PDAYrFw7do1u/t0dnbm3XffZerUqXb7PT09GTduHLNmzaryLGxITU2lSZMmWCwWLl68SK1atR7a1obs7Gy8vb05dOgQTz311O+2Bzh37hytWrVi+vTp+Pn5cfr0aa5fv05ycjJ5eXlYLBa0Wi1eXl7Url2bxo0b0759e5YsWcLhw4ernM/FxYV+n+/l0I1UCk5vwjmiMwq9F2WJ58ne/jE1Rn6JTK3l/tev4NF9Ao6hLck/tgZDynX8hn6KTAZd6/uw7KXmj9X//zb8qQXf5Xv5vLj8NGXllmqPl+feJ3XFOJzC2+LZ6227YyqZIPn7iZjSE+z2N2jQoMqH8e+CyWTCycmJpUuXcv78ebZt20ZaWtrv/i4iIoI6deqwefNmaV+PHj3Yu3cvWq2Wbt26SZN1VlYWWVlZ5OTkkJubS15eHgUFBRQUFFBUVERRUZHdZPQ4UCgUKBQKTCZTtceVSiXu7u5kZmZKH+e4cePw8PDAw8MDLy8vaSKYP38+t2/fBkCj0dCiRQtOnz4tCVSlUklQUBB3795FCEHPnj157733aNKkiSSMbZDJZMhkMnyffgnn1i9iNFsRVgtYLeSfWIulKAeP7uNBrsBqLIFKQjVt5UTcOr2MQ+1myNUOyKzl6O6eIP3warKzs6W+1K5dm9u3b2M0GtHr9dSvX58uXbowePBg6tSp89hjCLB792769euHh4cHx48fJzg42O74kiVLmDx5Mq+99hoLFy6kf//+/Pzzz5LQq4z8/Hzc3Nykv5s1a8aAAQPIzMwkNjaWAwcOoNVqqywa6tatS3x8vCQ0169fzwsvvMCgQYPYsmULBw4cYNiwYSQmJqJQKGjVqhU3btyQ+lBSUoLVapWeV+Vn4u3tzaJFi3jxxReZOnUq33zzDfn5+XYLnlGjRvHpp5/SdthUSsK6YpUpkFWzCLBBhkAurEx/LpyR7evg4eFBXl4eAFqtFqPRyLVr12jYsCEAcXFxhIWF2Z2je/fuJCcnc/36dbv9TZs2xd/fn507d1Z77VOnTvHMM88QFBTEhQsXpEXQ72HEiBHs3r2bjIyMx2pfWlqKr68vrVu3Zu/evdW2yczMZP/+/Zw4cYIrV65w584dsrOzq3yTjo6O9O3bF71PAPsdOmA0V12opq4Yh77tQKyGIkquHsB3SMVCxGoykLJ4EH4jFqHyCESjlHPynWfwcNZUOcd/O/7Ugm/06vPsv5nBw3qYsW4mwmxEqfeuIviE1UrZrdMU7v4UtVqNwWDAbDbj5+fH/fv3/w29rx7PP/8858+fZ/ny5fTo0YOvvvoKIYQkpPLz8yksLKSoqIji4mJKSkq4evUqzs7OaDQajEYjJpOpWi1IJpOhUChQKpUolUrUajUajQYHBwccHBxwcnLCyckJBwcHdu/ezcCBA/npp5/szrFs2TLatm1LdHQ0CQkJODg4UFJSgkwmY+DAgaxbtw5HR0dKS0uBionPy8uLo0ePsnbtWt5//326d+/O7t27AcjNzWXKlCn89NNPlJWVIYTA0dERuVxOcXGx1G8HBwdcXFzIyMjAz8+PN998k7fffhu5XE7jxo25d++eNOFVhkajYfu+w4zfn4/RbCX/+I8U/M3+nvRtB+LafrDdvpQlI/F4bgIOQU0AsJpN3P9qONayQrvxjI6O5vnnn6d///6PPfE9Cvn5+XTs2JHr16/z1Vdf8eqrr0rH8vLycHd3RyaT0bt3b7Zv386qVat46aWXqj2XVqulvLycWbNm8dNPP3Hz5k2Cg4P58MMPeemllygqKsLR0RFXV1eKiorw8PDA39+f+Ph4u/fH2dmZJk2acPnyZZycnOjXrx/ffvstRqMRAJ1OR1FREV27diUnJ4dz587Z9aNGjRp8+eWXREdHS/vOnTtHy5YtmT59OpcuXZK0F4Ap3+xg2z0Fhie04tTIOMOhb2YTEhJCr169aNasGZGRkYSHh6PVapHJZFKfK2Pv3r0899xzGI1GlEqltH/IkCGcOXOG+Pj4Kr9ZuXIlI0eOpEePHmzdurVaDb06WK1WnJ2dmTFjBjNmzHis37Rs2ZI7d+6Qmppq17/HQUBAgDSf2fro5+dH5/HzOVXsXkXwWUrySFkykhojF1N0cTfCasaj6+vS8dRv+1rT6gAAIABJREFUx6JvNxin8LZolXImPhvGqx1CnqhP/w14slH+NyK72MjR+KyHCr2SG0eRa51QeYRjzq+qNcnkctwatOPmqvdQCxMffPABixYtIicn57H7YDQayczMlDSpnJwccnJyyMvLqyKkSkpKKCkpobS0FIPBgMFgwGQyUV5eLpn6KpsJe/ToAcCECRNwcnKqVkg5Ozvj4+PDlStX6Ny5MxEREbi7u3P9+nVWrFiBRqPBarVSUFCAWq1+7Ps6d+4ce/bsoaioqNp7btiwIYcPH6ZWrVq4uLhIZtGQkIoPoHPnzmzfvh2ZTEbHjh3ZuHEjer2eK1eu4OXlxYEDB6hTpw4uLi7Exsbi4uKCyWSSVv4qlQonJyeKi4tRKBRYLBbKyspo2rQp27ZtIyoqCqjQkFu0aGFn4q0MhUJBaWkpcrmcjncrFkmu7QdXEXLVIWDsd9L/hdWK6fZFhMF+PIQQnDhxAr1eT1RUFHXr1n2M0X00XF1duXz5MjNmzOC1115j48aN7Nq1C7VazcqVKwEIDw9/pNCLi4vj9ddfl8b0vffeA+DQoUN88sknDBkyBICxY8eyYsUK6TknJSVx5swZunbtyhdffMG8efNIS0ujuLiYkydP4uzsTHp6Ol999ZXd9QoLC1EoFOzZs8duYpbJZOzatYvu3btX6WODBg2QyWT07NmTjz76CACLxcJX63ay6KoFi0xG9o5PMNy5jLXcgMLJDV2rfrg07oopO5mcnZ9hzqv4rtW+obg9+yrlns342817tAkPsLvWtGnTkMlkmM1mvv32W15++WW74127dkWlUrFixQq7hUbr1q3ZsmVLlb5PmTKFTz75hHfeeYd58+ZV9xgfiuXLl2M2m3nnnXceq/17773HxYsXuX79+hMLPSGEtAC1LXSfffZZBg8ezKGyQIw37ec6YTGTvf0TnCM6ofIIrBh3R71dG7nGCWEqA8BgthKXVnWO+F/An1bjW3Y0kYUH4qtV1a3GUtJ+eBOfgXMpvrwXc35aFY0PQC0Hz/SznFs1V/I/AERGRmI0GikrK6OsrEzSosrLy7FYLFgsFjvzjFwulzQptVqNWq1Gq9Wi1WpxdHTEyckJFxcXXFxc0Ol0uLq6Sv4TDw8PPD09JXOfp6cnLVq0QKvVEh4ezv79+0lJSXnoOOTm5uLh4YHRaJSEW0REBM7Ozpw+fRpXV9dqNaFHYcWKFbzyyivV+tzatGnD3/72NwDeeOddDiaV0Ln/UAoNZjLv3SHx4nEKLu0h7c4tRowYwbfffotcLsdisaDRaIiIiCAuLg6DwYBCoUCj0VBaWopMJqNRo0YUFxeTmJiIo6MjZWVlODs707RpU06cOEHjxo1ZsWIFEyZM4OzZs5IZR61W8/zzzzNu3Dg6duwIVPhpd+7cyYIFC3jzzTd/1yz+KGiVcja82hpnU64k3KFiYpfL5ahUKgwGA66urnTu3JkpU6bQokWLJ77Ogzh37hzPPvus5Kv68MMPpQXB6tWrH6rpbdq0if79+9vt8/b2Jj09HZlMxv79++nSpYvd8b59+7Jo0SJCQkKIiYlhzZo1FBYWUqtWLUpKSlAqlRgMBun6j4sePXrw6quv8vTTT+Ps7CztX716NUOHDqVNmzYcO3YMhUIBVFhx9t1IB2SYsu6icquBTKmiPOce6Wun4R0zC5WrL1ZDCQq9NwgrRRd3UXx5H/4vf1nF75Sfn4+Xlxdz5szh+vXr7Nq1q9rFbYcOHSgrK7PTVhMSEqhTpw4WiwW5XI7VaqVnz57s27ePlStXMnjw7y+gHkRQUBBNmzatVqAClJSUkJ6eTnp6OseOHWP69Ok8//zz1KlTx24xXVxcTHFxMaWlpZSVlVW7kH7Y1B0REUHQ0P/jSs5vx4Wwkr39Y6zGUrz7zUSmUJK7/2uE1YJH17FSu9QVr6NvOwin8LYAdAr3ZsWwf/xd/7PhT6vxxaUXViv0APKPrca5cReUOs9HnsNkhfiMYjuhB3D16lWUSiVyuVwSalqtFmdnZzvhplKppOMP/mvbKv9tMpnIzc2loKCA+/fv27WzmR8VCgXBwcFs2bKF0NBQ7t+/z9tvv41Op0OlUkltVSoVSqVS6uuGDRtQqVSSTyMkJAR3d3eKioo4ceIEKpUKlUqFWq2Wfm/7u/L/7969y/jx4yvGOC6OK1euMGXKFO7cuQPAyZMnOX87i29O3OWIqg3WOtZKxBFHVPW6ogx5mobF93hj+lDkcjmxsbH0798fi8VCbGws8BvhorS0lPbt25OSksLly5dRqVQA1KxZk1mzZjFgwADWr1/P7du3uXTpEpGRkUDFRJ6fn0+XLl3YsWOH9OyioqK4fv06mzdvZuTIkXzwwQe8+eabNA50ZcZz4Xy46wZG8+Ov5TQKGe/2qEejAFfAFQcHB0wmE40aNeLs2bMsXryYr776iqSkJMrLyzl48CCbNm3C0dGRDh068NZbb9G5c+fHvl5ltGjRgszMTCIjI/nggw8ICAggJSUFnU73UKEH0K9fvypm6lGjRkmaeWZmJmq12s7/s3nzZrZu3UpQUBBr1qwBKkyYly9fpm7duphMJpo0aVLF7GfTyAG8vLwoKirCarWi1+vJysril19+Yd++fRIRyt3dnZo1a0qLsZMnT9KqVSs2b96Mg5s3h+MygIp+qr0qE0VkyJBhzktD4xuKXFshRIUAmUyOOS8NIeDwr1nkFBslv1N0dDQqlYrCwkKWLVuGXq/n888/580337S7j9dff52XXnoJq9UqmQRDQ0ORy+VcuHCB+vXrExkZSXJyMqdOnZIWNkajURJUlS0/D7omCgsLyc7O5u7duxiNRjw9Pe0EVeXFtG1BZbFYUCgUHD9+nLNnz+Lg4ICjoyPOzs44Ozvj5+eHXq/Hzc0Nd3d3PD098fT0xMfHB29vb/z8/GjZsiVxcXF293rz5k18CnMBt7+PoSBn92IsJfl4x8xCpqiY9lVetSi5elD6ndVkwJyXjtqrprRPp1VV/xL+l+NPq/GNXHmOQ3GZVfabMpLI3vEJfiMWIVOoyD/+40M1PoDSW2fI2vThQ69jewltwsImOGwC0CY0HhQqUGHPt2mIthfbYrFI+23mzeq21NRU1Go1RqNR0hxFRXiJtJqzWq0YjUbKy8txcHBACCFppYC0SlUoFNJHVflx/pFH69ykO26dRiFTqB9JOhBWK8JiIu/QCoov/VJtm8pMPxscHBxwdXWVVrSV+2gb39LSUsnsExkZKS1SbPd5/PhxwsLCqFWrFvv27cPDwwOTyURJSQmOjbo+Vv9BgKWcnP3LCTLf47nnniMgIIA33niDl19+WTIr296FgoIC1qxZw6lTpzAYDHh5eSGXy8nMzESlUtGoUSOGDx9Oz5490Wg0dosn2wKqOuzZs4cePXrg7+/PvXv38PX1JSMjA7PZ/Ei/UllZGaGhoaSmVixKbt68SXh4OAALFixg9uzZkhnsQYSFhbFgwQKef/55oIIh3KxZs2oZuwCBgYFs2bJFajN27Fi++eYb6dmdPHmSiIgIjhw5wvHjx4mNjWXfvn1VztN8yDQyfZojU/5GlsjZu4SSqwcRZiNqnxB8Bv8fcrUDAMkLB1SY3YRA334wrm1fRCmzMrlbfYa19Oett95i6dKlyOVy2rZty7Fjxxg9ejQ//fQThw4dkohe2dnZZGdnM3/+fNq0aYNer5d86Da/pk3L1Wg0VQQVYDdHqFSqai0+V65coby8nBEjRuDm5iYJKm9vb7y9vfH19cXV1RW5XE7Tpk1JT0/n/v37j+0/zM7OZuvWrRw4cIBLly5x7949ysrK7PoYFhbGjh07OHBfJlnMcvZ8iSnzNj4vzpHGFsBSWvB3VucbOIa2IP/4jxjuXcNv6KcA/9M+vj+t4Htz/aUqFHWAwnPbyD+2CtnfH6AwGUBYUXkE4jdiUZX2xl+Pkb5lgd2+7t27k5aWRlZWFkVFRRgMBsrLy+1edBtjsDJsgsmGyh9D5Y/A2dkZvV6Pq6sr7u7ukpnT19cXPz8//P39+fnnn5k1axbR0dGcOnVK0rgeRLdu3cjNzeXs2bNAhSbk6upKQUEBGRkZyOVybty4IU16D8O4ceNYsmQJr7/+Ojdu3KC4uJi9e/dSXl4ubZsuZ/LVyTQsMsUjz2U3JuVGCo58T8GF6plx8JsA1Ol0FBcXSxOsQqGQVq1qtVpaQJw+fZrU1FQcHByIioqStA6TySRNFg+SGHQ6Hc7Ozjg5OWF1DcRS9xmEX4MKlUH5m/9TmI2ADMu9Kxgv7SA7/oJ0TCaTSeQb+O15P7g96K/9Z8F2fUCyRtjCFORyufRO2jYhBCUlJQC4ublJvykuLrabEB+8hkajkUzRbm5uFBYWPpSxaxt7nU5H48aN0el0kln00KFDkqYXExODRqORFgpLly61O4+7uzuOnV5DEdK6yjWE1YLxfhyG5KvoW/WXNBKo0EJKrh1EofPGMbRCC3PMuMqvK2c88hnIZDI7QaXRaMjLy0OpVFK/fn3JLXHw4EFKSkrw9fVl8uTJkjbl4+ODr68vnp6ejyWYSktLcXFxYcOGDfTr1++Rbd955x0+++wz4uPjqzB7bUhOTmbLli0cPnyYK1eukJqaitFoxNHRkcDAQJo2bUrnzp2pW7cunTt3Ri6XM3PmTKZOnYpMJiO72Ejb+YcoyUnn/tKRoFAhk//2Xbt3ex3nBk9TdieW3H3LsBRmovYLw7PHRJSuPgD/06zOP62pM9xXh0aZXsXc6dykK071Okh/F57djLkgA/dKzCQbrOVGSu4nVNlfv359FixYIFGgK6OwsJBff/2V+Ph47ty5Q3JyMqmpqWRmZkpmzKKiIoxGI1arFZPJhNlsxmQyUVpaSn5+PgqFwm5ysmmAZrOZ8vJyO/v8unXrAHBycsLR0REHBwecnZ1xcXFBr9dz6tQp/Pz8mDlzJiaTiaysLHJzc5kxYwbl5eVotVrOnj37UMFnMBho164dly9fZt26dbzwwgs0atSI0NBQXF1dpXaX7+Wz/PzNKkLvYQQEG2QqDfqnRlB2P65K6AhUmDRtPszCwkLUajWTJk1izpw51U4oFy9epEWLFsyaNYuvv/6aY8eOUbt2bTIyMigqKsLBwYGwsDDi4uLo2LEjP//8Mx4eHnz11VdVzIM5xUY2XkwhLq2IIyfPcC8xnmljhzK8QzgeztHA+zRs2LAKzd0mTH4PBoOBuXPnsmLFClJTUwkKCqJDhw4kJiZy/vx5ysvLqV+/Pi+99BKvvvqqRP03mUxcunSJHj16EBgYyJ07d5gzZw5dunTBZDLxzDPPYDKZ0Gq1mM1m2rVrx6uvvipp+zbzWb7BwrK9lzBqPQlt0AiVMONKCTd3fUf81Yt2MZG2mDy9Xk9xcTG9e/fm4MGDUuhGdfD09CQ7OxudTkdJSQnHjx9HqVRK1gnb/ZSXl7N27VpJOFe3ls7NzUVhlVMdL1YmV6ANbEDJ9cMUXdqNrnlv6ZhcrcW5aXdSFg1G88pSFE6u5BYbqF27NgkJCZJJ19/fnzNnzuDj48PkyZNZvnw5hYWFdu/Y0qVLmThxIufPnwcqwke2b9+Oi4vLY4UVPQrvvvtuRezc7wi9w4cP8/HHH/P9999LQu/mzZts3bqVo0ePcv36dTIyMigvL8fFxYWgoCA6duxIt27d6NGjh50fFcBsNtOmTRtmzZpFhw6/zYuezho6hnmx/6aVWlMfvih1CGqC/+hlVfbLZPB0Xa//SaEHf2KNz7ZieZifz4ZHmTpVckhZMgJDfpa0T61Wo9PpyMnJQalUEhwcTPv27Rk8eDAdO3Z8bLMDVJg6MzMziYuLIyEhgdu3b5OSkkJ6ejqZmZnk5eVRVFREaWkpJpMJq9UqrUQ1Go00aUCF/yQ4OBilUolMJpPCLy5fvoxer0elUpGTk2M3mdkgk8nsSDc2zVOhUHDz5k3kcjkxMTGEhobi7OzMvHnz6NSpE5999hm+vr4olcqHho48jICg8Q2V2thCR7K2zK22b6GhoXz88ce4ubnRpUsXwsLCOHv2rF3AvclkYtOmTQwbNgyFQiGZm2zm4ObNm7Nt2zZq1KgBVMSfDRo0iKSkJCZOnChpiQ/DzJkzmTNnDk2bNuXChQuSNv/uu+8yb948iYZeXl5ebajI7+HGjRtMnz6dvXv3Yjabad++PT169JBir0pLSwkJCeHFF1+kV69edOjQAV9fX5KTk1m9ejWDBw/GaDSSl5fHkCFDOH78uKTVKhQKpk2bhkajoaioiPtlSuIUtchR+wACIa/khzGbEEBp4nlKz22hNOUmUGHCE0I8VLOrDg4ODpK53dvbG5lMRk5ODmazGVdXV8LDw7l16xY5OTlSiIuLiwv9+/fn+++/r3K+4EGzsdZs9tDr5exejEylwf3ZV+32C6uFe5/F4PvSx6h9Q7AknuL+xrkMGzaMLl268OGHHyKE4ObNins1m824uLjw1ltvSYxS236NRsO+ffvYuHEjX3/9Nd26dePEiRMUFhbyj8DV1ZWRI0fy2WefPbRNbm4uNWrUICgoCD8/P+Li4sjKysJiseDq6kpISAgtW7bkueeeo0uXLk/E1K4O/wjhy0GlYP3oVn/3ff/v4U8r+OD34/geBVvmgXef8iUqKoq0tDSEEFLQa1BQEJGRkZjNZi5evCjFwvj7+9OqVStiYmKIjo5+Yorxo2A2m0lKSuLWrVskJSVx8+ZNli5dioODA2VlZZKpSi6XP3SCkslkBAQE8NRTT1GjRg1WrVqFu7s7EyZMkLKmZGdnc/HiRc6cOYOTkxMBAQESgzUnJ6eKiUjuqCdg7PfIlI/+0MpzUshYOw23zqNxqtfe7pgwm0ipJg5u3rx5dtTuu3fvEhkZiRCCMWPGcOrUKa5evUpOTo6kJQ8cOJAXXniB5557DqVSybZt2xgwYAC+vr6cPHlSEn716tXD0dGRvXv34uPj80gz06uvvso333yDQqFg3rx5TJ48GYATJ07QoUMHZsyYwbx585DL5ZLmXpm8kJ+fT3FxsV2MpY11V1JSQllZGaWlpZSWlpKamiqZpuRyOVqtFqVSSVlZmV0A/pNALpfj5uaGpkFnlC1fQCZXSVloqoOwWpELCzkHltPS3UhMTAwzZ84kKyurStumTZvy008/VbEaKJVKbt++Ta9evez8URs3bmTcuHFkZ2fTt29ffv75Z6AiBnTWrFmkp6dX26dmL00lP7AtZiHDUpKP4e5lHEJbIlOqMdyJJWvLXDx7T0GmVKNw0KHyDkKUG8k/tprSX/+G/5hvUSqVBOZf5uiymVKAP1Ro35UXUjNmzOCzzz6jqKjI7huuV6+eZD3YsGEDYWFhRERE/K5P9VHYuHEjAwYMkOImoWJRfOzYMXbs2MGpU6e4deuWpF17eHgQFhZG69atpUXQH7327+EfyXz1Uqugf0mf/gz4Uwu+f9aKJSUlRfIV3b17lwsXLjBv3jwOHDhAUVERwcHBvPjii0RFRbF9+3aOHTvGnTt3MJvNeHl5ERkZSZ8+fRg8eHAVU8MfhRCCLVu20L9/fzvT0Pjx41m8eDGTJ09m4cKF1Wp43t7e6PV6iUn2oEkLKmKm9Ho9YWFheHt7U6NGDQIDA/n4448pKipCpVIxZMgQ5s2bx7d/u8v35zN52LfxKAKCDdZyIwUnfqT0wnYppsq20GjatClWq5Xc3FxycnIoLCyUSC+1a9emd+/eaLVaFixYwPnz52natGnFOa1W8vPzKSgo4Pbt2wwfPpzU1FReeeUVIiIiSEhIYOHChfTp04cLFy6Qk5NDly5dJCFvi6c0Go0kJCTYjZODg4M0TjYiw4MLApsgrszctfmwKjNmNRoNGo0GrVaLg4ODpHUrlUquX79OQkICBoMBT09P8vPzUavVlJaWSgseDw8PunfvzvTp06lXrx4dOnTg+PHjjBgxgqysLI4ePUpRUREjPvqOUwbfJ5rErOUGOrkVsPWTSeTn59sdk8vlpKWl4e3tzQcffMBHH30kkYtcXFyk+L+PPvqIuXPn8tRTT7Fz506uXbvGzp07Wbt2LdeuXbPzS9r8YteuXasynnqfADxHLq0QfKUFZG2ZhynzNggrSr03Ls164dKkGyVxJ8g/tgZLUTYypRpNjTBcOw5D7R2M1WwidckI3hgzioULF/L5558zYcKEqvdttaLT6XjllVdYuHAhUBH6EBQUREFBAVevXqVhw4ZYrVaUSiWxsbE0atTosce1MsLDw9FoNLRt25azZ8+SmJgouTy8vLwIDw+npKSECxcukJiYSFBQ0B+6zh9FhfCLw2C2PFKJkMlAq1Qw47nw/2mhB39ywQf/vBVLeno6WVlZRERE2LW9ePEic+fOZf/+/RQVFREUFMTAgQOZPHkyycnJrFy5koMHDxIfH09ZWRl6vZ6IiAiee+45hg0bJmkfT4qkpCTq1KljNzkoFAqWLFnC6NGjuXjxIm3atMFoNFbrN/nkk0+YNGkS06ZN4/vvvyc9PZ3k5GQ6d+5MUlIS/fr1w8nJSSLx5ObmUlhYWG2Mk1/fqajD2j2yv48iINjgX36fX3+Y/kRJAp4ED5I/tFotJpMJi8VCjRo1uH//PsHBwXh7e0tCyGau27Ztm3QelUpFz5496du3LzqdDr1ej16vZ/z48aSmppKUlMTixYulsI9/Bvbt20ePHj0kgR8ZGcmqVatwcXFh/vz5bNu2jfv37+Pq6kphYSFWqxWtVsulS5cIDw9nz9mbvL7lFnkXdlNy9SCmrDs41eso5SI152dwf9koZKrftB5dq364th2ItdxAxo9Tq/XBXr58mUaNGhEWFiZdX61Wk5iYSL169aqEN9hMxDqdjlq1atGoUSMyMzMlFufkyZMpKytjzZo1doI2PDyc2NhYxm+4+g9Zcax3L5G8diZbtmwhLi6OGTNmcOLECVq3rkqamTt3LrNnz6aoqIjExESioqLQ6XSkpqZy/vx5KXRGr9fz3nvvMWnSpN/tQ3FxMbt27WLPnj1cuHCBpKQkKQ7S19eXBg0a0LFjR/r06UO9evWAiswx3bt3l0za/wlcSclnyZEEDv+ahYyK4HQbtEo5ggqf3tinQv9nzZuV8acXfPDvW7FcvHiRefPmsX//fim4d+DAgUyZMgVXV1fu3bvHypUr+eWXX7h27RqFhYU4OjpKzKrhw4dTv379x77e/v37iY6OlsgUMplMSmxrYxcaDAbq16/PjRs3gArz08CBA1m+fDkZGRmsXr2aOXPmcP78edq2bYtarebMmTPVssVKSkokjVWhUKBWqykrK8O7/3s4hLZ8rD7n7PkSlWdNOwKCDQ8LHdHpdJIQepACnpSURFxcHE5OTkycOFEKXTCbzZSUlJCXl0dubq5dlhxbHJXtPh7Uiiuna7PRzm3+s7KyMoYPHy4lFbCx9/z9/XnxxRepW7cuLVu2ZNq0aWzdupXevave55PC5t+zmUeHDBnCyZMnSUxMxM/Pj5EjRzJjxgxKSkp45ZVX2LZtm10C6h9++IGj1rrsv5lBSdxJkMkou30RUW6qIvhqTtlmx96rgMCQcAaOL6djx46UlJRw+PBhysrK+Omnn+jRowcuLi5AxTuo0+koKyuzM7fbFhlWq5X27duzZs0aatasiPe6c+cOLVq0kEx5MpmMhg0bcvXqVSnkBioy/sz64nteXnvtD1lxVHLBve/fone7JmzevJkjR44wf/58Dh48SHJyMp6e9nG9VqsVNzc3WrduzcGDB4mKiuLIkSOEhYXRsmVLiVhWv359GjRoIJlNbcjJyakSPlBaWopGo6FGjRo0atSIxMRE8vLyHpqEIjc3F39/f6Kjo1m7du0T3/M/G5UJX4WGcnRaFeF+LvSPDPifJbJUh/8KwQf//hVLbGwsc+fOZd++fRQWFlKzZk1JE3R3dwcqTCdr165l27ZtXLp0iaysLNRqNcHBwXTs2JGXXnqJtm3bPtJ+/+uvvxIVFUVBQQFQMYnYMsCHhoZSUlKCl5cXV69eBeCLL77g9ddfRyaT0a1bN44cOYLRaJQSCh86dOihTvHbt2/TrFkz8vLypJW7SqWi/qj55OkfL+HywwgIAMXXDpGzs6pzPyoqSsqQY9tsxJ7i4uJqzbk22MyNlZMB2AL9CwoKMJvNErHCtkAIDw/H2dlZiqu0VYiwBR97e3tL4REPCzCWyWSSuczFxQVHR0e7zDxubm5SmIqPjw9+fn6SObmyOby8vJywsDAyMjIwGAz8+OOPDBw4EID79+8zffp0tmzZQklJCZGRkVy/fp2ysjIpBEQul6PRe+I7+lusst/eowerTzxa8FVQ0/825Wm++eIzZs2aJfkaHwx0Bxg9ejTPPvss3bp1w2KxEBAQQHFxMePHj+eXX34hKSkJq9WKu7s7FouFgoICiQHq7OxMnz59WLNmDXK5nMjISDIzM2nYsCGXLl0iOzub3pMWcNEajFX++P5zJVYy9i7Ft+gW586d4+WXX2b79u1cuHCB3r17I4QgKSmpyrfWu3dvduzYwbBhw/jhhx+AinCC5cuXS4unfv36ce3aNcaNG8ehQ4e4cuWKFDLj4OBgFz7Qp08fScDa3r0vv/yS0aNHV9vv8PBwysrKuH379r/Mj/cXnhz/NYLPhv/EiuXKlSvMnTuXvXv3kp+fT61atRgwYADvvPOOJAShgpm4efNmNm7cyJkzZ0hNTUUmk+Hv70/r1q154YUX6N27dxXCTG5uLoGBgWg0Gn74aROp2prEpRdy4swFAn29uP63fSQd+JGvF3/KqFGjgAqB2aRJE4mBWPnDfhDbtm1j2rRpEusNKhITd+/eHTc3Nw6lKTCFdUamsh+/RxEQHOtE2bVVy0F2bTfx25dU2weFQoFOp6N27dpERkbStGlTsrKymDVrlkSTf+qpp6RM+Gq12k7bs22Vq0wUFRVx6NAhYmNjkclkUiC7yWQiJCRqR6NQAAAgAElEQVTETsiaTCaMRiMlJSUS7f5haZ8qx9BBhXCoHNdZXVzfgzGelYWnDV5eXtSoUUPKxGHLxuHt7U1aWho7d+60e0YA9+7dY8etMj4/lGDHcH6Y4FM4u4NMhjaoKW5Pj5ByMarkUPS3tWQctdc66tWrh8FgIDU1FWdnZ+rWrSulrLMhOTmZ0NBQysvLadq0qVTZwxbO4Ofnx0cffcSnn37K9evXqVevHqmpqXTo0IFdu3ah0Wjw8fHh2LFjDB48mOPHj6Nv1hPvrmMoFzyWFae54i5rZo0BKrTghg0bkp+fT3p6OufOnSMqKoqnn37artLC0KFD+fHHH9FqtfTr149Vq1YBFQH3bdu2pUOHDty+fZv79+9LrN6goCCaNWtG165d6dWr1yN9+nPmzGHu3LkUFxdXK9TGjBnDd999x507d/6wS+Qv/GvwXyf4/tO4du0aH330EXv27CE/P5+aNWvywgsvMHXqVDw8POzaWq1WDh06xNq1azl+/Dh3797FbDbj7e1Ns2bN6NOnDwMHDsTZ2ZkVWw+w6lw6abKK7PyVJzkFFkBG5wZ+jO0YSuNAV1588UXWr18vtQkODiYxMVGanIuLi5kxYwbffvutlMFDp9NJacQqw8HNG9/Ry7E+EMP3KALCg1ArZJya2on8jBTatWsnMfuioqLQarXcvHmT3NzcKplcACmQ2s/Pj/j4eBQKBStXrqR3796PRek+c+YMTz/9NGVlZSxdupSxY8dy6tQpKdl1ZchkMtq3b8+xY8fs9peWlqLT6fjmm28IDQ2VBO3kyZMpLi5m7NixGI1GKSG5jcH5IInGllPRYDBQWlr6h7LnPAifPlPQhnew2/eg4LOayijPSUHtUxtrWSG5+5ZiNZXhM+A303OnEBfGNXNh165drF+/nhs3bkjvjW1sdu/eTbduvz3f06dPM3/+fPbt2ye9N507d+bgwYPMmzePIUOG8Prrr7Nz506JtAO/+Q5TU1Np2bJllYoo7dq141xiBsE9xmDxCcdqsWDmN+FR2Yozqk1N2tevSa9evdi6davdO1SzZk0KCwvZsGED3bp144MPPuCdd96hTZs2XLx4kcWLF7N792527dqFt7e3FBIkk8lwd3cnJiaGsLAwJk2a9MRJCXx8fHjuueeqDd3YsWMHzz//PBs2bKiSV/Uv/Ofxl+D7B3D9+nXmzp3LL7/8Ql5eHoGBgcTExDBt2jQ7f0NiYiI3b96kZ8+exMbGSoSZW7duVaS/atMXp7ZDEAoltjyG1cG2+h1UT8N7g54BsKu5NnXqVPr06cPrr7/OhQsX/v4bGY0bN8ZgMJCQkGA3acjlcgYMGFBRn8+5BbKAxr+T5ush/QIMCacp3beYkJAQtFotiYmJZGZmcuHCBYlEABWLgdjYWJ555hmEEPj6+pKSkvLQ9FoKhQJXV1f8/f0JCQmhUaNGtGzZknbt2qHT6aR2BoMBDw8PSktLCQgIwM3NrdqqDo6Ojmi1WsnMVblfCoWCnJwcOy3eYDBQs2ZNXF1diYuLe2xz1VNPPcWJEyewWCysXr2aDh06SLkeMzIySElJIS0tzS4xQnFxcbUlcrz6zayiYT8o+B6EpTiPlC+HEDhxA3JNBcX+wYTD2dnZzJs3j0WLFkks16KiIg4fPswnn3zC0aNHJf/k4MGDiYiIoH///sjlcqZMmcKCBQs4c+YMzZs3x2AwMGrUKMmP1alTJ9auXYu3tzejR49m+fLl0nWVSiVxcXHk5OTQv39/0vOKcWrYiegR45BpHKtYcWJiYjh48CAZGRlSDleAPn36sH79ekJDQzGbzfTr148vv/wShUJhJ8Tc3d0pKCggKCiIr7/+mg4dOjBu3DipHqbt2VdO+/Z7OHToEJ07dyY7O9vufYGKXKk210h1QvEv/Ofxl+D7J+HGjRuSEMzNzSUgIICYmBimTp3K5MmTWb16NcuXL5dMlTYs2n2RxcdTsPBkacJkl7cwd0R34uPjmT17dpU2zs7OyOVyKTBXJpPh5eWFwWCwC9bVarUVAuXpXpzXtcP0BzJxOagUTGwEY154zk7DiYyMlARwZQwcOJBt27aRmppqlz0mMTGRffv2cfr0abZv327HCrSFFABSHlSZTIZer8fX15egoCB8fX354YcfJPbnmTNnaNnSnrRjC7p+0K94+/ZtateujRACg8EgCaWMjAwSEhKYOnUqfn5+dO/evUrNxMqan9FotEvLVhm2e6icRuvBVHdHjx4FfmNPOjg4EL1gGydS7FO0/a7gK8kj5YshBL65HrnWCaioML9wQBO7dg0aNODWrVvI5XKJUWowGAgPD2fo0KFMmDDBrg7hihUrePnll9FoNLRq1YpLly6RlpYmhTIEBQVx+fJllEolFouFqKgovvzyS5o3/62igi3lXqdOnVi9ejVdu3blypUruLi4sH79ersyR/Hx8YSHh7Np0yaio6N5++23+fTTTyV/rp+fH6WlpZKP3IYxY8YwcuRImjVrhlwuZ+3atQwZMoSMjAw8PT2l552Wloavry8uLi7MnTv3sZm8zZs3Ry6XS6kEbRBCUKdOHYQQ0rj+hT8f/hJ8/wLcvHmTefPmsWvXLnJzc6WJWKvV8sUXX0j1wmxxivc2z682LdijKOoOKgUDvTN4f/zwh/bDNpk5OjpKaZBssWgDBw5kzpw5+Pv7S+3/0dCRnTt30r9/fynjSGhoKOvXr7fT+NavX8/AgQPZu3cvzz777CPPPWvWLD744ANefvll2rVrx8mTJ7ly5Qq3b98mJydHuh/bZssyYte/v9c2dHBwQK1WS1n1/f397Uq9VE7+XXn8KlfVKCoqwtnZmcDAQLtSVLa8rG5ubuzatUsS9vPnz2fo0KF4eno+diKEpk2bcvXqVV599VWioqJ4+eWXmb76MD9cyAKF6qEV5k3pCcg1Tijda2A1FJO7dymW0nx8B1XUk3sw4bDVamXdunV29Prw8HDGjBnDa6+99kgTsy0Ljs20HxISImlxaWlp1KpVi/T0dNavX89HH30kad41atQgNTWVffv2YbVaGT16NMnJydL3ERYWxq1bt2jRogVbtmyhRo0aNGjQgKKiIjp37sz58+ftwgecnZ3Jz88nKiqKbt26MXv2bHQ6Hb6+vhQVFZGcnGw37gEBATRp0kTyA3p6ejJs2DA+/fRT6tatS/Pmzfnxxx9/9xllZ2fj7e3NkSNH7NKEAYwcOZK1a9eSnJyMt7f34zzyv/AfwF+C71+MVatWMWrUKDsT4/PPP8+aNWt4a0sc+29mYMysPi2YQuvyUKaesFopvXWK7C1VC2XaKrWrVCoCAwNp1aoVffv2pVevXgQFBfHSSy+xYMGCKr+Dfzx0ZNKkSSxevJjQ0FAcHByIjY2lYcOGrFixgsDAQAIDAxkyZAiTJ08mKyuLzMxMKc7QJpQqE1ju37/PvXv30Gg0ODk5PXZNMvu+VgShVw5Sl8lkODs7S2V0TCYTV69eJTExEW9v72pX6rt375YKq06bNq3K8ddee42vv/4aIQTr16/nhRde+N2+PYjvv/+ejRs3EhwcjNForKh3WCmzzsMqzKs8Asg7ugpraT5ytSPaoCa4PT0ShXNFaRo5VmY0LCU5/gYbN27k119/lcZPrVbj7e3NvXv3HrufQ4YMYc2aNdSpU4eEhIr4wCtXrtCwYUO2bt1KdHQ03bt3p2bNmixfvhy9Xk9eXh46nY6JEyfy7rvvEhcXR7NmzSRWqU6n44033uCzzz6TSEhWqxWVSoW/vz+NGjXi6aefJjo6WmI+b9myhX79+iGEYOjQoaxbt45OnTpx4sQJmjVrxuHDh6U+b9u2jejoaFJSUqhRowaDBg3i5MmT3Llzh169enHv3j2prNajMGzYMPbu3VslQ82mTZuIiYn5p4XB/IV/Hf4SfP9iTJw4kS+++AKoMD/airO27dSNK0ExVXKRVk4LpvELeyRF3Wo2cf+BNGFQIXyGDx9ebRJuFxcXPv74Y8aMGfPQPttCR/ZcSUFYrXZsT2u5sSJtlKKQ4LJ4yE22E1TFxcXcuXNHChy3ET8efM2qKwdlCzp/sLiv2Wxm9+7duLi48N577xEQECCFEvj5+aHT6ewE1cyZM5k3bx6urq6SGdKmVdgmU61WS0BARSVvo9FIWlqaHYvT1dWVGjVqEBoaSkREBK1ataJNmzasWrWKcePG8dNPPzFgwADpmlOnTmX+/PkAf1joARw5ckTyf9ogl8vpu3AP59NNfyjwGwSWOxdJWfc+YF+hwWZ+nTlzJjNnznyis7Zt25aTJ09Kfx87doz27StS2dnMmTKZjK1bt5KTk8PYsWMZPnw4K1euxGw24+7uTkZGRpXzurm5UatWLWJjY1Eqlaxbt67aVHRWq5X+/fuzdetWZDIZHTt25MMPP6Rjx448//zzbNu2jSlTpjB37m85ZIODgwkJCeHAgQPExsYSGRlJQUEBCxcuZNGiRb+bfMHG/nz33XeZPn26tN+WpHzkyJEsW1Y16fNf+HPhL8H3L0ZaWho5OTmEhIRIBAKoWmG+urRg1tLCR1LUsZRjurCZ9MNrqggWW2b3hg0b0qBBA0wmE3l5eXz55Ze0bt1aSnhsyzNpE1C2ahPl5eXItC44RXRG7RWEXOuE1ViCKfMOstunUVmNdoLKVlHCxcVFMvu5ubnh4eGBl5cXixYtkvxX4eHhLF++nHbtHp0tpjIyMzNp3LgxZWVlXLhwwa5SenXw8vKibt26nDx5kkOHDjFo0CDy8/OZP38+b775Jmq1mqCgIFJTUykqKpKEYu3atXFzc5MqI+Tl5ZGZmSmlWbOZPY1GI23atKFdu3akpKRIpI5/ROhdvHiRnj172lUKUCgUNG7cmO+2HvzD6fus5Qb8b26gUYAry5cvr/Ku2PKTajRPFg5UWloqxUvWqVOH+/fvk5aWhk6nkwRc+/btWbFiBWvXrmXWrFn4+/uTmZlZJWdpixYt8PHxITw8nC+//FJKeRcdHc2mTZto3LgxW7dulTQ9g8FAixYtuHXrFgcOHECn0xEVFUXdunWZNWsW/fr1o2fPnuzYscNOA9u3bx/dunUjMTGR4OBgdDodkydP5plnnqFDhw6PjCmFigoPb7zxhl3NSKvVSu3atdFoNPz6669PNIZ/4T+DvwTffwjV1Rt8MC2YsJT/LkW9+OohcnY9PCN8ZdjirurUqYOPj0+VgGyboCorK2PChAkIITh69CgdOnTAarXi6OjIRx999FipnSrDZiLctGkT9evXZ+TIkZw6dYrQ0FCWLVvGM88881jnMZlMtGnThitXrvDLL7/QqVOnh7bdtWsXvXr1IjAwUFrhDxgwgE2bNuHg4IDZbJb8gVarlQYNGqBQKIiIiODGjRvcu3ePgoIC6b59fX0JDg7Gy8sLtVrN/v37SU9Px8HBwY6RqtPp8PLyolatWtSrV49mzZrRvn17QkJCqtR3tOHAgQPExMSQn5+PTCajUaNG3Lx5E5VKxahRo1i5ciX5+fl/yAeL2UTuwW+xxh+ld+/eqFQqfv75ZynVG1QkTY6Pj6/CTvw9tG7dmvj4eCmnql6vl3Lbbtiwwa6tLVDe1dUVpVLJ5s2bGTJkCAqFgqSkJADq1KnDZ599RqtWraRqEHq9nkmTJrFmzRri4+MZPnw4M2fOpEWLFgghuHjxopRB5u7du0RERODp6cmUKVMYO3YsrVu35ty5c8THx0s5Mm35a0+cOEGvXr1ISEjg6tWrqFQquwQS1aFWrVo0a9aMzZs3S/sGDx7M5s2buX///hOP4V/4D0H8hf8IRvxwVtSaurPazblJN+HWeXSV/QHjVgtABE7cIO1r+fZ3IjAwUAACEEqlssq1srOzxcKFC0WbNm2kdhqNRtSvX1+MHTtWnD59Wmr766+/Cjc3N6ldZmamEEKIhQsXCrVaLSwWyxPdZ05OjtBqtWLIkCF2+xMSEkSHDh2ETCYTISEhYu/evY99zkGDBgm5XC6++OKLR7Zr0qSJCAwMFDKZTKSkpAghhPjxxx+FTCYTgMjKypLaBgYGinHjxlU5x507d8Ty5cvF8OHDRfPmzYWXl5dQKpXS+Ni2bt26iXnz5om5c+eKYcOGidatW4uAgADh4OAgtXF0dBSBgYGiTZs2YsSIEWLAgAFCo9EIQKhUKvHOO+8Ii8UiSkpKhL+/v9i2bZtITk4WgCgpKRFCCLH61G0RPvMXETSt+ndH2t7ZLmpN3ixWn7otDAaDmD17tggICBCAUKvVQi6XS/3S6/VCLpeLTp06iYSEhMd6Bu+//76Qy+Vi5MiRIioqqsp4+Pj4iObNm1fZDwi5XC5yc3OFi4uL3XtrGwulUil0Op0oKioSgwcP/v/2zjssiuvr49+Z7bv03hEERIogisRCUWyJvSsaozHYY6/RRE37xdgSS4IpRGPsogaU2A3YFVEiRiwIiihSpEhbtpz3D96duFmwxSQS5/M8++jO3L1z7+xyv3PuPfccYlmW7Ozs6N133yWpVEoAyNHRkaqqqgzaVVBQQNbW1mRra0vvv/8+MQxDjRo1IisrK1IqlUREdOzYMWIYhq5cuUJHjx4lhmFIqVSSXC6ntWvX1tvnCxcuEMMwlJ2dzR3btGkTMQxD+/bte6r7xvNywAvfv8TkLan1C1+zzmTcooeh8L37/8I3ZSt3zL7vHBIIBHqDSn3s37+fhEIhVVVV0fr166lXr15kb29PDMOQQCAgZ2dnEovFXF0CgYCSk5OJiMjR0ZEGDRr0zP308fEhZ2fnegUzOzub2rdvzw1Qe/fufap6P/30U2IYhsaOHVtvmczMTGIYhqysrKhr167c8Z9++okTgN27dxMRkYmJCa1YseKp+7V+/Xq9Qdve3p67dyKRiOzs7CgkJISio6MpNjaWkpKS6LvvvqMxY8aQg4ODgRhIJBKys7OjoKAgGjRoEH388cd0+PBhqqysJKlUSuvWrSOi2oH97RmLyHXoR+QyYye5TI/T/53M2Elus38m97f+R12jRhu0+9q1a9SjRw+930tycjL9/PPP5OnpSQzDUEBAAB07doz7jEqlosTERJo4cSK1bNmSEyyGYcjW1pbCwsJo/Pjx3AMFALKysqpT9ACQj48PEZFeO0xMTMjFxYX7LTMMQ1KplMaMGUO3bt2i7t27c2VtbGyIYRjy8fGha9euGfSxoqKCXF1dycTEhN5++21iGIaMjIwoJCSEK+Pr60vBwcFERCQWiykkJIQEAgGZmJiQhYUFJSYmcmV37NhBZ86coYiICK7tRES3bt0ikUhEkyZNeurfDc/LAS98/xJf/3qDvOYnktO7P5FVz5nkPG07ucz6mWwGLiJGJCHrfu+T3fBl5BAdQy6z48lp8iaSe4eSxMWfG+RcpseRcau+BgOLl5cX9evXj7744gu6efMmd81Vq1aRsbGxQVs0Gg3t2bOH+vfvT3K5XK+ugIAA+uCDD4hhGMrNzX2mPk6dOpWEQiHl5OQ8sWxOTg516tSJGIYhFxcXTpAex+7du0koFFJYWFi9wjpw4ECSy+XEsizl5+fTnTt3aOXKlZzwASAzMzNiGIb69etH33777ROt2oMHD3KDfGxsLBkbG1OrVq2IiOjhw4f0888/04wZMygyMpJcXV31rD7dSywW06RJk+jatWuUm5tLW7ZsoRkzZtDrr79O3t7eZG5urvdAwzAMZ2lKpVIKDQ2l+ANHKSbpBk3ZcoHeXneWpmy5QI6Rw2nKnPlkbW1N8+fPr7P9MTEx3MOOqakpMQxDZmZmNGbMGNqzZw95eHhwAq6zsIRCITk6OlL79u1JLBZTmzZtDL4/ncVW30skEhEAmjt3LhERxcbGcnUfPHiQrK2t9QTZ29ubzMzMiGVZcnV1JQDk4uJCDMOQl5cXeXl5EcMwFBUVxVlzOlQqFfn7+5NMJqOuXbuSQCAggUBA7777LhERpaSkEAAyMjKqs53Xr1/n6vL09OTufXR0NBUWFpJGoyFHR0fy9fV97G+F5+WEF75/iYKH1bXCN2kjSZz9iJEoiBHLSGTtShZdJ5LrnD1k1XMmCUxtiRFJSKAwJ4Vve3KauIETPve5CSQ2ttD7ozUyMqLw8HBq2rQp92QuEAjIxsaG7O3tSaFQUEJCQp3TRDpkMhkJBALy8fHhBhoAZGFhQe3bt6fly5dTYWHhY/unm0Jav379M92X3Nxc6tq1KzEMQ05OTrRjx47Hlr906RIpFApydXWl4uJig/NVVVUkkUhILpeTmZnZYwdmAGRpaUkqlare6506dYq7H9u3byeiWitKJBLRgAED6rwP3t7eXP3GxsbUunVr8vDwIIVCwYmaqakp+fr6Ur9+/ejzzz+n+Ph4GjVqFNnY2HBlXFxcqEmTJmRtbc2JNsuyZGpqSp6entSxY0cSiUQ0bNgwEovF9d67wMBArj2fffYZ9e/fnyws9H9H5ubmZG1tTQzDkImJCX366aek0WgoODiYrK2t9e5RcXExmZmZUZMmTQymgR+1Ar/88ksCQLt27SIi4qZxo6OjiYi4PslkMurduzfJZDLy9vYmPz8/rg5/f3+KjY2l5s2bE8Mw5OnpSUZGRiSTyQymKTUaDYWHh5NIJKLAwEASiUTEMAwtXLhQb5r1zy8XFxe9eh6dsmUYhsRiMXXs2JFkMlmdvzmelx9e+P5Fon889+S1mnpejebuoTEbzlFubi65u7tzf5jW1tbEsiwJhULy8fGhmTNn0tatW2nOnDlkZWVFQqGQe/KWy+Xk6elJvXv3pqVLl9LVq1cpOzubAFCnTp2IiKi0tJRYlqVvvvmG5s2bR8HBwdxTspGREbVq1Yref/99Pcvy4cOHpFAoqHfv3s99b+7fv0/dunUjlmXJwcGBtmzZUm/ZoqIicnJyImNjY/r999/1zqlUKvLy8qp3kJPJZHpW7tSpU/U+r9VqKTMzk4iIfvvtN25t7M+ikpSURCzL0ty5c0mj0dDixYv1xMTT05MuXLhg0HaNRkPnzp2jxYsXU8eOHTkL7NFpVJ34LViwgJKSkjjRUSqVdPz4cVqyZAkNHTqUWrVqxX1G93ndQ0FwcDC1adOGmjVrptd/qVRKnp6e1L9/f4qJiaF9+/ZR586dSSQSkVgsps6dO1Pfvn1JIpGQUCgkhmH0+qFUKsnBwYEcHR0pKiqqznusuw83btwgVy9fmv7dLzR5SyoN+TqZbPvMpq+OXKP7pZXclG98fDzFxMSQXC4nhmGIZVk6e/YsnT9/ntq0aUMMw5C9vT1Nnz6ds06dnZ2JZVlq3LgxXbp0Se8e9+3blwQCAbm6uupZ0fW9Zs6cqff5zp07cw8Zj66NTp06lbRabb2/S56XF174/kUu3i4m7/d/eS7h837/F0rLqX3aLC4uJhcXFwJAarWaNBoN7dy5k7p3784NOqampmRqako+Pj6kUqno3r179O2339LQoUPJ39+fTExM9P74dY4vXbt2JTMzM4O25+fn09KlSykiIoK7hkQiIT8/P7K2tiZLS8tndoSpi4KCAurVqxfn4LBhw4Y6y6lUKmrTpg0JhUJunTAvL4+6dOliMLC1a9eO+3+fPn3I0tKSAJCrqysxDEN9+vTh2h4XF0cAKCoqihs067OkVq1axQ2QOvHy8/OrU/B0pKam0sCBAzlr1MnJiaZMmUL37t2jjIwMWrVqFScopqamXBtkMhm5urpSZGQkzZw5kxISEqiiooJYlqXVq1cTAAoNDSULCwtusH5UUHXttLe3p+DgYIqKiqLFixfTsWPHSKlUkkajoTVr1nDrfrr2SaVSEggE1KtXL8rJyeGmZXfs2EGnTp2iZcuWcUKte+3evZssPYOozZx15PHeHvKct1fvt9xkfiI1nptAjoMW0q+Xskir1XKOOEDttPCMGTO4e3b//n0aOHAgiUQiUigU1LNnT3JwcCCGYcjc3Jz7Dh+d1Rg7dmydIqe7JwzDcA+Ef3ZU0f1e/Pz8DITzcc4wPC8vvPD9y9R66SU+o+gl0oZTWXr1nDlzhhiGqfMa9+/fp4ULF5JYLCaGYYhhGHJzc6Nx48bpWUgajYZkMhkxDEORkZF6g49MJiN3d3fq0aMHLV68mNLT0/WuUVFRQbGxseTp6alnrbi7u9Pw4cMpMTHxLwlhUVER9evXj1iWJRsbG4qNja2z3KhRo4hhGProo4/I1dWVPDw8qEmTJnpP6u+99x45OjoSADpw4ADnOJGbm0tHjx4luVxOdnZ2dOPGDQoPD9cb6HTTm49y7NgxbjpMd53GjRvXK3gnT56kXr16kYmJCfddzJkzh4qKiurtv62tLWeN5ubm0rp16+idd94hPz8/UigUBqIG1DqYdOjQgX788UdOBIKCgriB/rvvvqOpU6dSly5dyMvLS09YRSIRWVtbk7+/P7f2qhN0FxcX7mGBZVnasmULiUQiMjMz49aBf/vtN+6BqFnf8dRkfuITZzca/f8D3chPvufqFolE1LhxY1q8eLHBPVEqlTRnzhwyMTEhgUBAzZs3J3Nzc2JZlsRiMUkkEs5haefOnXUKn+67Hzx4MJnbuZDr6+/QsDUHaeS6szR5Syp9/esNauTtT/b29nTw4EHu3snlcpo1axY/1dlA4ffxvQS8iAzzGo0GQqGQi2BfF7a2tnjnnXfQpUsXxMTE4OjRo8jLy4NcLkfz5s3RrVs3vPfeewgPD8evv/6KjRs34q233kJ2djYOHz6Mo0eP4uLFi8jOzkZZWRkYhoG5uTnc3NzQokULuLq6Yt68eVxizsTERGzduhUnT55ETk4OtFot7O3t0apVK/Tr1w/9+/eHVCqts631UVJSgrFjx2LHjh0wNzfHJ598YpAEdNmyZZgxYwZYloVUKsWRI0ewf/9+LFiwAEDtZun9+/fDwsIC6enpOHHiBNavX8/loSsvL0d4eDgXvurRgNOjRo3Cd999B61Wiy+++AJLly7FvXv3IAQuzy8AACAASURBVJPJUFVVhebNm8Pe3h4HDx5EWloamjZtCgA4fPgwli1bhuTkZFRWVsLDwwNDhw7F1KlT9bJM1EfXrl1x8+ZN9OnTBydPnsTVq1dRVFQEIoK5uTk8PDzg5eWFn376CQEBAbhy5QpsbGxQUFAApbI22o65uTkKCgoA1KbzOXHiBBe95lGKi4tx/PhxnD17FpcuXcL+/fu5ZMd/Tiv1aIZ1APDz80NKSgq3Gf7NRWtxVuUE5TPsuyeVEpLf92LFhL5o164dTE1Nn/iZdevWYcGCBcjJyYGjoyMKCwtRU1MDIoKjoyNyc3PrDG/Xtm1b2PmEIMe4KQpENhAIBHh0m6RUyKK6pgbhnlbI2Pklzv6yHdOnT8e8efNgbm7+9J3ieanghe8l4XEZ5hmtCgKBEB197B6bYV4sFiMuLg49evSo87xCocDq1asxcuRI7lh5eTm+//57bN26FWfPnoVGo4GlpSW6du2KpKQk+Pj4YP/+/QZ1abVapKSkIDExEadOncKVK1e4WI9SqRR2dnbw8fFB27Zt0a1bN/j7++P06dPYsGEDkpKSkJmZiZqaGlhaWiIwMBA9e/bEm2+++dSDSVlZGcaPH48tW7bA1NQUH374ISZMmAAA8Pf3R0ZGBjdIDxgwANu2bcOhQ4fQtWtXODg4IPX36xg8ZwU8giNQVqWCQKtEW183DGjxR0LjoUOHchFZdJiYmCA8PJwLtKxQKFBaWormzZsjNjYWAQEBAGrzzZ0/fx7BwcE4d+4campq4O3tjbfeegsTJ07Uy3jwZ9RqNQ4fPoy9e/fi9OnTuHHjBoqLiwEANjY2aNKkCdq2bYuePXsiJCSEC9d26tQphIaGokuXLrh//z5SUlIA1EY5SUpKwqpVq7B3714Af2wo1wUyd3Jygq+vL0JCQtC5c2dOsOfNm4fFixfjypUr8PT0RHV1NQYPHoz4+Hi4u7tzOSYfhWEYNGrUCLZNW+G+/xBoGf0A3Xkb50B59yoXhk9gbAnH0Wv1yshEAmwd/Vq9v/X6OHHiBCZPnozU1FQYGxsbZMpgGAZisZgLXmDWsgdsuo5FjZrwuIGQYWoFeUyIDeb2f/qIQzwvJ7zwvWTUlWE+OWEz0natxaWUU9yAVBdWVlaYNGkSPvjggzrPC4VCJCcno02bNnWe1+Uti46Oxp49e5CbmwuRSARfX1/069cP48ePrzcyRVhYGC5fvoyMjAwcOHAAhw8f5qxDXXohMzMzuLm5ISgoCB06dICnpyfi4uJw8OBBZGRkoKKiAsbGxvD19UWXLl0wcuTIx0bRAGqFe+LEidi4cSOMjIwwZswYfP755yAiyOVyLqrKtWvX4OnpiW/i9iPhhhLXykUAoBcrVZf8NKKJNca0c0O4fyOUl5cDqBUKmUyG0tJSCAQC2NjYIC8vD82bN8cPP/yAZs2aQavVYseOHVi1ahXOnj2LmpoaCIVCLF68GBMnTqwz40F1dTX27t2Lffv24dy5c8jKykJZWRmEQiFsbGzg4+OD0NBQhIeHIyIiwiBf4KNs3boVI0aMQOPGjdG0aVNs375d73yLFi2QmprKxelUq9U4c+YMjh49inPnzuHq1au4e/cu12ddVJrAwEAMHDgQHTp0wL59+7Bo0SLs2rULvXr1wqeffop58+YZtMXU1BS2/d9HtaWXQY7HvI1zoPBrD+OALvV+rwwDdPGxRcywlvWWeRx37tzBhAkTkJCQYGDp2dra4uOPP8aCDYcgbRP1TCnBHs1GwtNw4YWvATBlyhR8+eWXkMvlOHToEFq3bl1nuaZNmyIwMBCbN282OKebCtWFlvoz5eXlMDY2Rps2bXDixAl0794dly9fxqJFi7BhwwacPXsWZWVlsLS0RLt27fD222+je/fuYFkWS5cuxezZs3Hx4kX4+/sb1K1LPpuYmIgTJ07gypUryMvLg1KphEQigZ2dHby9vdGsWTNUV1fjwoULSE9PR0lJCaRSKTw9PdGhQwe89dZbaN68eZ19r6ysxKRJkxAbGwsiAsMw8PT0xLBhw7B48WI4Ojpizvd78fmBG081pSxmGRQd+ha9/SyRmJioFz8TAJydnbFnzx74+fnhxx9/RExMDJeOKDAwEGPGjEH//v3h7u4OR0dHpKWloaysDPHx8Thw4ABSU1Nx+/ZtVFRUQCwWw97eHn5+fmjfvj169+5dZyxShUKBJUuWYPz48XW2e+nSpfjkk08gEokwduxYfPjhh3rfgUgkAhGhV69e2LVrV73912q1OHPmDCIiImBlZQVLS0vcuXOHszrFYjGcnZ25+JyXLl0CUBsftmnTpigtLYXCwg4PI2ejRm0YXu1phA8ABNBicRsRurZvByMjo8eWrY/Zs2fXmYmkWfseULYdpzezAgCaqocoSvwS1dkXwMpMYB7+FhS+EXplntca5Xl54IWvARAVFcWJmVwux7Zt29CtWzeDcp07d0ZZWRlOnz5tcO7GjRvw8vKqM0EqUJv7btGiRTh69CjatGkDhUKBtWvX4u233+bK3L59G6tXr0ZCQgKuX78OoFYAsrOzMXv2bHz22WfP1K+ysjL88ssvOHz4MFJTU5GVlcUNrqampnBxcYGxsTEqKiqQm5uLwsJCCAQCNGrUCO3atUNUVBQiIyO5qb6NGzdi2LBhetdo164dkpKSMO3rXdh3X47qZ4hzSapqlCatQzNZKY4fP65nOUilUjRt2hS//fYbWJZFcHAwxo8fjyFDhoBlWeTl5WHXrl1ISEjAvn37wDCMXlaIgIAAREZGok+fPrCzs3uq9ujWDxMTE+s8P23aNGzbtg0FBQXYvHkz+vbty53btGkTl3svPT0dvr6+T7xWXl4ecnNzwbIsl9Jn8uTJ8Pb2xqlTp5Ceno60tDS9qU6GYTB48GD49p+CHy8UGWQfAWqFT1V4GwAgsnCEWdibkLo2MyhHaiXKjm9GyekdEAqFMDY25mKm+vn5ITg4GGFhYY/Ne9e4cWNkZWVBKBRyga8BwGnIIghdWxhMbxb8/DlABMs3JqHm/k3k71gEu2FLILb+Y+bhr1qjPP8+vPA1AMLCwnDs2DEAtbn2QkNDcfDgQYNyuqmd27dvG5yLj4/HgAEDDBK16rCxsUFRURE0Gg0WLlyIJUuWoLy8vN7AylqtFgkJCRgwYACICGq1GsbGxggODsbw4cMxdOjQp06++md+++037N27FydOnMDvv/+Oe/fuobq6GmKxGMbGxhAKhaiqquKyKjg6OiIkJAQpKSlc362traFSqVBeXo42PYYg3y9KL7PB7WX99a5J6hoYN38DFp310zWJWcK9n+ZAdf8G5yyhIyAgAAsWLECzZs2we/duHD16FOnp6bh37x5qamqgUCjg4uICV1dX7N+/H6NGjcK33377XPcEACZPnozt27fj7t27dZ4fOnQozp8/j6tXr+LOnTt6SYZbtmyJ8+fPw8rKinNwqY/Zs2dj+fLluHbtGtzc3HDixAmEh4dj9OjR+Oqrr/TKKhQKVFZWgmEYiEQiuLm5oW3btlA2H4zjuTV11q+8exUiS2cwAhEqriTjwcEY2I9cCZG5vUHZPoGO+KSHF06dOoXTp08jLS0NmZmZuHv3LoqLi6FUKsGyLBQKBWxsbODq6gofHx8EBQWhXbt2CA8PR1FREezt7bFlyxa0atUK5y9fQ9SWTPz5GUhbU42cLwbD4Z01EFnU3rvChGUQGFvCPGKEXlmJkMXJ2R249WCehsXzjUw8/yilpaUQiUTQaDSIjo7GypUr6yynm3ari+vXr+ulRXqUmpoaFBQUoGXL2ifYNWvWYMiQIfWKHlDrzRcTEwOZTIb79++jsrISMTExiIuLw+jRozFy5Ei4uLigU6dOePfdd9GsmeETfX00a9bMoHx5eTn27duHw4cP4/z587h58yaXY6+goAB79uzhEpoCQEFBAcLDw5GQkIAxP53H7ZwKvfpcpu/g/q+tqcKdVW9C7m3otKDSMvDpPwVnl0cbnEtLS+OSoJqYmMDNzQ2dOnVC165d8frrr+s5sOiSlPr6+mLKlClPfS8eJSoqCqtWrYJWq60zUW5hYSEkEgkYhtETPa1Wi9TUVADQs+CB2u/+wYMHKCkpQWlpKZKTk7FkyRK89dZbiI+Px82bN7F69Wo0atSIc2zR5Tisqqri7jkRQaVS4fr16zA1NYVjs/qfpyUOTbj/G/lHouL3JFRlpkDU0tApq6xaBblcjsjIyDqzcajValy4cAEnT57ExYsXcfXqVfz888+IjY3Vy5px69YttG3bFiEhIWg/4dPa+/en2Q/1g1wwrIATPQAQ2bhBefuSwXUZADtS73AZ7XkaFrzwNQB27twJW1tbjBgxAgkJCVxi2z/TsmVLvT/2R8nKyqrXbX716tUAgM8++wyHDx9GUVERlixZ8tg2rV27Fvv378epU6cglUohlUrx3nvvcck5T506ha+//hq//PILvv/+e0gkEgQEBGDw4MF45513nnnNxsjICP3790f//vqW2uXLl7F3714cP34cCQkJeueSkpJg4eCKRpM2PHZNr/LqSQjkppA4G07/EYACkQ0sHVxRdPeW3jkTExOUl5fD398fx44de+y2hH79+mHJkiWYNm0a3Nzc0KtXL73zNTU1KCkpQXFxMcrKylBSUoKysjKUlZWhvLyc+xcAunXrppdkV5dP8fLly1yqIQcHBy6vYlVVFWepLl26FEuWLKkzMTAALi/h9u3bERcXh4cPH3LprJKTkyGRSLjvWyqVwszMDIWFhVxi4YCAAEyfPh3JKnOk5uXXf9P1L/7/d9oQE6nosR8VCoUIDg5GcHCwwblbt27B09MTKpWKe3DMyMhAxbFUKM2bGJTXqqrASPQfDlmJHNqaKoOy1WotMu49fGzbeF5eeOFrAOgcHRYvXgwPDw/cvHkT7u7uBuUCAwO53GhmZvoL73fu3IGlpWWd9S9fvhwsyyIyMhItWrRAq1atHrutIDMzExMmTMC8efMQEhJSZ5nWrVtzTjjV1dX44YcfsGnTJsyfPx9Tp06FnZ0dwsPDMXbsWERERDzNbagTX19f+Pr6Yvjw4bC3t4dQKAQRwcXFBe7u7jAK7o0rLANo61e+8kuHofDrUK+FKxAI0LzfOFze8aWek4tQKES3bt1w4MABmJubw8fHBzKZDNXV1VAqlaipqUFNTQ1UKhVUKhXUajVYlkXv3r3BsiyoNoCE3rUYhuFERCAQQCAQQCgUQigUQiwWg2VZbv+dToRkMhlMTEyQkZEBkUgEoVCIoUOHclnsV65cidu3b8PJyQmbN2+GmZkZTE1NYW5uDrlczlmPAQEBKCgowJ07d1BeXo5GjRrB29sbly9frtPCBIDevXsjPj4effv2xbJlyzgv3AdJmTiYUWiwxqetLofy7lVIXfwBVoCKK8lQ5qTDouNog7qlQhbe9sb1fm9PIiUlBSqVCnZ2dhg5ciRmzZoFMzMzvL3+HI5kGIoyK5KBlPoiR8pKsOK6Z0rKqlV1Hud5+eHX+BoYrq6uaNWqlYGrug6RSIQ9e/agSxd9j7mQkBCYm5tj3759ese1Wi2X5fvAgQOws7NDcnJyvdnRtVotnJycYGdnx02fPStXr17F6tWrkZiYiOzsbAgEAnh7e6N3796YOHHiY50V6qOyshIffPABwsLCEBkZCYVCAaDuhL+Poi7NR27MO3AY8w1EZvU7mWgzTyFn+yd6xxQKBZydnSGRSJCTk4MHDx7AxcUFLVu2hEKhgFwuh0Kh4ARI91q2bBkuX76MPXv2wMvLC+bm5jAyMqpXXB6lT58+uH79OtLT0w3O2dvbQy6Xw9zcnNvDp/t+AWDDhg0Gzj86pk+fjpUrV+LGjRuwt7eHu7s7iAhZWVl1bsPQkZaWxiXPfZTCciXaLj5iIHyaylLkb1sI1YM7AMNCZOkEs9BhkLkZeuv+1XW027dvo3HjxlCr1RCLxVCr1bV7FgfMQ2ldFt8zrPEBteuPKwYFPlfbeP5deIuvgTFx4kR88MEH9a7zGBsbIzU11UD4ioqK6vTkW7duHQDgf//7H2bMmAFbW9t6RQ8ABg4ciNLSUly9evW5+9CkSROsWrUKq1atglqtRlxcHH744QesWrUKH330EczNzdG6dWu8/fbb6NOnz1MJglwux9KlS/WOlZWV4cTZVEBcv6CVpx+BxMnnsaIHAJ269cL/Vk/CF198gVWrVqG6uhpDhgzRc1bZsmULhg8fzkWDsbKyqrOuIUOGwN/fH4MHD0ZOTs5jN7P/mZ49e9a7nUE3zR0UFMQdi4+PB1BrtUZFRdX5uSNHjmDFihVYt24dnJ2d4e/vj4qKiieKHgBuw/6fsTKSINzLGgev3NebZhbITWE/YsVj6wRqZz/bN7F+KtGrrKzE8ePHuXW+69ev4969eygtLeW8mHVrkSqVCjJlMaoEDGo0+s/8rFgKeZPWKDm2EZavT0JN/k1U3jgDu2GG0/5/1Rrl+Xd58ojC81IxdepUqNVqg4giOqysrHDlyhWD4yUlJWjUqJHB8Y8++ggMw6BLly7Yvn07Jk2aVO+1N27ciJ07dyIhIQHGxi/mj14oFGLQoEHYt28fiouLkZubi3HjxuHWrVsYPHgwRCIRvLy8MHnyZGRmZj5VnRcvXkR4eDjMzc1x99bjP1ORfgRGfh2eWKeJVAQbGxt8+umnyMvLw7Jlywwi5AwePBjZ2dlQqVRwcnLCzz//XGddLMvi/PnzEAqF3Mb3p2XAgAGorq6u07NTqVSisrJSL8jBokWLAEBv28ejlJSUoHv37ujXrx+GDx+OiIgIZGVl4dKlSwbT5c/KhAgPSIVPvzn8UaRCAcZHeHDv1Wo1Tp8+jSVLlmDIkCEICgqCra0txGIxFAoFunXrhjVr1iArKws+Pj6YOXMmDh48aNDn8vJyvGYL1LqnGGLReTxIXYM7q4aiMH4JLDuP19vKoIMA9A8yDPfG0zDgpzobIJGRkcjLy8Ply5cNznXo0AFKpZKLO6lDJpPh+++/13vq102DNW3aFBMnTsSUKVNQWVlZ5zaEu3fvolGjRhg3bhy+/PLLF9+pOtBqtTh8+DC++eYbJCcnIz8/HwqFAi1btkRUVBRGjBihZ5G8+eab2L17N8rLy2Fvb49evXrhjrE3rgjdoSbDQb/6zhXkb50Pp4kbwErqt7qkQhZTO3k9tQcfESE6OhqxsbEYNmwY1q1bV6fo5Ofnw93dHS1atEBSUtJT1Q3U7nGcP38+Zs6cqXdcIBCAZVls27YNffr0AfCH08qFCxcQGGg4Lefv74/i4mLcvn0bAwcORHx8PC5cuPDEfX5PS20c2iuoeob9k0JGC/fSi3iYmoicnBwUFRWhuroaLMvC2NgY9vb2aNy4MQICAtC6dWuEhYVxjkWZmZn48ssvkZiYiKysLO6hgmEY2NjY4OTJk3B3d8foDSkG1ujTwu/ja/jwwtcAOXPmDFq3bo38/HyD6bTRo0fj4MGDyMrK0jsuEAhw7tw5vWmwXbt2oW/fvkhISMD48eMRHByMuLg4g+tptVq4u7tDJpPVaU3+U5SVlWHt2rXYtm0b0tPToVQq4eDgAGNjY2RnZ0OpVHLOIrqtDnaNPGEUtcJgzxYAFO1bDVIpYdVj+mOv+7xrTXv27MGAAQNgY2NTb0Do9PR0NG/eHEOHDuWmnZ9ESEgIjIyMcPjwYe7Yo2t5ubm5cHBwQEJCAnr27AmFQsF5hD7K5MmT8dVXXyEzMxNLlizBV199haSkpMdOdT8PTxuEnbRakKYGFcc3wKzgErdRPSQkBOHh4XBwcDD4TE1NDTZu3Igff/wRKSkpKC8vh62tLSIiIjB2bO2ezMjISDRu3BjHjh2Dra0tACAtpwSDvz2tt7fzaeEjtzR8eOFroNjY2KBv376IiYnRO75y5UrMnz8fZWVl3LGamhpIJBJUVFTorSd5e3vj2rVrSE1NRVBQELKzs+Hi4mJwrZEjR2Lz5s3Izc2t1zP0nyY9PR0jRozA+fPnOZHT/QvUCl+LFi1w8uRJTNiS9q893T948AChoaG4du0avv/+ewwfPtygzP79+/HGG29gwYIF9cZZfZT33nsP3377rd5G9Pz8fNja2nIRYoBaL9+0tDS8++67Bns/Dx48iC5dumDDhg3Izs7G+++/j+3bt6Nfv37P1c8/U1JSgqSkJJw8eRKXLl3C9SIlKlzbQeQaWLtlQvTHQwRLajCsAK1djDCre+ATBSU9PR2rV6/Gvn37cPv2bYjFYvj7+2PgwIEYM2aM3rYSlUqFjz76CNOnTzcI1fc81igfq/O/AS98DZSZM2fi22+/5QJA69BF2Xg0jFR6enqda0ksy6Jx48ZwcnJCfn5+nVOnulBVu3fvRs+ePf+ezjwDP/74IxYtWoSsrCw0adIEYWFhOHToEG7evAkLCwuUl5dzjgxWVlYIDw9Hp0HvYMUleqZwZTpe1NP9tGnT8MUXX6BXr16Ii4szmPpcu3Ytxo0bhw0bNnChxerj8uXL8Pf354JgA3/MAshkMlRU1G7W101zFhcX663XFRcXw8HBAb1790bHjh0RHR2NNWvWYNy4cc/Up+rqapw8eRLHjx9HWloarl+/jtzcXJSWlkKj0UAsFsPc3BxOTk5o0qQJWrRogYCQdriutsDVvHIuCLu3vTH6BznVa1HrtsNs3LgRFy5cQGVlJRwcHBAZGYkJEybUu6XmaXgRKcF4Gh688DVQysvLYWJiggMHDqBjx47c8erqashkMjx8+JDbJL5t2zYMHz4c1dXVXLkjR44gMjISP/30E4YPH44dO3Zw60I6CgsL4eTkhKioKMTGxv4zHauDyspKzJ07F7GxsaiqqkJYWBhEIhGSkpKg1WrRpUsXLF26FE2aNMHWrVsxY8YMbN++HVu3bsXevXuRmZkJo8DXYd5hFCB8vJfio7zop/ukpCR069YNRkZGOHbsGDw9PfXOz549G0uXLn2q6UaRSIS4uDjuYWTbtm2IioqCnZ0d7ty5g8TERHTr1g329vYGjjA+Pj4oLy/H6tWr0adPH7z//vtYuHBhndfRRX05duwYzp8/j4yMDC5gdU1NDQQCAUxNTeHg4ABPT08EBgaibdu2aNu27TPnWnyU1NRUrFq1CocOHUJubi6kUikCAgIQFRWFUaNGPZMn7JN4XEowXcaO9k2sH5sSjKeB8WLz2vL8k7Ro0YJat25tcFwgENCRI0e495988glZWFjolWnWrBkxDENTpkwhU1PTOutv0qQJNWrU6C9lTv8r/P777xQZGUksy5KZmRl16tSJGjVqRADI1dWVVqxYUWfb1Gq13nuNRkM7d+6k14bNJJfpceQyK/7xmcDn1mYC/3OW+xfBw4cPqWXLliQQCGjNmjUG5/v160disZhu3Ljx2Hp0me1LSkro9OnTNHnyZBIIBNSyZUsiIvLx8SEAtHbtWr3PTZw4kUQiEe3evZsEAgGNGTOGiIiuX79O33zzDUVHR1Pbtm3JycmJpFIplwndxMSEPD09qWvXrjRr1izatWsXPXjw4AXdldr7smLFCgoJCSGpVEoMw5CzszONGjWq3kz2L5rCh9UUk3SDpmy5QG+vO0tTtlygmKQbVPiw+h+5Ps8/By98DZiEhARiWZaqqqr0jpuamtLSpUu599HR0eTm5qZXhmVZcnV1JRMTE5o2bZpB3boBMjc39+9p/GPYtGkTeXh4EMMw5O7uTq1atSKJREIikYi6d+9OGRkZz113Wk4xvfXdCXKfE0+uM3bqCZ7b7N3kMW8vjdlwjtJyil9gjwxZsGABsSxLHTt2JKVSqXeuRYsWZGJiQsXFhm2oqamhn376idzc3EgoFBLDMIRa7/o6X48+GGzatIkAUGhoKDEMQ3K5nIyMjLg65HI5ubq6UkREBE2YMIHWr19Pt27d+tvuwfHjxykqKors7e0JACkUCgoNDaW1a9ca/KZ5eF4kvPA1cIyMjGjevHl6x9zd3WnkyJHc+9dff52zBIiIUlJSCABNmjSJWJaliooKvc8fOnSIGIahzZs3/72Nf4TKykqaOnUqmZiYkEAgIB8fH3Jycnqidfe8PPp032vZL9RiwkpyjBxOrMyE5HI5tW3bltasWfO3DsBnz54lU1NTMjc3p7S0NO64SqUiZ2dncnJyIpVKpfeZzMxMEggEnLApFApSKBSPFT+5XM6JG8MwxDAMGRkZ0ciRI2nNmjWUnp7+j1j1xcXF9L///Y+CgoJILBYTwzDk5uZG48aNo99///1vvz4Pjw5e+Bo4I0aMIDs7O71jYWFhFBYWxr0PCgqibt26ce9btWpFAMjb25s6dOig99nS0lKSyWQ0YMCAv7fh/09GRgZ17tyZBAIBGRsbk6enJ4lEohdi3T0PDx8+pC+++IJee+01kslkxDAMOTg40NChQ+n48eMv/HrV1dUUFhZGLMvSp59+yh0vLi4mExMTatGiBaWkpFDTpk3p3r17RET01VdfkUQi4aYhraysHit8AEgikZCDgwNZWFiQl5fXPzZ9fejQIerfvz/Z2NgQADIyMqIOHTrQ+vXrDUSdh+efghe+Bs69e/eIYRi9dZARI0aQu7s7997V1ZXGjh3LvRcIBGRra0sMw+hZGkREgYGBZG9v/7cPjFu3biVPT09iGIasra3J2tr6b7Pu/gppaWk0evRocnV1JYZhSCwWU/Pmzenjjz+moqKiF3adZcuWEcuy1Lp1a6qoqCCNRkMJCQl6VpqpqSkneLoXwzDUpUsX7r2ZmRn3f93DhO49y7JkY2Pzt1qxBQUFtHDhQvL39yeRSEQsy5KnpydNmTLlieuWPDz/FLzw/Qfw8vKirl27cu+XLl2q57Bibm5On332GRERXbt2jQBQYGAgubq66tXz3nvvkUAgoJs3b/4t7ayqqqIZM2aQqakpNwj/m9bds6JSqWj9+vUUGRlJJiYmBIAsLS2pSfUsHQAAD3ZJREFUV69eFB8f/1xinZWVRT/88AONHTuWWrRoQSzL1mu1eXp60rZt2yg/P59UKhWZmJiQra0tERHXnpEjR3KCeP78eb1pUQDk7u5uMLX9V9BoNLR3717q1asXWVpaEgAyNTWlLl260NatW1+aBxgenkfhhe8/wDfffEMikYgbZI4cOUICgYA7L5FIaMeOHURUOw0KgEQiEX311VdcmZMnTxLDMPTNN9+88PbduHGDXn/9dRIIBCSVSrlB+mWz7p6V7OxsmjlzJnl7e5NAICCBQEDe3t40Y8YMys7O5soVFhbSjh07aPr06dS5c2fy8PAgY2Njbt1NJpORs7MzhYaGUnR0NPn7+3Pi9ei/crmctFotV++P23ZR86hZNHlLKvlPWEPuUYuo9dvvEyszoYyMDNqxY4ee6OlEMC4u7i/1Ozc3l+bOnUs+Pj56/Z41axbl5OT8pbp5eP4J+H18/wG0Wi3kcjmWLFmCjh074uLFi4iKikJYWBiqqqpw7tw59OjRA2FhYZg7dy4kEgm0Wi3Ky8vBsiwqKythZ2eHdu3aITEx8YW1Ky4uDvPnz0dGRgYUCgWUSiUXEFu37+6/Qnl5OZYvX45Nmzbh5s2bUKn0c7WJRCJYWlrC2dkZ3t7eaNGiBUJDQxEYGGiwmb2qqgouLi4oLCwEAEgktRu7lUoltm/fDs+Qjljz6w0kXSsAEellGRAyWmi1hE5+Djgd+yF+O1qbnNfU1BTjxo1DdHR0nbkcH4dWq8WuXbvw/fff49SpUygpKYGFhQXatGmD6OhodO/e/akyaPDwvCzwwvcfQKPRoG3btvjtt99QVVUFlmWfGPE/NDQUycnJAIA2bdpwqVzqClD9LNTU1GDBggWIiYlBaWkpJBIJqqur4erqiilTpmDSpEkNdpBUq9VISUlBcnIyLly4gKtXr+LOnTsoKSmBSqWCUCiEqakpHB0d4erqiqqqKmRnZ+P27dtQqVRwcXFB586dMXHiRIP8dY+yYsUKzJgxAyKRCEqlEgAQHR2NyspKnH0ggaDlgKeKNAK1CuXH1mNO/3aYMmUKF8vzabh16xZWrlyJhIQEZGZmgmVZNG3aFL1798aECRO4mJc8PA0RXvgaOGq1Gm5ubigqKkJVVW32aKFQCLVaDYZhIBAI9MKXPYqnpyeGDRuGRYsW4dKlS/Dx8XnudmRlZeHdd9/Fvn37uHiRDMPg9ddfb1DWnVarRUZGBpKSknDu3DlkZGTg1q1bePDggUGGAHd3dwQEBKBNmzZ6GQLq4tSpU/j6669x+PBh3Lt3j4tEMmjQILzzzjtclJ2HDx8iNDQU48aNg0qlwpkzZxAfH4/y8nJM+3o3EnKEepFFnoRUyGB+Nx+96DMPHz5E7969MWLECLz55psAan9HW7duxbp163D27FmUlZXB2toaoaGhGDt2bL1pjXh4GiK88P0H+Pzzz7Fw4ULO2gsKCkJKSgpYlgXLslCr1TAyMjKI0K+zDGfNmoXFixc/17Xj4+MxZ84cXLlyhRPchmDd3blzB7/++ivOnDmD9PR0ZGdno6CgABUVFWAYBnK5HLa2tmjUqBH8/Pzw2muv1Zsh4FmprKzEunXrsHnzZqSmpnJTzREREfD19cXHH38MoVCIuLg4LqHwjiPnMPfwfai0f+SRI7UKRQe+QnX2RWiryyE0s4N5+FuQNdYPqP1ovNH8/HyEh4fj+vXrCAwMROvWrZGYmIjs7GwIhUL4+vqiX79+GDduHCwsLP5yX3l4XkZ44fuP8OOPP2LUqFFQq9VYt24dRo0aBbFYDA8PD1y6dAk9e/bksnELhUJotVpuOlQsFiM+Pt4ga3t91NTU4MMPP8Tq1atRWloKhmHAsuxLZ939OUNAZmYm8vLyUF5eDq1WC6lUCisrK7i4uMDHxwfBwcEIDw+Hp6fnPyrYV65c4bIN3Lx5kzsuFArxxRdfYMKECXXmj9PWVKPsTByM/DtCYGqNqswUFMYvgcPbqyE0+2MqUpdhYmqwMV577TW9wOa2trZo3749xo0bh7CwsH+kvzw8/za88P2H0OVfW758OS5duoTLly+jffv2+OWXX+Ds7Iy9e/cCAGJjYxEdHQ2NRgOFQgEPDw/89NNP8PPze2z9t27dwqRJk7Bnzx5QrUcwnJ2dMW3atH/NunvWDAFBQUEICwtDUFDQM615/RMQEWxtbfXSDQFAQEg7VHacq+fEUh93v58I07ZDoPBuq3ecJQ1urxoOTWUpl75JIpEgISEBnTp1eqH94OF52flrngw8LxU9evTApEmTkJNfArc3RuO+ew6uGZnC661QZF88AVObi/h0wXs4ceIENBoN3N3d8fXXX6NTp05cCpu62Lt3L6ZNm4Zr164BqJ0i7dat2z9m3ekyBCQnJyM1NfWJGQL69+//QjIE/NOUlpaipqYGAQEBaN++PUJCQuDu7o5NFwrwy50nf15TUQzVg1yIrQ1zKgoEAnywLhEd7Gvv5cmTJ5GSksJ5jvLwvErwFt9/iLScEqw+cg1J1wvBMAyUf0qvotFqEdHEBgmLJ6J/+2CsWrVKT/DGjx+PM2fO4Pz581Cr1fjwww+xfPlyLr+bnZ0dZs+e/bdZd9evX0dSUhLOnj2L33//Hbdu3eKcdliWhZGREWxtbdG4cWM0a9aMW3f7r6xF3bhxA02aNIFIJMIbb7yBuXPnIjg4GFO2XsDui3cf+1nSqJG/bQGE5vaw7DqxzjJ9Ah2xYlDg39F0Hp4GBS98/xGeJaGmmAXe7+6r5+m3cuVKTJ48GQAQEhKCs2fPclnNO3XqhJUrV74Q6y4vL49zKrl06RKysrKQn5+PiooKEBHkcjmsra05p5JWrVohIiKizszwDQmVSoW8vDzk5eXh3r17yM/PR0FBAYqKivDgwQOUlJSgoKAAJ06cwKN/kmKxGI1HLkGleeN66ybSojB+CbTKStj0ex+MoO6JnEhvG3z/VvAL7xsPT0ODn+r8D1AreldQ9RQZxokApQb4JPEKAGDYa41w8OBBTJkyhStz5swZWFhYYN68eZgyZcozW3fl5eVITk7GiRMnkJaWxjmVlJWVQavVQiKRwNLSEi4uLggPD0fLli0RHh6Opk2bvlReoESEsrIy5ObmIi8vD/fv30d+fj6Kioo4wSotLUVZWRkePnyIiooKVFVVobq6GkqlEiqVCmq1Wm9PJcuyEAqFEIlEkEgkkEqlkMvlUCgUeslVhUIh5HI5Ro8ejSKvQBy5+bDeNhYlroSmogQ2AxbWK3oAYCIVvbibw8PTgOEtvgZOWk4JBn97GvdP70bFpcOoKciGomk4rLpPBQAoczNQcuwn1OTdABgWUhd/mHcaA6GRBWQiAXoqMvH5HMOpsfz8fFhbW9d73ZqaGpw9exbHjh1Damoq51RSUlICtVoNkUgEMzMzODo6ck4l7dq1Q6tWrf7yJvknobOu7t27h7y8PM66KiwsRHFxMYqLi1FWVoaysjKUl5ejsrISVVVVUCqVqKmpgVqthkaj4Swv3X5IoVAIsVgMqVQKmUwGuVwOIyMjGBsbw9TUFObm5rCwsIClpSWsra1hY2MDOzs72Nvbw87O7on9JiKIRCLIZDJ8/PHHGD9+PEQiEWKSMrHi0DW9qWsdRftWoyY/C7aDPwYrltVbt1TIYmonL4wJq99y5OF5VeCFr4Gjc3OvyDgJMAyqslJBqhpO+KoyU6BVVUPmFgSwLB4ciIGm/AFsB30IBkDF1ZMo+vkzSCQSqNVqLtTW559/junTpyM9PR1JSUlISUlBRkYGcnJy8ODBAyiVSggEAhgbG8PBwQEeHh7cZu7Q0FAoFIpn6odWq0VZWRnu3r3LTQXm5+ejsLAQRUVFKC4uNrCuKisroVQqn8u6MjIygqmpKczMzDjBsra2hrW1NWxtbWFvbw8HB4fHbkr/O9i9ezfCwsL01i0Ly5Vou/iIgfCpS/OR+/XbgEAEhv3DQ9Wi6wQY+bbXKysRsjg5uwMsjSR/bwd4eBoAvPA1YOoaEIuTN0BTVsgJ359R5t3A/U1z4TJtO4DaAXHjQDeMe/tNXLhwARqNBkCtF6BGowHDMDAyMoKNjQ3c3d3h7++P1157DREREbC2tkZNTQ23dqWbDiwsLERhYSG3dlVaWoqHDx8+k3UlEokgEon+NuuqoVHXPr6nRbePL2ZYyycX5uF5BfhvjQ6vGDvOP4WP+59Q5lyGyOoPRxG1WoWOo+ejNCVFr5xEIoG3tzfUajVnXaWkpODkyZNYvXq1gXUlEAg4wXrUujIyMuKE08vLC+bm5rC0tISVlRVsbGxga2sLOzu7f8W6akhMiPDAseuFqFJpnvmzUqEA4yM8/oZW8fA0THjha8Bk5JXVue5THzX5WSg9sRnW/eZzxzQQwNjZG6Wn9ctqNBqYm5tz04EWFhawsrIysK5sbW3/c9bVy0iAsxnmveH91E5MOmQiFvPe8EYzJ7O/sXU8PA0LfsRqwJRV1x18ui5UxXeRv20BzDuOhtRZP0JL52698PnXUxETE4Ply5ejrKwMPXr0wPbt2190k3n+ArrtJ0+7bUUqFGDeG95621Z4eHh44WvQmEif7utTl+bj/ub5MG07GEZ+HeqopzZX3Lx58zBr1izs3LkTlpaWL7q5PC+AYa81QjMnM3z16w0cvVoABtDL1iAVsiAA7ZtYY3yEB2/p8fDUAS98DRhvOxNIhHlQqrUgrQbQvUgLUtcArACaimLc3/wejFt0h3HzNwzqkApZeNsbc+9FIhEGDRr0T3aD5xlp5mSGmGEtUVSuxI7UO8i49xBl1SqYSEXwtjdG/yAn3nuTh+cx8F6dDZhHvTpLjm1E6YnNeudN2w4BGAalxzeBEenHrHSZvgMA7+bOw8Pz6sELXwOHd3Pn4eHheTZenvhQPM/FhAgPSIXPl16Hd3Pn4eF5FeGFr4Gjc3OXiZ7tq+Td3Hl4eF5VeOeW/wC8mzsPDw/P08Ov8f2H+O1OCe/mzsPDw/MEeOH7D8K7ufPw8PDUDy98PDw8PDyvFLxzCw8PDw/PKwUvfDw8PDw8rxS88PHw8PDwvFLwwsfDw8PD80rBCx8PDw8PzysFL3w8PDw8PK8UvPDx8PDw8LxS8MLHw8PDw/NKwQsfDw8PD88rBS98PDw8PDyvFLzw8fDw8PC8UvDCx8PDw8PzSsELHw8PDw/PKwUvfDw8PDw8rxS88PHw8PDwvFLwwsfDw8PD80rBCx8PDw8PzysFL3w8PDw8PK8UvPDx8PDw8LxS8MLHw8PDw/NKwQsfDw8PD88rxf8B6n+ZX7+91AMAAAAASUVORK5CYII=\n" }, "metadata": {} } @@ -893,34 +896,34 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 66, "metadata": { + "id": "jbJsvMMaoJoT", "colab": { "base_uri": "https://localhost:8080/", - "height": 387, + "height": 0, "referenced_widgets": [ - "72bf653fef2343c59a7c799946321f4c", - "a0c17be8947245e5a7bad66116ccbdc0", - "77698d23738f4ddfacb2cc5c024cbbac", - "a87f7b724d6e4ed08c29302a0630850f", - "d9896752c5074f4c881f0d05adf2ac6e", - "65e5245442ef4581bb4fabe69d006f5a", - "203cf875b0394bbd87f88063d63045e5", - "2043b80960744115973d998b6cbc409e", - "41c3562bbb614124927aca7861a55d26", - "70cb5a8b8ad84f149da55468f5f714b6", - "360991b094ba49678f0c76b8f5cd2ca2", - "b9b1cf0b5ea44994bff6e6b76011e706", - "1108b7846559471db06495a4ef8ab586", - "df176a8dd1284ee591f7a9de68ab047b", - "45fd76d940d244fb913fc87027a6dd44", - "42d220c7c5ba4407852625f83dd3fe32", - "a93252ce32284cd9a2621834848bf0f5", - "5d074e8f11904169affc47a612a72e45" + "e306e3842ce347479d1f0322e18eda72", + "2e7b9cf9087844afbe6cc93894ee765e", + "43f21efd763d455c9185522f1b624b56", + "b7e28eea44914188aac7cbfa2bf204f5", + "8adcf6f8e5c1456ba1805a66306b59b2", + "48f7e383ac69422599b992b0af06fbd8", + "30128f23f9ce44c6ab871e993fc2ad99", + "0b44513318a247369e5c954af2d568c1", + "081010354dee4adcaa1844f70906b87c", + "72f6db0ec6204faabed63db525cb5b6d", + "102afc34e75348e6a5873709b4d19fd0", + "86daeaaa159c43fa84c7ab044e5037ec", + "025fed965f7142fda9b97e7ac35b2918", + "3e20a90af4594f16a1dbce1f28321d08", + "e521d097ab8e4f3e8aa753384fc6668e", + "aa751d067797426f9b4a20dd86c75ca0", + "4e063f8333f44dbaaffd45a65dfa7f15", + "bd024a9a4f4d4bd9817299c4e6b69b21" ] }, - "id": "jbJsvMMaoJoT", - "outputId": "7c5565b8-efb6-4b26-f827-c1699fd8668c" + "outputId": "a04a48df-30b7-4e6c-82fb-9325b3c2bb3a" }, "outputs": [ { @@ -932,7 +935,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "72bf653fef2343c59a7c799946321f4c" + "model_id": "e306e3842ce347479d1f0322e18eda72" } }, "metadata": {} @@ -971,7 +974,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "77698d23738f4ddfacb2cc5c024cbbac" + "model_id": "43f21efd763d455c9185522f1b624b56" } }, "metadata": {} @@ -1010,7 +1013,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "d9896752c5074f4c881f0d05adf2ac6e" + "model_id": "8adcf6f8e5c1456ba1805a66306b59b2" } }, "metadata": {} @@ -1049,7 +1052,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "203cf875b0394bbd87f88063d63045e5" + "model_id": "30128f23f9ce44c6ab871e993fc2ad99" } }, "metadata": {} @@ -1088,7 +1091,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "41c3562bbb614124927aca7861a55d26" + "model_id": "081010354dee4adcaa1844f70906b87c" } }, "metadata": {} @@ -1127,7 +1130,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "360991b094ba49678f0c76b8f5cd2ca2" + "model_id": "102afc34e75348e6a5873709b4d19fd0" } }, "metadata": {} @@ -1166,7 +1169,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "1108b7846559471db06495a4ef8ab586" + "model_id": "025fed965f7142fda9b97e7ac35b2918" } }, "metadata": {} @@ -1205,7 +1208,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "45fd76d940d244fb913fc87027a6dd44" + "model_id": "e521d097ab8e4f3e8aa753384fc6668e" } }, "metadata": {} @@ -1244,7 +1247,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "a93252ce32284cd9a2621834848bf0f5" + "model_id": "4e063f8333f44dbaaffd45a65dfa7f15" } }, "metadata": {} @@ -1278,7 +1281,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:03 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHetero' Graph\n" + "[2022/08/05 20:43:03 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHetero' Graph\n", + "INFO:adbpyg_adapter:Created ArangoDB 'FakeHetero' Graph\n" ] }, { @@ -1288,12 +1292,12 @@ "\n", "--------------------\n", "URL: https://tutorials.arangodb.cloud:8529\n", - "Username: TUTy0d4nq3jcidztw4rf5nyy\n", - "Password: TUTg7njua0hhwpfr1u2m2b2zc\n", - "Database: TUTc7mc78w0qlchle9za0opmc\n", + "Username: TUTctbabijgogsqfi4r0hj59\n", + "Password: TUTkpfg3sjmx88qu3aoi90ucs\n", + "Database: TUT6uidw6608c3fel9fgotpk5\n", "--------------------\n", "\n", - "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUTc7mc78w0qlchle9za0opmc/_admin/aardvark/index.html#graph/FakeHetero\n", + "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUT6uidw6608c3fel9fgotpk5/_admin/aardvark/index.html#graph/FakeHetero\n", "\n", "View the original graph below:\n", "\n" @@ -1351,26 +1355,26 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 67, "metadata": { + "id": "_y6x5ajX0Wz9", "colab": { "base_uri": "https://localhost:8080/", - "height": 954, + "height": 0, "referenced_widgets": [ - "c82a9032b090468aa6fa23ac01e054c3", - "461bdcf0a59e4935b3b7ea862cdbf15c", - "04f17d90e16246adb44181662237c623", - "2bdb60e6f9ed4fbd85081741c6e060ce", - "9d04be0b3cb64054bd706f5ac1a80628", - "e5ffcb18eb064412bdf23892e8961da5", - "1bc7519a45de4685960b8a295ce00ba5", - "d43bd7c8f0e0416eaf61003f892e0922", - "38f5887b484e47e7b6ddb9567fa8a12c", - "afe3766f0d2640989e3d0d3893f08498" + "1238bda15cd946ec99e5f20a6fb2f4ab", + "53b58ff76beb4ae29d814555952eb623", + "7c5cc29625bc46449219cb2b79e410a5", + "8a99ea6feb894e9ea71723e275085bfb", + "af2ba9e623a4448bbae3f659cb4b8f51", + "7c897c9ae80a46bab7051993d610e26a", + "89712a0b84924634b2cf8d951544839a", + "fba4f4ef7b8c46f1ac54c35ffadcc8a2", + "de0b2c76a1fa48bf9d886a9a4a5d1aa2", + "1d556623fe4b4edf875b8df7dd014773" ] }, - "id": "_y6x5ajX0Wz9", - "outputId": "f89a1590-c728-482e-a2fe-9b426cf636cc" + "outputId": "588f05f9-a2c9-4b54-cf8d-064ceb5005ba" }, "outputs": [ { @@ -1379,21 +1383,21 @@ "text": [ "HeteroData(\n", " \u001b[1mv0\u001b[0m={\n", - " x=[18, 2],\n", - " y=[18]\n", - " },\n", - " \u001b[1mv1\u001b[0m={ x=[19, 3] },\n", - " \u001b[1m(v1, e0, v1)\u001b[0m={\n", - " edge_index=[2, 154],\n", - " edge_attr=[154, 2]\n", + " x=[15, 2],\n", + " y=[15]\n", " },\n", + " \u001b[1mv1\u001b[0m={ x=[19, 2] },\n", " \u001b[1m(v1, e0, v0)\u001b[0m={\n", - " edge_index=[2, 141],\n", - " edge_attr=[141, 2]\n", + " edge_index=[2, 142],\n", + " edge_attr=[142, 2]\n", + " },\n", + " \u001b[1m(v0, e0, v1)\u001b[0m={\n", + " edge_index=[2, 115],\n", + " edge_attr=[115, 2]\n", " },\n", " \u001b[1m(v0, e0, v0)\u001b[0m={\n", - " edge_index=[2, 134],\n", - " edge_attr=[134, 2]\n", + " edge_index=[2, 115],\n", + " edge_attr=[115, 2]\n", " }\n", ")\n" ] @@ -1407,7 +1411,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c82a9032b090468aa6fa23ac01e054c3" + "model_id": "1238bda15cd946ec99e5f20a6fb2f4ab" } }, "metadata": {} @@ -1446,7 +1450,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "04f17d90e16246adb44181662237c623" + "model_id": "7c5cc29625bc46449219cb2b79e410a5" } }, "metadata": {} @@ -1485,7 +1489,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "9d04be0b3cb64054bd706f5ac1a80628" + "model_id": "af2ba9e623a4448bbae3f659cb4b8f51" } }, "metadata": {} @@ -1524,7 +1528,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "1bc7519a45de4685960b8a295ce00ba5" + "model_id": "89712a0b84924634b2cf8d951544839a" } }, "metadata": {} @@ -1563,7 +1567,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "38f5887b484e47e7b6ddb9567fa8a12c" + "model_id": "de0b2c76a1fa48bf9d886a9a4a5d1aa2" } }, "metadata": {} @@ -1597,7 +1601,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:05 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHetero' Graph\n" + "[2022/08/05 20:43:07 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHetero' Graph\n", + "INFO:adbpyg_adapter:Created ArangoDB 'FakeHetero' Graph\n" ] }, { @@ -1607,12 +1612,12 @@ "\n", "--------------------\n", "URL: https://tutorials.arangodb.cloud:8529\n", - "Username: TUTy0d4nq3jcidztw4rf5nyy\n", - "Password: TUTg7njua0hhwpfr1u2m2b2zc\n", - "Database: TUTc7mc78w0qlchle9za0opmc\n", + "Username: TUTctbabijgogsqfi4r0hj59\n", + "Password: TUTkpfg3sjmx88qu3aoi90ucs\n", + "Database: TUT6uidw6608c3fel9fgotpk5\n", "--------------------\n", "\n", - "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUTc7mc78w0qlchle9za0opmc/_admin/aardvark/index.html#graph/FakeHetero\n", + "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUT6uidw6608c3fel9fgotpk5/_admin/aardvark/index.html#graph/FakeHetero\n", "\n", "View the original graph below:\n", "\n" @@ -1624,7 +1629,7 @@ "text/plain": [ "" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd1iV5f/HX2fAOWyQKS5UHJQTcAHiLCVH5h6B5soyRzlSM7dZajlT6+tIXLhymxMXmAoOFAU3iAjI3mc/vz/4+RQ5sjKzeF7X5cXFM+77fg7H8z6f+7NkgiAISEhISEhIlBHk//QCJCQkJCQkXiaS8ElISEhIlCkk4ZOQkJCQKFNIwichISEhUaaQhE9CQkJCokwhCZ+EhISERJlCEj4JCQkJiTKFJHwSEhISEmUKSfgkJCQkJMoUkvBJSEhISJQpJOGTkJCQkChTSMInISEhIVGmkIRPQkJCQqJMIQmfhISEhESZQhI+CQkJCYkyhSR8EhISEhJlCkn4JCQkJCTKFJLwSfwriYiIYNy4cTx8+PCfXoqEhMS/DEn4JP6VnDt3jgULFuDh4cGoUaMkAZSQkHhuZIIgCP/0IiQk/ghGo5Fx48axePFijEYjcrkcQRAYNGgQ6enpKJVKXFxcqF27NrVq1aJBgwa4urr+08uWkJB4RZCET+JfQ2xsLD/88AObNm3CYDCQnp4OgFKpxNfXl6+//pqMjAw0Gg2pqanEx8dz/fp1zp8/T7169ejZsye9e/fG0dHxH34SCQmJfxJJ+CReeTIyMpg0aRK7d+9m8ODB9OvXj4MHD/LJJ5/QtWtXvvjiC2rWrPnU+7VaLYcOHSIsLIxDhw4xceJEhg8fjkqleolPISEh8aogCZ8EAAMGDCA/P58vvviCWrVq/dPLETl79ixdunShR48ezJgxA3t7ewBycnLIzs6matWqf2i8uLg4xo4dS0JCAnv37v3D90tISPz7kYRPAoDGjRsTHR2NSqXirbfeeiUE8OjRo/Tu3Zs1a9bQsWPHFzr20qVL+eKLL9i5cyeNGzd+oWNLSEi82kjCV8YxmUxERETQt29fkpOTS50bPHgw27dvR61WU7lyZTFYpHnz5vj5+SGX/31Bwffu3cPX15ctW7bQsmXLv2WOXbt2MWzYMM6fP4+7u/vfMoeEhMSrhyR8ZZSMjAy++eYb1q9fj729Penp6aSmpmJhYUH16tWZPXs2HTp0IDc3l+LiYhISEoiPjycuLo5Dhw6RmZlJjx49+Pjjj6lSpcoLXZsgCLRt25Y2bdowadKkFzr2b5k5cyZHjhzh2LFjf6uQS0hIvEIIEmUKo9EoLFu2THB2dhY++OADISYmRhAEQQgKChIaNmwohIeHCyaT6XfHuXbtmjBx4kShXLlywoQJE4Tc3NwXtsaTJ08KNWvWFAwGwwsb82kYjUahQYMGwp49e/72uSQkJF4NJIuvDKHT6QgJCSEhIYHvv/+eevXqiecevQ1kMtkfGjM5OZkJEyYQHR3N/v37X0iwSK9evQgICGDEiBF/eaznISwsjGXLlnHy5MmXMp+EhMQ/iyR8ZQSDwUDnzp1RqVRs2rQJtVr9QsdfsmQJc+bM4cCBA6UE9Y8iCAKOjo5cu3YNNze3F7jCp2MwGHBwcODevXs4ODi8lDklJCT+OSSnRhlh9uzZGI1Gtm7d+sJFD2DEiBF89dVXdOvWjdzc3D89TlJSEiqV6qWJHvySAH/27NmXNqeEhMQ/hyR8ZYDLly+zbNky1qxZg1Kp/NvmCQ4Opk2bNowcOfJPj5GWlkaFChVe4Kqej+rVq5OUlPTS55WQkHj5/H2fghKvDAsWLGDMmDEvJWR/3rx5VK1alVu3buHp6fmH7zc3N0en0/0NK3s2f9S3KSEh8e9Fsvj+4+Tm5rJjxw4GDhz4UuazsbFh2LBhLF68+E/d7+zszIMHD3jZruf09HTs7Oxe6pwSEhL/DJLF9x/n/Pnz1K1bFycnp5c2Z9euXQkJCflT97q7u2NjY0N8fDxeXl7PdU9GgZZt5+8Tn5pHnsaArVpJbTdbevhUxNH69+txCoLAmTNnWLRo0Z9as4SExL8LSfj+48TExFC/fv2XOmfdunVJSEggLy8PW1vbP3z/m2++ybZt2/j888+feV1MUg7fHr/FiRslXRq0BpN4Tq1MZcGRG7Ss5cyHLTypX8n+qeOcO3cOS0tLKleu/IfXKiEh8e9D2ur8j1NQUCAWdn5ZmJmZ4eDg8KejOz/++GOWLFlCQUHBU69ZfyaB3v87w+G4NLQGUynRA9D8/7FD19Lo/b8zrD+T8NSx5s2bx8cffyz5+SQkygiS8P3HUalUaLXalz7vX/HR1a5dm3bt2jFhwoQnnl9/JoHZ++Mo1hv5vWkEAYr1Rmbvj3ui+B04cICzZ8++NB+ohITEP4+01fkfx8PDg4iIiJc6Z1FREdnZ2Tg7O//pMZYuXYqvry/r16/n3XffFY/HJOUwc/dlkvctRZNwCZOmAKW9Gw4t+mNR3RcAk15DdvhqiuIjEEwGzJ2r4vbuV8zeH0+9ivbUq1hiAScmJjJgwAC2bNmClZXVX3toCQmJfw2S8P3Had68OcOGDcNkMj13Eea/GiwSHR1NnTp1/lKivJ2dHdu3b6ddu3bk5uYyfPhwAL49fguNTo/Sxgm3vl+isHOm+HY06bu+wn3gUpT2rmQdWIpgMuI+ZDlytTW6h3cB0BiMLDt+ixXv+nLp0iU6derE559/TmBg4J9ep4SExL8PqWRZGaBJkyZ8+umndO3a9ZnXPTtYRI4AzxUsMmTIECpVqsSUKVP+8trv3LlDhw4daNKkCeM+n0HXH64+5s8DeLDqI+z8+2DuXJmUtZ9Qcfha5CrLx65TKeUMcrrL/NnT+Pbbb+nRo8dfXqOEhMS/C0n4ygA7d+5k5syZREVFPdXqK/GbxaMxPNtvJpOBWqngs7dq825Tj8fOJycnU7duXW7cuPHCUihyc3OZPXs2oVEpWDXtgRFFqfPGwmzuLxuI+8DFaB/cIO/cj6irNKDw6jEU1g7Y+ffFqrZ/ycUGHY4pZ/jh03epW7fuC1mfhITEvwspuKUM0LlzZywtLZkzZ84Tz7+oYBGj0ciAAQP46KOPXmjeoJ2dHXPnzqXju0MfEz3BaCBj93ys67bBzLESxvxM9OmJyFWWVPxoLeXeGEbmvgXoM/6/HJnSnMBOvSXRk5Aow0g+vjKAXC4nLCyMRo0aUbduXTp37iyei0nKYfb+eNLO7KLwylF06QlYebXAqePHAGiT48k5tR5d6i2QyVFXrovDG+9TbF2uVLCIIAhMmjQJvV7/QrY4f4vJZEIvMyt1TBBMZOz9GhRKyr0xDACZ0hzkSuz8eyOTK1BXrou6cl2K717AzKkSAHkawwtfn4SExL8HSfjKCBUqVGDHjh106dKF+/fv8+GHHwL/HyxiMKK0dsTOrxfFdy8g6H+plWnSFGDdoD0WVb1BLifr0Aoy9y3EtdcMMVhkcc96DBs2jJiYGCZNmsTkyZP58ssvn3tter2eBw8ekJyczP3795/488GDB7h3mwhVGgEl6RKZ+xdjLMzBpcc0ZIqSt7KZi8fjE/wmP89Wbfb4NRISEmUGSfjKEE2aNCEiIoKOHTty6NAhJk7/ghM30hEEsKzlB4A29RZGfYZ4z6MUgUfY+HQkbeNEoGTb82hcGr4BLangaEeNGjUIDg7GaDQyZ84cZDIZhYWFTxWz+/fvc//+fbKysnBxcaFixYpUqFBB/Onj4yP+7u7uztpzD1hw5AZag4msg9+iz0zCtfcs5Ga/RJqqK9VBaetM7s9bsGvWE+2D62juXcGh1Xsl55Vyape3+btfagkJiVcYKbilDKLRaFi8eDELDlxB3ag7gvyX7z/ZJ9dhzMsQtzp/S17ULgrjTlI+5OuSAwYd1QrjOPPDLHQ6HUajEZlMRq1atUhNTUWj0TwmaL/96erq+lztkjIKtPh/FU5hZirJyweCwgyZ/BefX7n2w7F+vRW69EQyf1qMPj0Bpa0L9oHBorCrlHJOf9r6udIyJCQk/ptIFl8ZRK1WM378eO64nuFAfOZz36d7eJfcyE04d5v8y0GlOfcLTGi1WjFiVK1WM3v2bFq2bImDg8MLKwXmZK2iRU1nDseZqDJh71OvM3eu8osw/woZ0KqWsyR6EhJlHEn4yjC630RIPgt99gMebpmKQ9uhqCvVKXWueZt2nJo3hPXr17Ns2TLu3LmDvb095cqV+0vrS0xM5Nq1ayQlJXHnzh327duHuZsnCt+BGP5EQLJRr2HbjPep+bAf9erVo1q1alSqVAkzM8nnJyFRlpCErwxjq36+P78h9yFpmyZj598b6zqtHztvqQRXV1fGjBnDmDFjuHHjBh4eHn95fa1bt+bBgwdAyfYsQEcPD4YH1WLekdsU6x9PZH8aZjKB3NMbybx5gTFjLqBWq5HL5eh0OhITE19Kk14JCYlXAymPrwxT280WlbLkLSCYjAgGHZiMIJgQDDoEkxFDfgZpmyZh49MRm4ZvPTaGzKhn04qv8fHxYdSoUWzduhVra2vMzc2fOOfJkye5dOnSc63vq6++wmg0iqLXokULWrZsyed9WjH+zRqYK0q2L5+FDBAMWkYGVmTD9GFYWloik8nQaDQUFRXRsmVLypcv/9T7Mwq0rDhxm9GbLzJwbRSjN19kxYnbZBa8/MLfEhISLwYpuKUM8yhYRGswkXNqA7mRm0qdt/PvAzIZuREbkZmVrrtZecw2oCRY5Nhof+7GXyEiIoLIyEgiIyOxs7PD39+fgIAAAgIC8PLyQi6XExAQwJkzZ2jTpg1fffUVDRo0eOLazpw5Q0hICAkJCej1ehQKBUqlEp1Oh0qlonnz5kTGJdGo/2QSdFYolUoMwi8yqFbK0ep0NHA1w6PwOtGHfuTYsWPExcXRsGFDjEajeO38+fMZM2ZMqflfVPk2CQmJVw9J+Mo4Q9dFczgu7XcrtjwRk4nCmz+TsWMOcrlcDGIZNGgQo0aNIjIykoiICCIiIsjOzsbPz4/Lly+TlJSETCZDqVRStWpV5s6dy/Xr11GpVLi4uHDgwAF27dqFyWRi5MiRzJ49u9S0SqUSg8GATCajRo0ayNQ2ODfphG+bt9m5/yByo5Y+QYG4a+6xc/N6Dhw4QPv27WncuDGzZs0iLCyMPn36UK9ePWQyGTExMXh6enLmzBkcHR1fWPk2CQmJVxNpq7OMYTKZSEhIYP/+/QwdOpT6ylTUyucPcik9mJ68n7eK4xqNRoxGI+bm5rz22msMGTKEtWvXcvbsWcaNG8etW7dISiopHSYIgpi4fuLECZKSkjh+/DiDBg1i48aN5ObmUrVqVZydndm1axcq1S+RmAZDSeUVBwcHbt++TVV3Z7q/bs+CXg2wvxxGzcyf8dQnMOjdXsTGxnLt2jXWrVvHmjVrOHz4ML169eL06dM0a9YMg8HA3LlzuXv3Li4uLoxYvOWF9fqTkJB4NZGCW8oQHTp04MiRIyiVSvR6PXq9njV+fkxoF8iXB6//oWARczmkHFlZUsrsN2i1WjIzM1Gr1cyaNYsVK1YQFBTE119/zaxZs4iKisLb25t+/fqRm5vL8ePHiYiIwGQyYW5ujr+/P/PmzSM9PZ2tW7fy6aefolarn9hQ19zcnPv37+PnV5KnZ2trS8WKFYmNjUWlUjF8+HAWLFjAqlWrWL9+Pf369eP8+fM0a9aMpk2bsnTpUr744gv27NnDxPkr2HVPQdaBuWgSYjDpNSisHLBt2g2b+u3QZdwjc+83GLJTSuZ288ThjffBqfJjvf4kJCReXaStzjLE1KlTmTt3rhgs4u7uTmFhIfb29swKO/5c23sgYGGm5NM3azC0tRd6vf6JV8nlciwtLQkKCmLRokViAMmBAwewtrYmICAAgL179/LBBx/g5ubG7du36dq1KwUFBURERKDX63FxceHhw4e0adOGvXv3kp+fL86hVCpp3749x44dIysrC3Nzczp27EiDBg04f/48P/30ExkZGdSoUYP4+HhcXV2ZPn06J06c4PDhwygUJZbuwYMHCQ4Oxnvkcq4XqtCm38PMwR2Z0gx9ZhKpGyfi0mMaZvZumDSFKOxcQDCRf2EfBTGHcB+0FJkM2r3myop3fR9/MSQkJF4ppK3OMoIgCLi6uqLT/VKHMy0tjdzcXIKDg3m3qQdz2roQUMUGpUxAKSutfgpMyAUTwr1LTGikZkBAdcaOHfvYPKNHj6ZDhw6YTCYKCgrYuXMnc+fOJTOzJFG+ffv2BAQEkJGRQb9+/fjoo48oV64cNjY2XL58mZUrVxIWFkZSUhLjx48nJSWFdu3aERsbS1FREQA2NjbY2NhgNBpp2bIl3t7eYhSpjY0Njo6OXL16FQAnJyd69erFsmXLAJg8eTIymYyZM2eKa27Xrh27D4YTn6dAQIa5cxVkyke5fTJkyDBkpyBXW6O0dxV9mTKZXLT+BAGOXU+Xoj0lJP4NCBL/eTIzM4UuXboIDRo0ENasWSMA4j8LCwshNjZWOH78uKBQKISePXsK5T1qCG9PWCKMDrsoDPzhnDA67KJQud1AQW5hK4waNUpo2LChYDAYhKSkJMHc3Fwcy9raWpDJZIJCoRDWrFkjvPXWWwIgyGQyQaVSCWPGjBHS09OFTZs2CW5ubkLHjh0FJycn4csvvxQMBkOpNe/Zs0dwdXUV4uLiBEEQhCtXrghqtVowMzMTKlWqJKjVagEQXFxchIYNGwobN24U7t27JwwdOlT49ttvBUtLSyEnJ0cQBEGIi4sTXFxchKKiIkEQBCElJUUoX768cPToUXG+5cdvCTU/2ydUmbBXqDJhr2Dd8C1BplQJgGDuWl2o9MlW8ZxMZSUgkwsgE+yavyserzV5v7DixK2X9FeVkJD4s0hbnf9xTpw4QXBwMN27d2fOnDmoVComTJjA3LlzAXB0dGTWrFmMHj0ajUZDQEAAERERhISEsHbtWnGc8uXLk5qaCkCNGjUYP348gwcPpl27dkRFRTF//nymTJlCeno6Op0OtVrNokWLaNeuHV26dOHSpUvIZDJkMhn29vb4+vpy584dNm7cSKNGjUqtOTIyki5durB3716aNGmCyWSiWbNmREVFsWjRInr06EH58uVp2bIlxcXFeHl5kZOTQ2RkJBqNhurVq5OVlcXMmTPp168fCoWCjh070qVLF+RyOVu2bMHX15fVq1dz8eJFXF1dGb35IjsvPSi1DsFkRJscj+beFeyadhc7QACYdBoKY4+isHXB0vOX9b/ToAILej05RUNCQuLVQBK+/ygGg4Hp06ezatUqVq9eTfv27QE4deoU3bp147vvvuOjjz7C3t6ehIQEcRtRLpdjMpnw8fEhOjpaHM/S0pLi4mLxdxsbG5KSktDr9chkMhwdHZkzZw5z5szhtddeIzo6GjMzM1q0aEFoaCgLFy7kyy+/5NHbTaFQMHLkSCZNmlSqaW1sbCxt2rQhNDSUdu3aAfD9998zbtw4rKysePDgAVu2bKF///5YWlpiNBq5ceMGLi4uCILAqFGjuHv3LvHx8eTl5aHVamnatCnly5fn2LFjdOzYkW+//VYMllGpVHTt2pWsur2Iy31ydGvmgaWYOVXG1rdzqeOCYOL+on64D1mOwqokqKVNbRdW9W/0pGEkJCReESQf33+QhIQEAgMDiYqK4uLFi6LoXbp0iW7durFhwwbeeecd4uPj8fPzK5XMbTKVRHZeuXKlVBTlo4CYR+Tn5zNjxgycnJxwdHREEAQ2bNjAxo0bcXR0pHHjxlhYWHDkyBEqVKjA1q1bGTFiBLa2tqjVakwmE8uXL6dq1apMnDiRjIwMEhMTCQoKYsGCBaLopaWlMWHCBPLy8tiwYQMAS5cuxdraGi8vL8zNzXFxcQFAJpNRtWpVqlevzuDBg3nzzTeZMmUKMpmMI0eOcO/ePb799lvxeQRBQKPRsGXLFlIT7zz9BTWZRF9eKQQBwaDFmP9Loe/ivKwnRp9KSEi8OkgW33+MzZs3M2LECCZMmMDo0aPFjgk3b96kRYsWLF68mO7du5e6Z9q0aaxdu5bExEQEQUChUCCTyQgPD6d58+YYjcZSbYPs7e3ZvHkzffv25fTp09SsWZPr16/zxhtvkJiYiNFoZPjw4ezatYvMzEyxVZGrqyvHjx/H09OTmTNnMmvWLEwmE1ZWVphMJlQqFZ988gmfffaZOFe/fv346aef8PT05Ny5c6SmpuLh4cHw4cMpKipi8+bNTJgwgcuXL3Pz5k1u3LhBfn6+KOaWlpY4OjpSsWJFCgoKuHXrVinL9RF1enxMsWcrtAV5aBJjsPBsjExpjibhEuk7vsCp83hkSnMUFraYuXgg6LXknFxH0fVIKgxbWdL53ahHGXeQ1GPraNasGW3atKF169Z4e3s/V9slCQmJl4MkfP8RCgoKGDlyJBEREWzatAkfHx/xXHJyMgEBAUyaNIkhQ4aUus9gMFCtWjV27NhBnTp1cHR05O2338bJyYkPPviA2rVrA/Dhhx/SqlUr+vfvj8FgQKfTMW/ePE6ePMmePXvYvHkzmzdv5scffyQuLo5BgwaRmppKVlYWOp0OrVaLjY0NTk5ObN68GR8fH3Q6HUOGDCE0NBQACwsLzMzM+PDDD/H09OTAgQOEh4eTlZXF8OHDSUpK4uzZs6SlpYnVWwDs7OxwcXHBw8MDpVJJRkYGX331FV27dqVt27acPXuW5ORk8ZkfWbW/RmFlT8UP12DUFpG+Yw66h3dBMKG0c8HGpxM2DdpTGB9Bzsn1GPMzkCnNUbnXxL5Ff8xdqpaMgQnZ7s+R64to0qQJZmZmREdHc+/ePQIDA2ndujWtW7emTp064hcSCQmJl48kfK8QGQVatp2/T3xqHnkaA7ZqJbXdbOnhU/GZPeQuXLhAnz598Pf3Z/HixVhbW4vnsrKyaN68OSEhIXz66aeP3bt161YWL17MqVOnKCgoEH13FStWfOJc7733Hj/88AMnTpygSZMm1KlThyVLlnDx4kUyMjIoV64cCxcu5LPPPiM2Npa9e/ei0Wj47LPPmDlzplhrc8KECYwfPx69Xk9gYCDXr18nLy8PmUyGXC4vtf0qk8lwcnLC3d2dmzdvolQq2bhxI6NHjyY/P5+ff/4ZGxsb1q1bx9q1a7l27ZqYX+jp6UmrVq3o27cvgYGBzJgxg+nTpz/2XFZWVli2G41VzWb8mf8QgsnEa3Z69k3owtmzZwkNDWXLli3Ur1+fLl26YGtry88//0x4eDg5OTm0atVKtAg9PT1fWM9CCQmJ30cSvleAP1sQ2WQyiUEjixcvpnfv3qXGLSgooG3btjRv3py5c+c+8cPV39+fTz75hG7duhEaGsrQoUMf8+f9msTERDw8PGjUqBHnzp1jz549jB8/njfeeIOwsDB8fHz46KOP+OSTT2jWrBlLliwhOjqabt264efnx+nTp8nOzkYulyMIghjsYmFhga2tLbm5uY/Nr1Ao8PX1ZdmyZbRq1YpRo0YRFBREy5YtEQQBMzMzioqKsLa2pmLFiuTl5REeHs6AAQOYO3cuzZs3Jy4ujrFjx3Lo0CHRUvwt5m41qDhgPsY/0KfwEYJeQ9qmSTSq5sK2bdtwdXVFq9Wyd+9eQkNDOXHiBB07diQ4OJiaNWty8uRJwsPDOXr0KDKZTLQGW7duTaVKlf7w/BISEs+PJHz/MH+2IHJaWhr9+/cXgz6qVq1a6nqtVkunTp2oVKkSK1eufKLonTt3jp49e3Lr1i2USiU9evQgNjaWuLi4Z67ZwcGB3NxcdDoder2e119/neTkZKpVq4abmxunT5/GxcUFjUZDbm4uer1e3Nqzs7PD2tqa+/fvY2ZmhtFo5LvvvmPgwIHiGpcvX86HH34ozieXyzEzM8Pa2pqsrCwUCgUGg0FsIPvZZ58xfPhwnJycuHz5Mv369ePKlSsMHDiQ4uJizpw5Q2JiIs7Ozuh0OnJycp74XOfOnaPzJ/Mwa9wLubn6idc8CUGvJTt8FYq7p8nJycHMzIzvv/+e/v37i8+Unp5OWFgYoaGhJCcn069fP0JCQqhTpw43b94kPDyc8PBwjh07hr29vWgNtmzZUgzekZCQeDFIwvcPUiJ6cX+oRqaFmZwuHgJrJw9m0KBBTJ069bHACaPRSJ8+fTAYDGzZsuWpgRX9+vXD29tbbMnj4eFB69atWb169WPXmkwmbt68SUREBEuWLCEmJgY7Ozvy8/NL+cyUSiWenp54eXlRp04dGjduTEBAAPb29mRkZNClSxcqVKiAQqFg8+bNqFQqnJ2dadq0KcuXL8fe3p7AwEDOnj37VMusc+fOVK5cGblcTlhYGKmpqaLA3L17l+bNm9O8eXO2bduG0WikYcOGJCUlkZmZyVtvvcWAAQMeC/Bp3bo1hw4dwtvbmzvyCji0GYRMYY7sGb44wWRCKROY2rku1qkXGThwIG5ubly/fh0oCQIaNGgQ7du3p2nTpuIW9KOi2evXr8fJyYmQkBD69u2Lq6srJpOJ2NhYUQhPnjxJ5cqVRWswMDAQe3upHqiExF9BEr5/iJikHHr/7wxFxRoyDy1Dk3AJk6YApb0bDi36Y1G9dM3HnIhN5EZswKX3LCwrvcYUf1vee7vNY+MKgsD777/P7du32bdvH2r1ky2X5ORk6taty507d8QPUoVCwRdffIFcLicmJoabN2+SnJxMVlYWxcXFyGQycUvyUTL7gAEDqF27NtOmTUOv13Pt2jVq1qz51Od+lCQfGxvLuq07mfDdTvIVtqhs7NHm52DISCT34gFMxXk4OTnRrVs3Hj58yI4dOwBQqVR4e3tz7tw5GjRogKurK/v27UMQBLZs2cKUKVO4ceMGbm5u1KxZk59//hmj0UinTp34/vvv2bhxI5988gm/fdtv2bKFDz74QCytZu7miW2zHlhWb4RcJkNQmInXqpVyDEYjspSrlEs7T3lzHevXryctLY2goCA6dOhAZGQkUVFRKJVKPDw8SE5OxsvLS+xP6O/vL0a5hoaGsnv3bvz9/QkJCaFTp05YWFgAJcFH58+fF4XwzJkzeHl5iUIYEBCApaXlM99rEhISpQ/uVbUAACAASURBVJGE7x/iUR88o1ZD3tntWNdti8LOmeLb0WTsnof7wKUo7V0B0GenkP7jLEzF+Th2/ATLqg0eK4h869YtPvjgAzw8PLh06RLh4eHY2Ng8Nm9WVhanTp1i7ty5pKSkYG1tTUpKCjk5ORgMBhQKBdbW1ri4uFClShW8vLzw8fEhICCA6tWrc/jwYYYOHUpaWhrFxcUEBwcTERHB8uXL6dq1Kx06dGDLli1Pfe4dO3YwbNIcbJp0Q+9cE0EQkJv9Erhj0mtRKBRUt9Tw9cB2ok8zKCiII0eOYDAYsLa2prCwELVaLfbku3XrFhqNBj8/PyIiInB2diYjIwOlUklKSgpZWVl07txZ3MZt2LAhxcXF3L17FysrK3Jzc0sF1EBJp4f9R0/SccQsXvd/k1p1G2CrNqN2eRu6NnSnbUBTpk6dyv79+4mKimLPnj1YWFjQuXNnqlevjr+/PyNHjgTAz8+PTz75hOvXr4sNe+3s7EQR9Pb2Ji4ujvXr14s+0ZCQEAICAkptU2u1Ws6cOSMK4cWLF/Hx8RGFsEmTJmLdUgkJiScjCd8/wK87nz+JB6s+ws6/D1a1/QFI2zwFW99OZB5cjuNbI7HwaIBKKef0p60pZ2XO0qVLmTBhAhqNBmdnZ3bu3Mm1a9e4cOECcXFxJCYmkp6eTkFBASaTCTMzMwwGAzVr1uS1116jTp06xMfHc+TIEbKysp64puzsbMaMGcPRo0f5/vvvWb9+PevXr6dixYpcvXoVW1tbvvrqKyZPnkx0dDT169cHSrZIDx48yObNmzly5Ai5zvWeaxsRkwmVmYLPO75Gu+pWVK1alVq1ahEWFkanTp3E7UQosVQVCgXNmzfn0qVLZGZm0rVrV1auXEnVqlUZNWoUs2fPFvMJd+3aJXZxmD17NmPGjOHGjRulpn9UWi0kJIRFixbx+uuvExsbW+qaHTt2iG2WFi1axLx589i+fTv169cXWy6tWLGC7t27Exsbi4WFBcuWLSMkJARBEEqJYEREBFlZWfj5+VG3bl2ys7M5efIkGo2G4OBggoOD8fT0fOxlKigoIDIykqNHjxIeHs7169fx8/OjdevWtGnThoYNG4pdKCQkJEqQhO8fYMWJ2yw4cuOJwmcszOb+soG4D1yMmWMlCuMjKIw9hkv3z7m/bGAp4Qt0yGfXlx+RmZn5WG6apaUl5cqVo1KlStSoUYP69evTrFkzfHx8WLt2LXv27GH37t3i9X5+fpibm3P8+PHH1rRz506GDx/OO++8w+zZs1m5ciUzZswgLy8PgFatWjFv3jzq169PlSpVKCgowM/Pj5iYGFJTU5HL5bi4uFBcwZdybQf/oahJJSYCbTI4uXo27733HgUFBSxcuBCNRoNCocBoNGJlZYVGoxET7ZVKJdHR0chkMnx8fMQo0QoVKnDr1i3UajUZBVomfr+LM/FJOLiU51rMefTpCRRcPoKpOA8rKys+++wzJk2aBICZmRmJiYlieyUoEXVvb2+mT5/O22+/zf79+xkwYADffPMNffr04eOPPyY8PJz9+/ezadMmPvvsM5RKJQEBAaxdu5YKFSqUetbU1NRSXeuvXr2Kp6cn5ubm3Lp1i5o1azJo0CB69uyJg4PDE1+v7OxsTpw4IVqEycnJtGjRQrQIX3/9dSl1QqLMIwnfP8CTCiIDCEYDD7dMRelQHsf2H2HSFpHywyhce81Cae9aSvgA5PeiSdoyC6PRKPqsAgMDOX78+FM/3ARBEHPvWrduLR53cHBg7NixpaqmpKWlMWLECC5dusSqVavw9PSkf//+5Ofn06tXr8d8ZY+ECEoiMevXr88777yDr68vQz6diTpoHKkHlj/Vn1mccImsQysw5qVj7l4Tpw4fo7RzEVMFDGm3MTMzQ6/X07NnT/z9/Rk/fjxFRUXIZDLKlStHjRo1uHz5MgaDAYPBIH4hGD9+PF999dUzU0cEgxaQUXwnmvwz26jjbivWK1Wr1UyfPp3x48eXej137tzJ9OnTuXDhAjKZjKtXr9KpUyd69+7NzJkzWbhwIQsXLmTv3r3Y2trSpk0bEhMTsbS0ZMmSJaUiP39LYWEhZ8+eJTIykpMnTxIZGYlSqUSj0VC/fn0GDx7Me++998ytzdTUVI4fPy5ahAUFBbRq1Uq0CKtVqyYJoUSZQxK+f4CBa6MIj39Y6pggmMjYPQ+TtgiXbp8jUyjJOroSucoK+4A+AI8Jn3XuXVzif+T06dPUqlWLu3fv4u7uzvr163FwcMDGxgZbW1tUKpX44Xbo0CHGjh1LTEyMeEyj0WBhYcGdO3eoWrWqWHdzzJgxDBgwgGnTpnHkyBEGDhxI5cqVuX37NoWFhaWiLi0sLOjQoQPOzs6cP3+egoICkpOTqVOnDmfPnsWl22QU7q+Td+7HJ/ozZeZqkr8bgmPQSCw9G5Nzcj2a+1cpH/I1gslE0c2faZAfxaVLl9BoNMhkMoqLi+nbty9Llixhzpw5zJ8/XxSGX1OzZk1OnTrFoTtFz5c6QkkVFlXcPu4eCqW4uFgU8gsXLvzm7ybg7e3N1KlT6dKlC1CSutCtWzccHR1Zt24d+/btY8SIEWzYsIG2bdsyYcIE5s+fj0qlws/Pjx9++OGpBQN+jdFo5MqVKxw6dIitW7dy+fJl9Ho91apVo3PnzvTq1Qtvb28xzeNJJCQkcOzYMTGH0MzMrFQO4W+tUAmJ/yKS8P0D/NbiEwSBzP2LMOSm4dJjmhjs8WD1iJICyP/vCzMV5SFXWWLbtDt2TbsjvxfNvc0zsbe3x2QyUVxcjE6nw2QyiXlzJpMJmUyGmZkZKpVKLB1Wvnx5bG1tsbe3Jy8vj9OnTzNz5kzMzMwICwsjOzubiRMnUlBQwKJFi7h3755o3Tk6OuLl5UVERARQ4g8zGAwcOXKEoKAgHBwc0Gg0zJo1i/Hjx1PNqz6GDlMxCI9bFo/8mSZNPoVXjuAWPL9k3ToN9xf3pfx7izBzrIRg0JGyYhCm4jyMRiPvvfceS5cuFSMatVotU6ZMYf78+aKVp1Qqadq0KdevX0dWIxDr5iGk7V2AJiEGk16DwsoB26bdsKnfDkNOGskrBiEz+yUK1tGvOwGNGnJqzRfil4FHBb9/za5du5g6dSoXLlwQX3edTsewYcO4cOECu3fvJiEhgR49ejB37lz69+/PlStXeOONN8jIyMDS0pIFCxaUymV8HgRB4OTJkyxevJjDhw+j0+kQBAEfHx/atGlDQEAATZs2xc7O7qn337hxQxTBY8eO4eTkJIpgq1atSnXOkJD4ryAJ3z/Ab318mQeWont4F9fes5CbW4jXGYvz4FeRhilrP8ahzWAsqvmgUJqRdSKUmsZ7dOvWDX9/f3x9fbGwsMBoNJKbm0t2djbZ2dmkpqaSkpLClStXWLlyJR07dhTP5+Xlce/ePdFK+r23g1KpxNraGgsLC9RqNampqRQXF+Pr64uTkxPh4eHodDpRANq1a4eVbxfOFTuXFHL+Fb/2Z+Zf2I9gMuDYbrh4/sHKD7EL6IdVbX9Mei05pzZgda+k8svWrVu5d6/k2RMTEwkJCeH+/ftieyV3d3cePHhA+fLlycKGKoMWoDUI6NITMXNwR6Y0Q5+ZROrGibj0mIZCbUPyikFUHr8LmfwXH6TMpMcicgXTRw1iwoQJXLhw4TEhEQQBX19fJk+ezDvvvFPq+DfffMM333zD9u3bsbOz46233mLgwIFMnjwZk8nEsGHDWLVqFVZWVjRu3Jg1a9ZQuXLl338T/QZBEIiMjGTlypVs374dZ2dnVCoV9+7do0aNGmL0aEBAwFMrw5hMJi5fviz6B0+dOkXVqlVL5RDa2tr+4bVJSLxqSML3N7Nx40Y2b95MhQoVcHd3L8mDc6nA/Bt2aA0mDLkPSV4+EBRmpT5wy7UfjvXrrUqN9eutTsGgI2P1B9ip5FSoUIGioiLu3r1LvXr18Pf3x9/fHz8/P9zc3MT7P/zwQ5ycnJgxYwZQsu21du1avvjiC/R6PYIgoFarqV69OlZWVsTGxmJmZsZbb71FYGAgmZmZPHz4kPT0dDIyMsjKyiIxMZGMjAzRUvnt26l8+fJU6TWFFHXpD9vf+jMz9i9CYWmHQ8sB4jWp68ZhXb8d1vXaAqCJP0nWvgVYW1uTnZ2NTCajS5cuhIeHk5eXhyAIyGQyWrZsyZAhQ/D09KRv377k1O2JVc2mICsdRarPvE/axok4tB2KqnzNJwofJhPWeXeIXT6KDz/8kIyMDDZv3vyYZbZnzx4mT57MxYsXHytAvXfvXgYOHMjChQtp1aoVHTt2xNvbm2XLlmFmZkZkZCQdO3YUUzS+/vprBg8e/Kd9b8XFxezZs4fQ0FAiIiLw9/enUqVKpKWlERkZiYWFhSiC/v7+1KlT54mRn3q9nvPnz4v+wbNnz1KnTh1RCP38/KQcQol/JZLw/c2sWLGCkSNHikWTAerVq0eTsas4HJf2TF/T03jk89Id/RaDwUCtWrXIyclBo9HQpEkTHBwcSElJ4ezZszg4OODv70+DBg34/PPP6d69O+fPn+f27duib6+4uJiGDRuya9cuzM3NGTBgAJmZmRQUFPD+++8zatSop66lsLAQOzs7jEYj06ZNY9q0aWI1lk6dOnH48GEqv/sFtzW/fEA+0Z95+DsEkxHHdr+UKnuwajh2/n3FtI6im2dJ3z7zuV6j+vXrExERgQYzfGf8BL9KQM88uIzCK0cRDFrMXavj2u9LTEV5JK8YhMK6HMhkqD0a4tDqPRSWdsgFI1GT22GlFGjWrBlDhw7lgw8+KP03EQQaNWrExIkT6dat22PriY2NpXPnzvTp04dPP/2UXr16ASVFwq2trdHpdPTp04cdO3ZgZ2eHt7c3q1atwsPD47me92mkpaWxadMmQkNDSU9Pp1+/frRo0YLU1FQxlSI1NZVmzZqJYti4ceMnCppGoxELbYeHhxMTE0OjRo1EIWzUqJGUQyjxr0ASvr+R3Nxc/ve//zF+/PiSRG25nFq1ahEdHc3NTB29/3eGYr3x9wf6DTKTngeh49Cl3gJKth8fpQw0adKEe/fucePGDerUqUNhYSGJiYlkZ2eX3CuT4ezsTN26dUlKSsLOzo6oqCi0Wi2HDx9m8ODBDB48GJ1Ox/Xr19mxY8fvWh5NmjTh/Pnz9O7dW+yIfuzYMaytrWnatCluXSdwObfEb/k0f2b+pQMUXjmKW/A84JGPrx/l31uImWOJtWibGceV/437Q6+Vb/BEMt2bYJKVLtsmmIxok+PR3LuCXdPuCEY9+sz7mLtWw1ScR9ah5Zh0xbj2mokSE+OCXuP9wOrcvHkTPz8/Dh8+TIMGDUqNuXfvXiZNmsSlS5ee2HYoPT2drl274uzszOrVqxk7diwXL15k7969YprEvn376NmzJ4IgYG5uzpdffsnQoUNfSBujK1euiKXSKlSoQEhIiFjYPDIyUkyluHLlCq+//rpoET6qMvNb8vPziYiIEIXw5s2b+Pv7i0LYoEEDKYdQ4pVEEr6/gejoaFasWMH27dt58803ycvL49ChQ7i5uXHp0iWcnZ2BP1erUy4YsLp+gLg9/3us0oiFhQVKpZKCggJRaNVqNVptSTWU8ePH0717d7788kt27dpF+fLluXfvHiaTiTp16vDgwQOWL19O27ZtqVq1KlevXsXd3f1317R+/XpCQkJQq9VYWVnx6aefUr16dRwdHdm3bx//i0jAxq8XMqXq6f7Motz/j+ochaVnI3JObUCTFEv5kK+BklQDpwdnubzlG8qVK8fDhyVRsTKZjNmzZ7N69Wpu3bpVal1Nmzaler8ZRCTrnrr2zANLMXOqjK1v51LHjQXZ3F8aTKWPtyBXWfJOgwos6FUidJs2bWLq1KmcP3++VHUcQRBo3Lgxn3766WO1QB+h1WoZNmwYly5dYteuXaxdu5ZVq1bx008/4eXlBZRY0Z07dxaDTerUqcOqVaseK0T+ZzEajRw9epTQ0FD27t1LixYtCAkJoWPHjqhUKoqLi4mKihItwtOnT+Pk5FSq3FqtWrUe+0KUmZlZKocwNTWVli1bikLo5eUlpU5IvBJIwveCKCgoICwsjBUrVpCZmcn777/Pe++9h6urK1euXKF9+/acOHHiseob3x68zNLIB2j0xmf3gRNMyAUj096uz3fj3uX06dNPvOxRyTFvb29u3LhBxYoV8fLyIjIykooVK3LixAkcHBwYMWIEAwYMoEuXLsTFxVGrVi3c3d2Jjo7GYDBgZ2fHuHHj8PPzo169es/85q7RaLC2tsZoNJba6tLpSgTHqWJVrPouwJCf9Ux/5i95fA8xL///eXz/X7bNZNCR/O0ATMV54n1t27bl3LlzKBQKPDw8uHjxYql1yeVyKvWbDRXqPnXtmfsXIzNTUe6N90sdNxZmc39JMJVGb0autqJNbRdW9W8knh86dCgFBQVs2LCh1If5vn37mDBhAjExMU+10gRBYP78+SxcuJAff/yR+Ph4xo8fz9atWwkMDBSvW7duHYMHD0alUqFQKJg1axYffPDBC21im5+fz/bt2wkNDeXy5cv06NGDkJAQmjZtKj6XyWTi2rVrYmJ9ZGQkBQUFojUYEBCAt7c3KlXpnpEpKSmlUieKi4tLpU5Uq1bthT2HhMQfQRK+v8jly5f57rvv2LRpE4GBgQwbNow333zzsQ+nR4EXj4iJiWHIkCFERUUR1O99rpjcsajmi1wmQ/ObfnzFGg2GpBi0F3bjrCjm9u3bpXyG8EsUo1wuRy6X4+7ujiAIvPXWW4SFhVFUVIRSqWTixInUq1ePnTt3snXrVgoLC6lVqxZbt26lTp06ALRp0wYvLy+0Wi2RkZEkJyfTpEkTMWCmadOmpaL7jh49SlBQEEajEYVCIa5NLpdjaWmJj48PN1xboKrW+E83edXePkfa9lnisV+na0CJ5ffbt7KnpyfNPvmOk/eKATAW5qBJjMHCszEypTmahEuk7/gCp87jUVjZI1dZoSznjklTQNbB5RiLcnDrOweA9rXLsaJ/M3HsoqKSLuujRo1i8ODBv6xVEGjatCljx46lR48ez3yuPXv2MGjQIBYtWoSTkxN9+/Zl6dKlov8PSmqrtmvXjgsXLuDm5oanpyerV6+mevXqf+KVfDaJiYls2LCB0NBQjEYjISEhvPvuu0+0NO/fv19qe/TGjRt4e3uLFqGfn99j1WXu3r0rWoPh4eGo1epSqRPPs7sgIfEikITvT1BcXMy2bdtYsWIFiYmJDBkyhEGDBj1XEvLVq1cZO3asGPYP4OLiQk5ODv8L3URx+fpcS84h7MfdVHB2ICn2LFnR+0VLR6VSMXXqVNatWycWXJbJZMycOZPOnTvz9ttvk5CQgFwux9zcHHt7e1JSUqhduzZt27Zlx44duLm5odfrUSgUXLx4keDgYE6cOIG5uTldunQhNDSUyMhI0TrNzMzk559/Fj/oLly4gKenJ/7+/pQrV4758+eLCeVQYnWaTCbs7e2ZNGkS169f56ezV1G8ORaZ2dM7yT8Nk15D2oYJ6FJvlSpP9sivOWLECE6dOsWBAwceu9fBrye2fr1BaY6xKJf0HXPQPbwLggmlnQs2Pp2wadCewmsnyD4RiqkoB7m5JWqPBji0GojC2gHBoCX/dBjtqyj5+uuvRX9cXFwcgYGBhIeHU7fuL1blTz/9xLhx47h8+fLvWmdXrlyhc+fOvPvuu3Tt2pXOnTszatQoxowZU+qL0qJFixg7dqz4hWPatGkMHz78hVp/jxAEgaioKEJDQ9m8eTOvvfYaISEhdO/e/ak5gfn5+Zw5c0a0CM+ePYuHh0ep6FEPD49S0b/x8fGiCB4/fhwXFxdRCFu2bImjo+MLfzYJCZCE7w9x/fp1vvvuO9atW4evry/Dhg2jQ4cOT+139yR8fX25cOHCE/PlateuTXp6utgax8nJCaPRyJQpU/jqq694+PAhJpMJtVpNUFAQO3bswNXVFTs7O3Jzc/Hz82Pt2rWsWbOGsWPHYjQaMZlMmJub07hxY65du8Ybb7zBwYMHcXR0JC0tjaKiImJiYnj99de5ePEiO3fuZNasWbi4uNClSxe6dOlC69atH9vCXLNmDbNmzeL+/fsAYnQo/GKN/brDOoB1gyAcWg/6Q01eTToN2eGrKLj0E1BSWm3FihXs37+ftWvXiiL7yKf565ql5ubmGM0sqfDB6sdyCP8I5goZ7TSnCP3fMrEO6aJFi/D29iY0NJQ5c+YQFRUl9tsThJLoz48//riU9fY0Hj58SNeuXXFzc2P27Nl069aNVq1asXDhwlJbzMnJybRp04Zbt25RqVIlKlWqxOrVq59YvPpFodPp2L9/P6GhoYSHhxMUFERISAhvvPHGM9/3BoOBmJgYcXs0IiICuVxeKp+wXr164hhGo5GYmBhRCCMiIvD09BSFsHnz5k/sNiIh8WeQhO930Ol07Ny5k6+//pq7d+8yePBghgwZ8qcDDTIyMqhQoYJo7f2aSpUqERwcTEhICPXq1cPd3Z3IyEjc3d1p0KABV69eLVUmrE+fPqxevRqtVkvXrl25desWlpaWjBkzhhkzZmAwGEhJScHW1paCggKsrKzQ6/UolUoGDx5MfHw8Z86cwdLSEg8PD4YOHUrPnj1xdXXlxIkTHDlyROz0EBQURFBQEPHx8axcuZKHDx+iUCjw8fHBzc2NEydOkJub+7vPb90gCMc3hiBTmD9z21MwmRCMOrKPrqJ84S18fX3ZunUrSqVSDOpxdXUlLS0NlUpFYWHhU5Pvnbt+hoVnk2d3g3jGOuo7we5xnRAEgd27dzN58mSuXr1KpUqVGDduHGfOnEGhULB27VrxvgMHDjBmzBguX778XJGNWq2WoUOHEhsbS2hoKCNGjMDOzo4NGzaUSi0QBIFp06Yxa9Ys3NzcKC4uZsqUKYwYMeJvj6DMzMxk8+bNrFu3joSEBPr27UtISIjYieNZCILA3bt3S3WjSEpKokmTJqIY/rpZr16vJyoqShTCc+fOUa9evVI5hE/rNSkh8XtIwvcU7t69y/fff8+aNWvw8vLi9u3bpKen8/HHHzNu3LinVsf/LSaTiWPHjrFp0yZOnTrFnTt3MBgMT/RJjRkzhvnz57NlyxZ69+5NdHQ03t7eACxbtozhw4eLRZrDwsLo2bOnuHWk0+kICQlh7969FBcXM2PGDAoLC7l9+zYnTpwgLS2txAIyGqlfvz5169Zl3bp1VKlShf379xMfH8/333/PuXPn0Ov1TJ8+HTs7O65evUpkZCQXL15Eq9WWWq9MJkOpVGIymahSpQqVK1d+YneH32Lu5knDdyeQQjlUKhU64y+vg6DXgkxG0e0o8n7eSnUHM+7fvy9adUajEScnJ/Lz8ykqKhKPOTo6Ymdnx507dx6bL/CdYBKqdflL26zV7JVs2rRJTGG4ffs2I0aM4PDhwygUClQqFcOGDWPOnDnI5XIEQcDPz49Ro0aJKQO/hyAIzJs3j8WLF4uBUrdv32b37t1iJPAjrl+/Ttu2bUlLS8PDwwMXFxdWr179zCbAL5IbN26wbt06QkNDxfZNffv2LdW94vfIysri9OnTohhevHiRWrVqlYoefeT3Ky4u5vTp02KgTGxsLI0bNxaLbfv6+j6zRqmExK+RhO9XGAwG9u7dy3fffUd0dDQhISEMHTqUWrVqUbt2ba5fv465uTkymYxOnToxZcoUbt68iVqtxsPDg+rVq4udwHfs2EFUVBQpKSkAVKxYER8fH86cOUO/fv3Ytm0bPXv2ZMGCBWID2HfeeYfBgwcTHByMVqvl1q1bYq3E/Px8HBwcGD9+PKtXr8bb25v9+/eLa9+2bRsjR46kcuXKJCQkIAgCBQUFjB07lmXLlhEYGMiuXbvE7aK8vDxMJhPly5cnPT0dlUqFXC6nuLhYtCp/7Y+xtLTE39+fdu3asWDBAnJzcykoKMDDw4OQIR8i9/Rj/+kY7t5PxaQtRMhORhd/goLMVFHklUollpaWFBYWltQQVdvg3f1DErJ1yNXWKAU9+UnXKbxyRPRpyuVyXF1dycnJYfr06Zw8eZJ9+/Yhk8kwmUzY2tri5eVFSkoKBoOBtLS0x9I8oMTSLNdm8B8SP5NOgzpuP6qkksjRy5cvExgYSFhYmFgRJyUlhalTpxIaGopOp8PFxYVBgwYREhJCQkICo0ePJjY29g9ZY7t372bw4MEsXLiQ2NhYtm7dyk8//fTYlqbJZGLkyJEsX74cDw8PcnNzmThxIqNHj35p+XMmk4lTp04RGhrKjz/+SNOmTQkJCeHtt9/+w1VdtFot58+fLxU9amdnJ26NBgQE4OXlhVwuJy8vj1OnTokW4Z07dwgICBAtwvr16/8t/s8nsWTJErZs2cLcuXNp1qzZ798g8Y8jCR8lEWorV65k5cqVVKlShWHDhtG9e3cUCgUHDx5k48aNbNu2TRQEuVyOhYUFU6ZM4dixY9y5c4ekpKRSPq6KFSsSFBREcHAwzZo1QyaTERwcjFKpJCIigv9j77zDoyjX9//Zze6mbHojCUkIEJLQA6FDKAGkCVKVGnoTEUVFEBQ50kEpgnQSIkUUpSO9CiQUSQykAQmk9162ZHd+f+S7Y5YEjhw953Cun/d17bW7s7Mz78zsvs887b43bNjA0qVLUalUzJ49G3t7e5KTk/niiy84fPgww4cPJzIy0ohybOrUqTRo0IA2bdrQp08fIiMjcXZ2ZtasWcTExLBr1y4CAgJYtmwZq1atEgtYDBp5RUVFNZQLAFxcXHBxceHRo0fUr1+fsrIykpKSRE9Gr9czbdo0Bg8ezOTJk0lNTWXu3Ln0emsy687EcD9PX0WM/YySulRqgi4lioIbB6nMesz27dsZM2YM7du35969e6IxfLZCFaBp06Y8ePAA+L1iU6FQIJVK6dmzJ1lZWUilUjEnWlxcQYd8cwAAIABJREFUjEQiwdfXl9TUVEpLS5FKpcjlctFTrTJ+k6vyfZLnT4rVw6xrZ7xBdnY2u3fvZunSpSxcuJCUlBRGjx7Njh07xHBbRkYG48eP5/z587Rs2ZL09HTq169PdnY2CxYsYOrUqS/1m/ztt98YNGgQ48ePp06dOnzxxRccOXKE9u3b11j3zp079OvXj9LSUry9vbG0tCQkJAQ/P7+X2uefRXl5OUePHiUsLIyIiAiGDBlCcHAwgYGB/5IR0uv1zxXrNRjDtm3bVukr5uZy+fJl0RDm5OTQvXt3evbsSVBQUK19h38V3n//fdavX4+FhQWtWrVizZo1fxvAVxz/M4Yvt1TNobupxGUWU6yqxNpMhp+LNSMC3HGw/BdCWHo9Z8+eZevWrVy9epXRo0czffp0mjdvTmVlJd988w1Lly7Fx8eHsWPHsmbNGtLS0rCzsyMgIIC0tDQSEhIoLy/H2tqaJk2aiIz4Dx484IcffiAxMZF58+Yxe/Zs9u/fz9q1axk4cCCPHz/mnXfeYeLEiRQWFpKWlsbjx4/p2bMnISEh9O/fH3d3d8LDw40qRSMiIhgxYgRffvklc+bMIT8/XxRi1ev1lJeXiyrjhstq8PBGjhxJt27dCAgIIDMzk4EDB1JaWkpgYCARERHo9XqUSiVFRUWYmJggkUhYsGABq1evRiqV0rhxY3799VdMTU1ZuXIlZs16s/rcI3RI/0nuTEAhlfDp600Z26Eev/zyC0FBQUa5ymfRqFEjsrKyRKFbqKoUdXBw4N1332XhwoUkJyfz+uuvi96UQqHAw8ODvLw88vPz0ev17Nu3jz179nDu3DnxfChcvHHqPhapewsQBCNjTaUGmVyOr1UlT37eTvyNsxw6cYZMcy9OXo8k8kEcgR3aotQWcmj1B1QU5jB//nw+++wzMbw5fPhw4uPjRQHY7OxsIiIieOONNxg/fjz9+vX7w7ReWVlZDB06FDc3N9566y1mzpzJzp07eeONN2qsW1lZSXBwMN999x1NmzYlIyODjz/+mLlz5/5X2FMyMjLYv38/e/bsobi4WFSR/7Oh2OpivdevX+fBgwe0bNlS9Ag7deqEo6MjaWlpRj2EWq3WqIfwz1LBGRATE8PMmTO5evWq0fKhQ4dy9epVFAoFrq6uYtTIQPH2N7XbfxevvOF7kXComUyKAHT3deLtbt609LD9p9vLyspi9+7dbN++HQcHB2bMmMHIkSPFpPr9+/cZM2YMjo6OrF+/ntTUVA4ePMjJkycpKChAr9fj5ORE69atRe5FW9va9xsbG8vHH39MZGQkRUVFfPvtt0yaNImoqCgmT56MXC7Hy8uLuXPnEhgYyD/+8Q+8vb25d+8eixYtwt/fn7y8PHJzcykuLhY9F5lMhkQiQavV0rBhQ3r16kXjxo1p2rQpR48e5bvvvsPKyorDhw8zcOBAWrduzY0bN9i5cyeDBlUxlAQFBXH//n1yc3ONegyVSiWrVq3i7t27hIaGilWScrkcX19f5syZw+Jvz2PSdgRS+UsUF1Rq0ER8R87Nn15o9AxemkKhoKSkBCcnJ3Jzc/H29qa8vJz09HRcXFzIy8vDzMwMJycn8vPzmTVrFtu2bUOn05Gfnw/Axo0bmTNnTg2v0sTEBImZFeZNg1A4eSE1U6JXlWFZWUiAfSU/7t/DwfPhvLv1JNZ+HZFKJEa/O5lEwMTEBGddLvf2rkReks6mTZsYM2YMJSUltGnThnfffZfHjx8TEhKCqakpPXv2JCUlhbi4OEaOHMn48eNp3br1P/VCVCoV06ZNIyYmhiVLljB16lQWLlzIrFmzal3//PnzDB06FKi6gZDJZISEhNCkSZM/fKn+akRFRREWFsa+ffuoX78+wcHBvPXWW9jb2//pbZeVlXHr1i0xPBoeHo6bm5tRG0XDhg158uSJSLZ98eJFlEqlmB/s0aOHUWTln0GtVrNt2zZCQkLIycnB3t6e6OjoKgJ6a2s+/fRTpk2bRmFhIWq1mtTUVOLj44mLi+Pq1avExcUxePBg3nnnHVq1avWnz8HfeHm80oavitLrDwiHSsBMZsLC/n6M7eBV43NBELh8+TJbt27l7NmzDB8+nOnTp9OmTRuj9QyTRoMGDcjKyhLDaR4eHnTs2JERI0YwcODAl2pfKC8vp0mTJuTn5+Pg4EBgYCAmJiYcOHBA7HXLzc0Vx2liYoJSqaS8vJxmzZrh6+uLr68vzZs3JyAggHnz5nH8+HEWL15MbGwsR44cobCwkISEBEaNGoWXlxclJSWMHj2aSZMmcfjwYYYOHUr9+vVRqVRMnToVLy8vpkyZgl6vx8XFBVNTU54+fUr37t1Rq9Xcu3cPhUJh5HEB2NjYoLZ0wXnkcpBIyTv7zXPV1EuizlB88xC6sgJM3Zvg0H8OMgsrsvYtQF6STklJyXPPmbe3N0uXLqVPnz5YWlpiZmZGYGAgffv25YsvvqC8vBwLCwtcXFxIT0+nQYMGPHnyBC8vL7F4qLKyUjTocrkcjUaDQqGgdevW3Lp1y6jtoToUCgULdp1iX2wFmkrhhd6sRAKmMilumeFc2bUUT09P9u7di6WlJb169eKXX37BxsaGWbNmceTIEWbNmsXo0aM5c+YMYWFhmJmZERwczJgxY17YAyoIAqtXr+brr79m06ZNfPzxxwwePFgspHkWKpWKoUOHcvr0adq3b8/Dhw/54IMP+Oijj17qt/tXo7KyknPnzhEWFsbPP/9Mz549CQ4Ofikv+J/BINZbPTyq0WiM2ij8/f15+PChUQ+hm5ub6A1269btuUb5zJkzzJ49Gz8/P9577z26devGF198wY4dO1ixYgWjR4/+p+c4JSWF7777ji+//JJ+/fqxbNmyv5v3/8N4ZQ3fv8JjaS6XsrB/Y9H45eXlsWXLFtauXYubmxuzZs1i7NixYhNuamoqe/bs4fTp00RFRVFSUoJCocDX15fu3buL+ag/goKCAu7cuUNkZCSxsbEkJSWRlpZGcnIyWq3WyHMyMJoYKL46dOjAp59+SosWLcScka+vL0ePHhXzNAkJCUyePBmNRkNMTAyJiYnY2NhgY2NDx44diY6OZtmyZQQGBtK9e3eePn2KmZkZ58+f54033hB16qpj06ZNTJgwAaVSyZkzZxg9ejQlJSVYWFiIorbVIZVK6fn5QR5WmKNTqyiO+LFWNfXKoixyjq6izqjlyO3dyD+/HW1uCq5jViJNjyYxbEGt57Bz586YmJhgbm4uNqNrNBqsra1Rq9XUr1+fgoIC+vbty82bN7l16xZKpZJbt26xfft2Dh48iCAIWFlZGRlWA4m3TqejV69eXLt2rdbzAWDZ6v+KYGR/PHxuLpcyq7Mb3y+bzS+//ELbtm154403OHjwIOHh4ZiZmdGhQwfs7e2JiIhg3LhxzJs3T5SFOnToEG3atCE4OJghQ4agVCpr3c+RI0eYOnUqK1euZPfu3Xh6ehIaGlqDKsyAH374geDgYJRKJd7e3uh0OkJCQkSGnv8mioqKOHToEGFhYcTExDBy5EiCg4Np06bNX56LS05ONiqYSUxMpE2bNqIxbNeuHUlJSaJHeP36dXx8fESPsEuXLiiVSpYvX86OHTv45ptv6N+/v7h9wxT6suMuLi5m+fLl7Nmzh59++unvvOB/EsIriMjkAsFnwVFB2aK3YGLtJEgU5oLcub7gPOJzod78E0LdGbsEQJDIzcSHTeAYod78E4Lfpz8LYScuC+PGjRMsLS0FCwsLQSqVCqGhocLt27eFOXPmCC1atBDMzc0FQLCxsRE6deokuLq6CitWrKh1PFqtVoiMjBR27dolzJ07Vxg0aJDg7+8vuLq6ChYWFoJEIhEAQSaTCba2tkKDBg2ELl26CJ07dxbs7e2FnTt3Co6OjsIPP/wg2NnZCba2tsJrr70mNGrUSJg9e7ag1+tr7LNJkybC/fv3Ba1WK6xcuVJwcHAQNm7cKFRWVgrjx48X1qxZI+Tm5gotWrQQAOHGjRuCIAjCjBkzhM8++0yorKwUzpw5I7Ru3VoAjB4WFhYCIDg5OQlmZmZC3bp1BX9/f8HR0VGwtbUVpFKp4OHhIXh4eIjfMTMzE7aE7BV8Fp0S6s0/UetD7uQlOA5eIFi3GyJYth4gLq87a48ACG7TdwgeH/4kSM2ta4wJEJRKpTB27FjByspK0Gq1woEDBwQPDw9BJpMJUqlUqFOnjpCZmSkIgiAsWrRI6Ny5s6BSqYScnBzB3d1daN++vdCoUSPBz89PAASpVCrIZDLx2ri5uQmOjo5Co0aNat2/wqWR4PHBoRrH5T7ngGDeqIMgkZsKJtZOguPAD2us4/fpz0JUSoFw9+5dwcfHRwCEunXrCpMmTRIEQRDOnz8vNGrUSEhJSRHmzp0r2NnZCe+++66QlpYmlJeXC999953Qv39/wdbWVpgwYYJw8eJFQafT1fxvREYKnp6ewieffCIMGzZM6Natm5Cfn//c/1JRUZHQsWNHQSqVCr169RIcHByEpUuXChqN5qX/l/8uJCYmCv/4xz8Eb29vwc/PT1i+fLnw9OnTf9v+CgoKhJ9//llYuHCh0K1bN0GpVAotW7YU3n77bWH//v3Cw4cPhWvXrglLliwRP3d3dxecnJyEQ4cOCRUVFX/peE6ePCk4OjoKx48f/0u3+zeej1fS45v27R3ORD2lKLx2jwKoXTQUqsic06MJUiSyb98+oypGiURCnTp1CAgIYPDgwWJub/ny5Rw6dIihQ4cSHx/PkydPSE9PJz8/n9LSUrHvztzcHFtbW5ydnfH09MTb25tmzZoREBBAkyZNjEIc1eVrvv76a5RKJRs3bqR79+7ExsaSn5/P8OHD2bdvX63hqpYtW7Jw4UJWr16NnZ0dO3bsEBPy169fF3vD3nrrLQ4ePEjDhg356aefaNiwIaNGjSI0NBS1Wv17UYdCQb169Wjbti3Hjh0TKc3ee+89jh49Snp6Op07dyY6OppHjx6J3l7jxo0ZOHAgX331FRYBg7DpMsa4IOT/UF1NvTTqLHqtWtTWqyzJJW3zBJyGLsKsfisKr+1jQvu6LF++nISEBAICAsRy/GHDhrF7927kcjmWlpbo9XpksiqqsPHjx3Pt2jU6d+6MXq/nrbfewszMjIKCAnQ6HWlpaURERODr60tKSgrvvPMOO3fuxNHRkfLycgoLC58b4gRwHPIJykYd4JnrkXN0NQgCDv3fRZOVSPahJbiMXYPCqd7vvy2gT9M6bB1bFeo9fPgwU6dOJS8vj/79+3Ps2DF69OjBlClTCA4OJjMzkzVr1hASEsK4ceP4+OOPcXNzIzMzkwMHDrBnzx4KCgrEohBfX19xX5mZmQwZMgR3d3fq1KnDpUuXOHXqFPXq1eN52LZtG7Nnz8bZ2ZkGDRpQWlpKaGgoLVq0eO53/tMQBIHw8HDCwsL4/vvv8ff3Z9y4cQwbNuzfytqi0Wi4d++eUXjUzMxM9AjLy8tZu3Yto0aN4ubNm8TExNC+fXuxYjQgIOBPh5AjIiJ4/fXXuXHjBo0aNfqLjuxvPA+vnOHLLVXTedVFo2ICA9J3vYNN51GYung/3/AB6LSkbBpvxOQvlUqZMWMGiYmJpKamkpOTQ1FRkWgcZDIZ1tbWODo6UrduXRo0aICvry/+/v4EBAS8VCJepVLRsWNHpk6dSvPmzRk1ahQxMTGUlJTQtGlTKioqsLOzIyUlpdamW7VajZeXF2q1mrVr1zJx4kSjRvWFCxeyfv16Vq5cyQcffMDNmzfp3LkzAQEB3L17F0EQsLW1Zfr06QwfPlyshOzfvz8SiQQ3Nzdyc3Px8/MjJiaG/v37s2nTJmbOnMnp06exsbERQ4U6nQ5BEPD29qak6VDMGnetMd5n1dQrnkSSe3Q1dUYtQ2bnRsGFHZRGnsFx0Icom3TDND2S+D0LgSpVCysrK2xsbOjduzfZ2dncvXsXa2trysvL0Wg0mJqaMn78eC5fvkx+fj7JyclAVf7U19cXnU6HRqPh0qVLxMTEMGHCBBwcHMjIyGDGjBl07NiR9957D3t7ex4+fGg0dgPNmdzKHtfpO2tQm+k1KlLWj8Rtymbk9nUByD3+JSZWDkZq8VBFbXZzfk+jKuM5c+awceNGLCwsmDZtGidOnCA2NlacKKsbwLFjx/Lxxx9Tt27VfqKiovj222/Zt28f9erVY/z48WJRiEqlYsqUKcTHxzNgwAB27tzJ8ePHX1gskZWVRa9evYiNjWXQoEFcu3aN2bNns2DBgleu+VutVnPixAnCwsK4cuUKr7/+OsHBwfTs2fPfXqUqCAKPHj0StQYPHDggGsIuXbrQsmVLVCqV2FD/9OlTAgMDxRxh8+bN/6X2jS1btrBjxw7u3LnzH+tB/P8Vr9zZPXQ3tdblurICtPlpKJw8xWVp30wkdfN4ck+uR1duTJdl2aKX0Xu9Xs+xY8fIzc3F19eXSZMmsXv3bn788Ue8vb3RaDTk5eURHx/PxYsX2blzJx999BG9e/d+6eqzjz76iIYNGzJ58mRmzJjB+vXrsba25quvvsLLywu9Xo+/v3+tk014eDitW7dGrVYTFhbGpEmTRKMXHx9Pp06diI+PZ/Hixdy7d4+SkhIOHjwIVPVz1atXjwsXLlBQUMDKlStp06YNN27cYMCAAUgkEhITE8nKykIul5OUlMTixYu5du0a9epVtRr4+PhQWFiIl5cXkyZNomHDhri5ufHo0SPkSusa4xUEPbknvgQTGfa9ZwBg7uWPbZfR5BxeTtqWychsnJGYmmNiVUU6XFCmxtLSkrp16+Lt7Y1EIqGoqIiffvqJmJgYVCoVarWagQMHYm5uTtu2bbl16xbp6emkpKTg4eFBcHAw8+bNIz8/n6ysLPz8/AgPD2fSpEnUqVMHmUyGi4sLhw4d4vz58+zYsYOKiooaeRhHR0dkMhkdRr1XK+VZZX4aEqmJaPQA5M710eY8rbGuWq1m/bFwo2UbNmwQe7w2bNhAcnIyCxb8nuN0cXHhyy+/JDY2FoVCQfPmzXn33XdJS0ujZcuWrF27lpSUFBYvXszVq1dp0KABw4YN4+zZs+zatYshQ4awa9cuZs+eTZ8+fThz5kztP0oQJbK++OILjh07hr29PVeuXKFdu3ZERkY+93v/DZiamjJs2DCOHj3Kw4cPad++PQsXLsTT05N58+Zx//79f9u+JRIJjRo1YuLEibRt25Zhw4aRlJTEzJkzKSoqYvny5UyYMIHr16/Ts2dP1q1bx8CBA4mPj2fEiBE4OzszYsQItm7dSkJCwnOp9J7FjBkzMDEx4dixY/+2Y/sbVXjlPL73Dt7jSGS60bJnPQq9puK5atkGSJPvUHR6I4WFhUgkEnQ6HaNGjRLvFg2H/fjxYzIzM+nUqZPR8uqn5WVep6WlERUVRa9evXj8+DG5ubl06tQJrVbLqVOnRG01QRDo3bu3+N3Kykri4uJITU2lWbNmPH78mKZNm2Jvb48gCCQnJxMXF4ePjw+enp5kZWVx9+7dqmP9vx4yQRBo0qQJnp6eNcalVqt5/PixyHDi7+9PXFycGAqWSqVIJBJMTExwd3enfv366PV6nj59SlJSUpXIbK+3UTbtYbTt2tTUn4U2P42MkHepO2sPJmaWlN6/SMGp9S8MO0JVUUplZaXIKiORSFCr1Ua9itXZZQzrGwizFQoFcrlcJBYAnrvPwHk7SZbWLGlXpdwn58hKPGbvFZeVRJ6m7MFlXMasrHmsD39hx6RAsfjBcG1HjhyJvb09UVFR3L59m2bNmvH999+L4rMGZGVlsWbNGnbv3l3DA4SqopAffviBsLAwsTXC09OTlStXMmfOHDZv3syKFSuYOHHiC89tYmIivXr1IjU1ldGjR3Pq1ClmzpzJwoULX+kes5iYGL799lu+/fZbnJ2dCQ4OZtSoUbUqxP8VaNKkCdu2bSMwMNBo+fPEejt37kyTJk3Q6/XExcVx4cIFBEEw6iGs/v98Fj/88ANff/11jb7Av/HX4pUzfJP23OZiXLb4XhD05B5bg15djvOwT5GY1IylP6uWDSBJv4/bo6o7p0ePHlFYWMiHH35InTp1sLa2Fpu0v/vuOywsLIyagg2TaXXv4I+8zsnJ4ZNPPmH+/PlYW1uzYMECVqxYgYuLC8uXLyc2NpbGjRvTpk0bQkNDCQ0NxczMjOjoaL755hv8/PyYNGkSNjY2fPLJJ4wePRovLy82b95MRkYGs2fP5ubNm5w9e1asvmzWrBmxsbE4OTlha2srUlwZQmklJSUcOnSIU6dO0bRpU7Kzs3ny5AkAZmZm9OjRgwcPHtCkSROioqLIy8tj/vz51K1blw0bNpCeno69vT2JiYnYdhyBbeAYBGnVtp+npi5UatAWpCN3rIeuOIfcE19h6t4Yu27j0WvVdLLKJ/PSXm7evIlWqzWqipNKpTg4OJCTk0OTJk3IyMigX79+WFhYiCwy27ZtE9Xe8/LysLCwEEOzBoMolUpRKpW4uLigVCrJyMggKyvLiBEGfjeudUd9gaxezTChJvMxmXvn4fnhj+Ky4oifUCVH4zxicc31k+6Sf2Q5vXr1wszMjAsXLtCuXTsOHjxI69atWbNmDatXryY9PZ20tDR69+7NgQMHakQVqhvAMWPGiNekOh4/fszevXsJCwsDqrgvhwwZwuXLlwkODmbx4sUvrDQUBIGPPvqIdevW4e/vj5OTExkZGYSEhIgcsa8qdDodly9fJiwsjKNHj9KlSxeCg4MZNGjQX0ZenZ+fj5eXF4WFhf809FibWG9JSQmdOnUSK7OTkpK4cuUK1tbWYn6wR48eODs7i9upqKjA0dGRnJycl6Z8+xt/HK+c4avu8f1Rj+JZtWyA0uiL5J38ymg9Ozs7tFot5eXl2NnZUbduXZEDs0+fPri4uODq6io+u7q6Pre0/FloNBoCAwMZOXIk7733Hv3796dbt27Mnz+fkJAQpkyZwv79+5kxYwbJycm4u7sTHR3N0qVLOX36NFu2bGHAgAHi9oKCghgwYADr16+nS5cupKWlcePGDczNzRk1ahTLly8nOjqa/v378/HHH7Nnzx4SEhJwcHBg+PDhrFmzho8//pj9+/eLfYFmZmbk5+cjl8s5evQo/fr1A6oa7Q1tG35+fty5cweo8gJdXFwoKCiomhQLSnGbsQtBKqOyKPu5auoWDduSuW8+lYUZSBTmWDbvhW3XcUikJgiVGlI3T8BKIUGhUFBeXo5araZNmzbUq1eP77//nnbt2pGZmYmLiwtSqZSGDRuSlJTEkydPyMnJQaFQUFpaiqWlJf369eP1119nwYIF5OTkiBRlTk5ONGjQQCQUP3/+PNu2baOsrKzWVgaH1+di2SyoxvKXyfEBmKZHkhC2yGjZ+PHjCQ0N5fbt2wwYMIANGzawaNEiNm3axJQpU8jKymLixIls2bKlRpFEVlYWa9euZdeuXc81gIIgcP36dbZu3cp3332Hvb09FhYWBAYGioVCL0JUVBR9+vShqKiIKVOmcPDgQaZPn86iRYue2yrxKqG0tJTDhw8TFhbG3bt3GT58OMHBwXTu3PlPtUZcvnyZhQsXcv369X/p+7WJ9fr7++Pr64uJiQmpqancuHEDDw8Pox7C1157ja+++oouXbr8y2P/Gy/GK2f4tl55zLrzCagr9c/1KNTp8S9Uy1ZIIfP8bkpu/WS0bYVCQWVlJWZmZuh0OjGMZmZmhp+fH3K5HJ1OR3l5Ofn5+WRmZiKTyUQjWJthNLxetWoV8fHxHDt2jEOHDrFkyRLu3bvHuXPnGDlyJO3btycoKIjExES2bduGubk5jo6ODBw4kNWrVxspmmu1Wry9vcnOzsbc3JzCwkKaNGnC4sWLGT58uPhnvnLlCr1796Zr167079+fHj16iBWqEokEe3t7+vbty2+//cb9+/dp2LAhOTk59O7dW8yb3bp1i6ysLKytrXFzcyMnJwe1Wo1MJiM7O9vo/JmZmWHV/4M/JfGjT76HV+o5bt68KSq263Q6/P39OXbsGO+//z6AmNMbNGgQa9asERXH79y5w2uvvUZ5eTlyuZx33nmHn3/+mejoaCwsLCgtLcXc3BwHBwexF9Ha2hoLCwvatWuHm5sba9asqTE26/ZDn1uxmnN0FSDBod+7aLITyf7h8xpVnVClLFF0fT9F4T/W2IZcLsfZ2RlTU1OKioqwtrYmMLAqJHr9+nV27tyJXq/no48+qtXg/BEDCFX9pAMHDiQ6Opry8nKcnZ3Ztm0b/fv3f6HXotfrmTx5Mnv27KFbt24olUqePn1KSEhIDaKHVxmpqakiVZ1arRarYv8VxfoTJ06wZcsWTp48+ZeMzSDWazCEEREReHp64uPjg1wuJyMjg8jISExMTOjZsyfTp0+nc+fOf/jm+2/8cbxyhs9Q1VmWl/lcj0IikT5XLRtALoVT01vTtX1rMjMzgSpvz8rKSpS4sbS0xNbWFo1GQ0FBgdj4LJPJUKvVlJeX4+7uTqNGjXBxccHW1hYLCwukUilqtZrs7GwyMjLIzMwkOTmZkpISXF1dqVOnDnFxcWJRzI8//ohUKuWrr75iyZIlbN68mW3btnHmzBnOnTtH9+7djY7/xIkTjBkzhuLiYhQKBW+++SarV6+uVe5lxIgR3L9/n4SEBGxtbTE1NaW0tBS1Wk3dunVxcXEhPDwcJycnWrVqRUpKCjExMTRv3pygoCDatm3LxYsXiY+P58yZM+zevZtPPvlEZI9JT/8912piYoKNjQ1lpo7UGbPipRq8DdBrVeQcWIiiNIM5c+awf/9+HBwcuH37NnK5HJlMRsOGDXn8+DGffvopixYtYsqUKfz444+0atWK4OBgli5dyoABA9i3bx/Z2dkcOnSIcePG4e/vj7e3N0qlkhs3bog3OQ4ODvz22281jPizkFrY4P52SK2CtbqKEvJObUD15B5v3qTgAAAgAElEQVRSc2vsuo1H2bR7jfUk+kqSvw42qiaGqgKWZs2acePGDTFPWVlZKbICmZubI5FIyMjIoLCwEKi6SbO3t8fGxgZbW1vxYWpqSlxcHNHR0bRr147hw4fTsGFDo3VsbGz46quv2Lx5M05OTjx8+BAHBwcmTJhQozXiWVy9epVBgwah0+l455132L17N5MnT2bx4sX/E96fAYIg8OuvvxIWFsaBAwfw8fEhODiYN99887kUg8/i7NmzrF69mvPnz/9bxlibWC9URY8MrSkJCQm0bt1a9Ajbt2//P3UdXlW8coYPqvr4zsVmvZCm7HkQ9Hp0yb/iX3Kbzz77jEWLFnHu3DmWLFnCZ599hiAIREVFcfDgQS5dukRsbCzFxcWYmJjg6uqKh4cHzs7OqFQqHjx4QHZ2Ng4ODlhYWCAIAiUlJRSrBVw7D8HKww+5hRXpTx8T2LwhYzo1JGz7ZoqLi2nfvj3r16+nQYMGZGRkYG9vz+PHj9HpdKI8T5s2bXB1dcXJyYlHjx5x6dIlysrKsLe3x9XVlaVLlzJ48GDx2AoKCrh06RLnzp3j/PnzJCUl4e7uTkpKCvXr18fa2pp27dpx6NAh8vLykEgkuLu7i2oOUqmU6dOniwUeq1evJiwsjHPnzjF37lxOnz6NWq0Wi0EM+S+JRIKXlxc5OTmUlpbi0WMUktbDX1rip7qSOlR5kCYmJtSpU4e6devi7u7OsWPHkMlklJaWotPpWLVqFQMHDuTXX3/lgw8+EEm0t2/fzo4dOwgPD0cikbB+/XoWL17M7NmzuXbtGmfOnEGhUDBixAjq1KnDyZMnefDgAfv372fKlCk1tAWVSiXmr83BolGHf8mbNfTxTWyko3v37kb9owqFAplMxoYNG3B0dOTrr7/m8uXLWFtb07VrV5ycnLh79y7x8fF4e3tTVFREcnIybm5urF27VswzGR5FRUWkpaVx7do1YmJicHV1xcHBQexVLCoqQqfTYW5uLobyS0tLcXV1JTs7G1tbW5G5pG7dujWMpoWFBZMmTeLYsWO88cYbCILAw4cPCQkJoV27di99bv7b0Gq1nD59mrCwMM6ePUufPn0IDg6mT58+LwwDJyQk0KtXL7F95t8N4f/Eert27Uq7du2Ij48nOTkZb29vLCwsyM3NJT09nY4dO4o5wtatW/9XSMj/1/FKGr6olEJG7ginQltTV+2fQdCqKTu2lBbutmLuqmfPnsyYMeO5P/Jhw4Zhbm6OTqcjIiKClJQUdDod1tbW+Pj40KxZM+rXr8/TUrhVakex0r2GDA+VWgQJlD+6jTzhIvmP7hEYGEhUVBTBwcGEhYVhYmLCjz/+yMSJE/nwww+Ry+Vs3LiRqKgokafTz88PjUZDYmKiGK40MTGhoqKC0tJS6tWrR6tWrWjatCmff/45EolErMaUSCSiJpytrS2pqalUVlYSEBDAjRs3ePvttzl27BipqamEhoby+eefM2nSJFasWIFKpcLKygq5XE5hYSHdu3fnzp072NjYUFBQQGlpqXiocrkc02a9sAuajNREUaPh2/iC6NFXVkn8VDd61eHg4ECXLl04cuQIRUVF7N27lzlz5qDT6fDx8SEnJwdra2vKyspo0KABOp2OJ0+eYGlpydOnT7GxsaG4uBgvLy/69+9PYGAgCQkJLF26lKtXrxIaGkpKSgpJSUkkJyejUqnE/kQDZDIZDdr0QNV5OpKXId82HKZWTbB7Pl+8N4UHDx7QoUMHKioqsLe3p6SkRCQEcHR0ZNGiRdja2jJ16lS0Wi09evRg1qxZ9O7dm5iYGO7evcuVK1c4fvw45eXlKJVKBg4cSGBgIAEBAbRs2VIs4MjOzhZDoKNGjWL+/Pm4u7ujUqkoKiri+vXrzJw5k0aNGhEdHc3EiRMpLi4mPDycx48f4+zsjLOzM3K5nOLiYoqKiigsLESj0WBubi7KO9WrV4+0tDR8fHzo0aMHjo6O2NjYiDdFz3qmlpaWr2QvWkFBAd9//z1hYWE8evSIUaNGERwcTKtWrWrkAwVBwMXFhYiIiD+s5vBnVWSKi4txc3OjoKAAuVwuivUawqN3797F1dUVKysr8vPzKS4uplu3bqJH2LRp0//Yef+rFXP+k3glDR/861ydg70Edi+YKBZl9O3bl+PHj9O5c2cWL15M8+bNa3wvKiqKvn37Eh0djaOjI4IgEBsbyw8//MD58+d58OABWq8O2AVNRmKieKFHIOj1oNMiiz6GTc5vxMXFodVqqaysRKFQiIUmBvUBW1tb9Ho9o0aN4ssvv+TRo0ecO3eOtWvXUlRUhK+vL40bN0ahUJCbm8ujR49ITk4WG++rSxCZmpri7++PlZUV169fFz03Dw8PLly4wODBg2nQoAFDhgxh1qxZIpmzlZUVgiDg7u5Ofn4+mzZtYuPGjcybN09Uc6gN73y2Gm2jHlyKz0Gv11P9Ukl0WnSCgOrxHZqQypXDYaIHWR1dunTh/v37qFQqtm7dyrhx45BKpXTv3p2IiAh69OjBr7/+Sk5ODnZ2dqIqQ2VlpajKLggCvr6+nD59WpygLl68yMSJE8nKykKj0eDg4IBWq2XatGl4enqybds27t+/z8KFC9mxYwfFagGPrsMptvXG1MUbyUvcRQtaFaXXvqXg9jHMzc1p0aIFVlZWhIeH849//AO5XM7Jkyc5e/ZsVbP8/4V1W7ZsSXR0NMOHDychIYGnT58ydepUpk6dKpIWX7x4kXHjxpGRkUH9+vWxsrIiISEBHx8fAgICxIerqyubNm1i586dogH08PAAqiSCBg8ejFKp5P79+2zYsIFRo0ZRWFjIoUOH2LNnD/Hx8UaqEVqtlqKiItLT05k4cSKRkZF0796dwsJCUlNTGTBgAOnp6Zw7d46uXbtSWVkpGs3CwkLKy8uNjOGzhvFZL/PZZdbW1v/2CfzRo0dia4SFhYVIGF49dzpt2jTc3Nz4/PPPX7itv0pFZuvWrfz8888cPXq01s+fFeu9du0aMpkMW1tb0dPv1auX6BE2bNjwL+c+/asVc/4beGUNH/xxdQZBr8dcIWPRgCqC6vT0dMaOHUt+fj6FhYW0bt2aZs2asX37drp168bixYtryLQY5INOnTpVI3SwN/wJS0/GoqqFTeZ5kEn05J7bjjbmIjKZjJKSEpRKJaWlpUgkEjw8PDAzM+PJkyeiDh5UhcXq1KlDcXExjo6OaLVacnJyxBxWXFwcSUlJTJgwgdWrVwPQvHlzcnJyWLNmDfb29uzcuZNjx46JSuRyuRx3d3eSkpLE8RkMpqWlJV26dKGkpISMjAy2bdvGoUOH2LZt2wuP7/vvv2fEiBHExcXx8eIvCM8UMHdrRKMmLYiLvkdDB3OCvMxZPP8D8TuWlpZGnqNhHEqlkoCAANFQb9iwgTFjxogVqEVFRQiCIIaJmzRpQkFBAcnJyTg7O5OVlSWK7TZp0gQXFxcuXbpEUVGR6AV/9dVXzJgxA3Nzc+7fv8+wYcP45ptvyMOS97b/jNyzZVUbRDUvvnqfYG0wCNbK7x+n6M4JOnXqRGlpKQUFBUyZMoW8vDyePHkiVqSmp6cjl8spKytDJpOJXqdUKmX//v34+PiIZNtBQUHMnDmToKAgJBIJ+/btY/bs2ZSVlfHee+8xZMgQ7t27x927d8UwaaNGjWjatCm5ublEREQwcuRIFi1ahIeHBxUVFUyaNIn79++Tn5/Pu+++y7x588Tjq94aYVCNGDt2rGgE9uzZw7Rp03B2dubDDz9k2bJlFBUVodVq6datG5cuXTI6NwZDmJSRy5HfMnmUU0FxhQYTvQYrXQnumhRURblG4dvq4dzqjD7PM5gvMqjW1tZ/mEbMUBW7Z88efvzxRyPC8PT0dDp16sSwYcNo3bo106ZNq/H9v0pFRqvV0rhxY0JDQ/9wRadBrNfgEV66dInc3Fzs7OwoKSnBzMyM1157jd69exMUFPRCFZA/gr/qWP/beKUNH8BvqYV8c/kRl+JzkICR8ZFJqibDisQ7+OmSufzTHvGzo0ePsmLFChITEwkKCuLChQt88sknqNVq1q1bR69evfjss8/ERH9lZSW9e/emXr16bN++XWziNYRdU35ahepJFHqtChOlHdYdhmHVsg/qtDgKr+1Fk/kIJFLMPJtj13s6Mkt7BK2a4XYpfL3kI7RarWhsPD09yczMFHvYzM3NRa+roKAAR0dHVCoVNjY2KBQKUlJSxDE2bNiQgoICsrOzkUgkbNmyhenTp7N8+XKePHnC9u3bgSo+zzfffJP09HQjaR5Dr5yZmRkTJ07E3d2d3bt3U1RUROPGjcnKyiI2NtboGlT3Kg25ycjISJo2bUpCQgLz5s3jq6++IisrS8xtdujQQZRd6tixI2fPngUQm8tNTU2prKxEqVSKPXjDhg0jMTFRVGc3ULAZcmZvvfUWEydO5Msvv2TZsmWYmJhgaWmJjY0NT548ET1BQ4GSTCZDr9ej0+mwt7cnIyMDhUKBRqPBxsaGzWd/Y8mxaJDKX+zFP2sAKzUgkdDaxZRTa+egzniIj48PT548ISgoiFatWrF//34OHz5sRCFWWVlJamoqZ8+eZe7cucjlckpKSsQbFKgK+zZt2hStViuGu0eMGMGMGTPw8fFh2bJlrFixAjMzMzZs2MD48eOBKpq86Oho7t69y507d4iIiCAuLg5BEGjUqBFjx46lZ8+enDp1ip07d6JUKunduzdff/210Y2ewQiEhYXVUI1QqVT07t2byMhIbG1tKSgoAKpytUeOHKFPnz7idv6sV6DT6SguLq7VKD77qO3z4uJiLCwsXtpompmZcfPmTQ4fPsyNGzcYPHgwWVlZnD17FlNTU3bs2MGYMWPEcf4VKjIGzJs3j5iYGE6cOPGHt1Ubqov1nj9/nvj4eKysrESqxN69ezNgwAC6d++Ok5OT0XcNrFMzZsyosd2/8lj/23jlDZ8BeaVqDv2aSlxGCcUqLbevXyH5t3DUcVdQFeUikUi4ePGiWCX52WefsWzZMmQyGQqFgv79+4tJ6nXr1nHx4kXWrVtHv379+Oyzz/D29qa0tJTRo0dTWlrKvn37cHV1FQtt1NlPkdu5IZHJ0ealkLl/Ac4jPkdfVoheq8K8fmuQSsk/uxVdaT513voHgl5P+cOb5B5eUeN4HB0dqaiowMnJCV9fX+zt7ZFKpeTn5xMfH8/Tp09xdnbGysqK5ORkWrVqxdOnT0UhVq1Wi1qtRqvVolQqqVevHvfv32fu3Lk0btyY3377jUOHDonHLJfL0cktcO00GIcGLWjZriNWChNu/HyIerp0vtuzk5SUFIYMGWLU4F0dtra2FBcX4+zsTHZ2tmgMDZI/AD179sTf319s8zh69CiHDx8mKCiI8+fPi4U1tra2YoFJdWYVV1dXxo4dy8GDB0WS8FatWmFvb8/Zs2cRBIHWrVuTmJjIa6+9xtmzZ0UvUiaTIZfLRYLrzMxMI6YWAzepRCLBp/9khBaDyPh5c62agqUPLpF/evPvBy8ICJVqWk5bi5e9KbcPfk3m00diCwVUees6nY7WrVszd+5cZs+ezddffy0SildHamoq/fr1o3nz5qSkpPDLL7/g7OxMXl4eUqmUli1b0qFDB2JjY4mMjCQ/Px+pVErdunXx8fHh6dOnPHr0CAcHB5YtW8bgwYNxcnIyMtAqlYqrV6+ydu1asXG6tLQUZ2dnMjMzcXR0pGHDhhw+fBgHB4caY6yoqODYsWOEhYWJRiA4OJiQkBC+/fZb8Xel1WqxsrIiLy8PuVz+SngFer2ekpKSf8loGpYbmH/KysrE37dUKqVPnz74+/ujtnThaGl9KoWaN01lMVcovH4AXXEOJko7HAa8h5nH73JQ5nITDk7rQAv3KqN/8OBB5s2bx6+//lrrtfgzMIj1Xr16lTNnzvDrr78ik8nQaDTUqVOHXr16MWTIEFGHUK/XM336dLZs2SL+nmqruyi+e5yy6Atocp6gbNwNx9ffr3X/zx7rq4D/GcP3LObNm8fatWuNChQUCgWZmZmYmZkxffp08c9pgKOjI1ZWVmKSfuDAgSQlJXHmzBkGDx7MokWLqFevHp9//jnffPMN0979gB+1/mh0xqdIm5dK1v4F2PWahrKxMZWROvMRWfsX4Dn3BwCxYfvZEnelUom/vz8DBw6kT58+NGvWTAzNFBcX07VrV+Lj40X6soKCAhQKBRKJBE9PT5KTkxk5ciSnT5/m+++/B2DmzJnk5uaSk5Nj5KVY1muKaatBWDRsU0VvJv09BCQVKpHLFdQ3LedO2HJKnt6vocMHVbmOyspKQkJCUCqVfP/991y4cIENGzag1+tFA9O5c2cGDRpEZmYmGRkZpKSkcP36dZEMujqkUilWVlaUlpZSv3591Go1GRkZCIKAh4cHBQUFIuHAsmXLRCacZcuWYWZmRmFhIZ06dSIpKQm5XM6TJ0+wsLCgb9++tG3b1ogT04B27dqx/dAZhmy6QmVl5XM1BWW2xhRYpb+dp+jGd7hO2sRIp0xWzpvJ9evXeeONN0TPB6raZjQaDfb29uzevZtp06bx5ptvih5qdRQWFjJ06FBsbGyIjIykpKQEGxsbVCoV5eXlFBUV0bRpU5YsWUKXLl3Ytm2byFrTvn17LCwsOHLkCLm5uZiYmKBQKKhfv7748PLyEp+trKzYtWsX27dvJygoiDp16hAaGoogCKhUKho3bkz79u3FnGHLli0xN/+9dzYzM5P9+/cTFhbG48ePjULWXbt2paioiEuXLvHe0o18f2Avquyak6Feq6Lg4m7K435B0FeicKqPy9hVr6RXIAgCZWVlFBYW0rt3b+Li4ow+HzVqFE88XiNd4gASY8NXkXSPvJ834vTGxyjcfNCV5gMgs3KsvgPqy4t5062ImzdvcvLkSdatW0fbtm2NvM+/Oj8Hv4v1Xr16lePHj3Pr1i0qKirQ6XRG/9EuXbpw8eJF5HJ5rZX25fE3QCKhIulXBK3muYZPIoE+TX5XLnkV8D9r+NatW8eHH35YYzK1s7MTc1epqamYmJhgYmIiGpctW7Ywbtw4IiIiiI+Px8/Pj4cPH4oT6dChQ1m6dCl6vZ7xK77lqU0zsWct78w3lEVfQKhUo6jTkDpjVho11gMU3z5KWexVXIO/BECvVeNeEMWv+1YZCdIOGjSIxMREEhISxGUeHh7Y2dnx+PFjLCws0Gq15OXl0b59e3bv3k3jxo0pLy8nODgYnU6Hr68v27ZtQ6vVUlZWJo5BJpPRtm1bJk2aRLFzSzZcS/nn4bz/y1cVXwml+O5JIxoxQ5i0Tp06zJgxg6ysLLZv30737t3x8PAgLCzMKBR669YtIiIixAT8w4cPkcvlBAQEEB4eLvJuGqoGDZWpvr6+pKWlicrvhj+9ubm5qKBuKAwyFAmNHDmSd955hzZt2hAUFERCQgKff/45oaGhIuOGYfuGwpKBq49zN1NTY8KC3xVAlH6djZZn7l+AmWdzbDuNRJETR/208+zZs4e9e/cyb948BEGoqnY1NUWlUonHuHnzZvbt24eZmRn79++v0UOm0WiYNGkSkZGRPHr0iHfffZcePXqwadMmrl+/jpWVFenp6SiVSiZMmMAnn3zCvXv32LJlC9evX2fMmDH06NGDTz75hLi4OLp168b06dPJzs4mKSlJzC8mJSUhlUpxd3dHo9GQnJxMixYtRMLyiooKpk+fTkpKCnfv3iUuLg5vb2/atGljZAw1Gg2Ojo41ipRatWrFxr1HGLl4Bxq9UOtkmHt8LYJeh33vGUjNLNFkJ2Hq4l11jV9BrwCqPEcDuYWrq6tYrLZs7UbWJFjXqiKT+e2HKFu8hlXL1164bamgQ/fTAoqy00TFh5ycHNHgAn84p1nbZxYWFn/YcCYnJ9OtWzeRztAAJycnYhJTnquYA1Bw9Vt0xbnPNXwApjIpNz4OemWqPf9nDd/GjRuZM2eO0TKZTIYgCNy8eZOff/6ZL774gmnTpvHpp5/i4lJFQHznzh1GjhxJr1696Nu3L++//z4dOnRgyJAhYlhOIpEwZswYhI7jOZdQaLQPQa9DnRaHKjkamw7DjbhDNdlJZO1fgNOwRUZhjdL7F8k7YUyfVrduXZF8ubKykvz8fEpKSmowuVtYWGBvb4+DgwO2trZIJBJ++eUX2rRpQ2JiotiYbVB1r6iowMvLi8rKSkpdWmHRZSzSlyjPr95vZyDTViqVODs7k5ubi6WlJTKZjI4dO3Ly5Em6detGUVER165dE7dhY2ND48aN8fX1xdbWltDQUEpKSvDz8yMuLk4MD27fvp0TJ06IbPRWVlZ8+umnLFiwAKVSSXFxsVF+sbrXaGjhkMlk2NnZ4eDggLW1NTdu3KBz584EBgaycuXvJNIWFhaMHDkSt/q+hBU1qr1RvZqmoNzBQ1xeWZRN2tYpuE3fjtzWBaFSQ0DqYX65cJrJkydz+/ZtRo4cydSpU7GzsxP5U0tKSlCr1bi5ueHu7k5GRgb79+/Hz89PNMaG41u6dClbt27FxMSEvXv30qtXLxITE9mxYwdhYWHY2dmRmZmJRqMhICCABQsW0Lx5c0JCQti9ezd+fn60bduW0NBQCgoKePvtt1m3bp1YGWnIHxsMYXR0NMeOHSM6OhqJRCLmoH19fWnWrBmenp7IZDLKy8vJysoiISGBhIQE7OzsRGIDQ5O9gX1H6DwF80btEZDUmAy1eSlk7JmL+6w9Ip9uddTmFQiCQFxcXA0i7/8koqKi8Pf3p0+fPqxatYrmzZuzd+9eFu27jIn/G0bRE6iaH5LXDsM2cAylUWcRdBosGnXAtsekGqxAQqWaztZFhMwbTWJiIvPnz+f48eMcOHCAt956C5VK9VLh2Wc/02q1L2U0n63gdnV1Zdq0abj0GCeyadWGP2L4zGRS3u/tw/SuL8+g8+/A/6zhW7JkCUuWLMHU1BStVkvTpk3p06cPW7dupXXr1hw9ehSNRlMjeQtVocTp06fz4MEDQkJCOHjwIKGhoSxfvpwuXbrw/vvvc/v2bUx7z0HuVTtZb97pTcgdPbFuU/Vj0Rakk7VvPrbdJ9TgfNQlR5G6f6HRMkdHR+RyOeXl5WJxh6E032Bwqi/7I6huJBQujagzZgWlv517bhy+LPYahb/sQ1eSh8zKEdtuwVj4dESvVZG1bz6azEdG2/xnMDExEYVjTU1NxQlVp9OJYRTDJGlY397envz8fKMCD6DW0KhhuWE8Dg4OWFlZiQUsOp2OwsJCKioqUCqVRl6wAdbth2HTZXTNSegZBZDqKLx+ANWTKFGNQahUU3RtPyYPqypHDUUUhYWFlJSUIJVKkclkojExwHA8CoUCMzMzI1UNQ8hRq9UCiH16hs8Mx/eyMNwcVDe01UnYDVWv1Rv6DWMznFfD8/OuiUwmw8rRDaux68Ubimcnw9LoCxTf+gmzev6UPbiEiaUdNp1HG3vWOi3KCysx0VY14qelpaHX62nevLl4DNXHXf31s8Tyf2Z59WWPHz8mMTFRfG9vb0/Lli0pajKEXMv6Nc5FZUkeaZvHo3Dxxmn4Z0ikJuT8uBRTz+bYdQuusb5jaSLpP64gKytL/H+0bdtWZG6pbZzVn599Dca/GbVaLV7f6q81Gg0ajQatVis+cnNza4yvRYsWtHp7PZef1OS3NeCPGD6AIf51WfeW/wvX+U/hz8kG/xexcOFCLly4wN27d6lbty4HDx6ka9euojjrpUuXjFhPqsPa2pr9+/eza9cu+vbty6pVqzh79izTp08nLCyMbdu2ceHCBVZeyXj+APR6KguqPq8syibrwCJsOo+slehYW14k3nkbJo7ly5ezZcsWUWUhMzOTrl27EhISQv369UUliY8++og7d+4we/ZswsONtd5kMhlSqZTGjRtjZWVFbGwsmzZtYurUqVgFjkJiokBm6YBNp7fE0JMBlSW55B7/EudhizBrEFCV3zqykrozdyE1t8ajzxTaqO4RHh7O06dPcXV1FfkE3dzccHZ2RqlUolaruXPnDlqtFnNzc8rKytDr9Wg0Gjw9PcnJycHFxYWKigqSk5NxcnIiMzMTa2triouLKSkpqXUy1ev1mJubo1KpjAyvYV0Dh2l+fr7RRG1YtzajB2DqXL+m0atFU7A6yu5fxKbjm+J7icwUmWM98iKqcjclJSXizYthjIY8aW03DYZJ50VQqVRGkzAg3hA972bIQGJQPedqMJiG3sFnv2cI0cpkMrGxX6VSoVAoxByf4eZHEAQxDF0dEokEhV9NgeLq0JXkoc15ioVPJ9zf2YM6LY7sH5agcPRE7ughjiXPqiHZVw8YjTMlJaXGTYJhfcNzbZ89e55etKz6++rPz56rvLw8Ll68iItjV0xrMXwGNiOrgIHILKsUN6zaDqboxsFaDV9KZi7ZGb/PMzqdjvDwcCIiIp47jv8kfvvtN6yT04E/H4IuVmn//ID+IvzPGr7Y2Fh+/X/svXd4VOX67/2ZmcxMJmXSCyGkkR4iobfQOwioICgbFRFEZQsqggqiNBGliAiIIBYEBBSpGwgYuqEFCCUBEkghvfc29f0jez1kSEDc53e957jPua8rV9qatdasWeu5n+e+v+XyZQYMGMCVK1cwmUx0794do9GIn58fkydPZuDAgQ8VeJXJZEyePJlu3boxduxYoqKiiImJYcuWLfTs2ZM33niDET07cDBTh6m+hrqMq2gCOyOzUlGXnkD1zZO4jpyNobKI/J/nYN/hSezbDWtyHGsrOR3b+LP/oJXFYPf6668L2H3btm05cOBAEyuYw4cPs2zZMgoLC1Gr1Wi1WpydnTl16hQODg5cuHBByJfFx8cLz0G5jQPOvlHI5HJsQhp8Buvz7mDU35/RGSuLkVvbomndUFqyCeyETKnGUJaL2tYRg3sIv6xZgqm2ArVaTWFhIa1atWLUqFE88cQThIeHExERQVLhj70AACAASURBVGBgIDNnzmTdunVER0fz008/kZeXx/z58zl27BjV1dV4eXmJpC1pp0qrl8bSXg+GTqcTXnEVFRUisalUKvGztGqWyWRotVocHBwwGAwWOqONQ2XnYPF7gwPIaozVZbg/O7+J7VVdVhLGqhJsQix7fu26dOefU3rx5ptv0rt3b7y8vFi/fj2jRo3ip59+Yt68edjZ2bF8+XLBaevTpw8JCQl07tyZlJQU1Go1fn5+XL16lYqKCiIiInB1deXYsWPU19fj5+fHM888YzErl77KyspITk4mLS0NhUKBTqcT6FoXFxecnJyoqamhqKhIoH+hoWfz4GpO+pJWqTU1NWI1oFQqLRJfc6HVagnq1IdMxcN9/GRWKpBb4dDjOWRyBdY+kVj7RFKbdlkkPpmVCoOdZ5PjSP2uxt6Lj4qHrWzlcrn4avz3xkIQZrPZooLwMP9GG6WM5tbfCms7FI1BLDRdkTWONiGtaTdzphDKMJlMTJw4kZ49e6JUKoWfY319fYNc4r/VdaRJY1VVFZWVlVRXV1NdXU1tba0wctbpdELo4cFr07hy8meVBLXcBI/PYHhoaK0f7RLy/2f8LUudkgzXM888w/bt2xk4cCAeHh707duXCRMmsHXrVvr168err77Kl19++af7q6mpYcaMGZw4cYIdO3bg4eHB9OnTSbh1F8OwjzHpainc/Sm6gjQwm7BycMe+wwjso4ZQdmYb5We2NZG58pn5K3C/qXsi5gATJkygrq5OkJfDw8Pp0aMHKSkpXLlyBY1Gg5+fH5mZmWRlZSGTybCysuKpp55i2rRpzJ49mw8++KDZlaxer2fatGls3boV5RND0fawLOc9WI4wm4zk/zwXbeen0bTuSO2dC5QcXY/XlG+Qq6wx6esJrL3FoZUzUSqVFBUVceXKFa5evcrNmzdJTk4mNTVVwO/NZjMuLi5UV1fTu3dv7OzsuHLlCrdu3aJVq1aCi/i40XiGDw3lQRsbG7ESkiYCNTU1Qvs0MzNT+Nrl5+c3u8/wSZ9R6Xq/Z/QwBxDx/0NfYTbocB0x0+LvVdePUXpoFSqVSnAGra2tqa6uFudtbW2NyWRqMvj8r4Y0kEoAGqms1fj/0mBubW0trJqkcqZSqcTT01OYIisUCoteYH19Pffu3bPgmWo0mgYUbDMrPgcHB6Kmryddby/+9uD9VpueQMHO+fi8u0uIzhf8uhBr37ZoO933woxyU6CP/YpDhw6Jz/7w4cNERESIsq2VlZX4Wfou3S/FxcXk5eWRn58vvjf+OTc3l9zcXEpLS1Gr1SK5SBMKCbQjl8uxs7NDo9E0uZcUCgW+QyajiBrZBPENUHZqC7Wplxr8GhVWFP66sAEY1esFy8/RZMAx8wzy28dEUistLRV9f0ngoLHHpETZafxdug+ke00S2VcoFDg5OaHVajGbzdTW1gpbLp1O91irSScnJxbvOs+Xx+406fGZTUYwGSk7sw1jZTEuQ98EucLCVECK/9N6fH/LFd++ffuws7Njzpw5rFixgv79+7No0SLmzp2Ll5cXmZmZPPXUU2zcuJHJkyc3K1PWOGxsbNi4cSPbt29n8ODBfPTRR/zyyy/06NGD9IwEVP4dm3XbBnCMHo9j9Phm/yeTQWdvW2a89goHDhwQiL/g4GCOHj0qZKlqampYuHAh69ev5+zZs8jlcpRKJXK5HLVaTUFBAV9//TVpaWn4+fmJmbgUZWVljB8/nnv37mFvb8+wSW9yLLWq2XMS5yZXYNumH0X7lmE26JAplLg+9T5yVUMClyvVXE8uQaPRiIevuS9ADKh5eXmYzWb2799vcay/mvSgqVP6g+XB2tpasRJoHIWFDfJpzfWjTCYThXcSsHZsDVYqDOUFVCUcBoWSrK/uD0rOQ6ZhF9EXs0FH9a0zuD39AC3CoMNZXku5XC5EAaReZnBwMAaDgTt37uDl5SX60KmpqXz++eeUlJTQpUsX2rVrx44dOxg4cCCxsbF88cUX9O7dG4VCwalTp3j99ddp1aoVN27cwN3dnXnz5jF69OhmXTqkuHDhAl9++SV79uzB3t6euro6PD09yczMJCoqitDQUK5du0ZCQgKZmZnY2dnh4uJCaWkplZWVaDQakQwlNSGp91hXV4eLi8tDe75RESGkJ+SIwRCTEcwmzAYdyBVYt2qDldaN8rM7ceg2lvqc29Tdu45TX0uneP+Wnnzxr39RW1vLu+++y5YtW/D19aW8vLzZRNb4e1FRkQBwSCauUhKoqqoSA75030pWUT4+PgQFBREZGUlQUBC5ublcvHiR8+fPc/Xq1Sbv1Wg0Uhz/LxzDh4Ci6SrGocdzGGsryN4wFZmVEtvQnjh0H9dkO7PZjDLzEjb29ri5uYlnXiaTYTQa0el0VFZWUlZWRmFhIWVlZWi1Wjw8PHB3d8fDwwM3NzdsbGwoLy8nIyODrKwsCgoKRC8vLy9PVFkahzQpkkrcLVu2JDs7uwlat7y8nG/nTMbU/70m+yj/Yzvlf/wsfq9OPI5Dj+dx7PmPJtuagTHt/9dUY/4n42+54hswYACTJ0/mueeeo1+/fsycOZOXXnqJS5cucfXqVRYuXMiBAwcIDAwkODiY+Pj4x9b9u3PnDs8995x4QFZv3cvEzQmYm7nB/zQMOsp2fYypKJ3q6mqGDBnCpk2bBML0xIkTzJ49W5yfSqXilVde4Y033mDXrl3U1dUxY8YMrly5wqxZs5DL5dTU1JCZmUlERATt2rXD09OTH374gfbt2xMXF0dMTAyrLtdx8k6Jxak0NwMv2vMZ7uMWovJsjS7vDoW/LsJ97AJUHgEAmDKv4nhtu5B/qq6uxsHBgbZt2wpyr0ql4pNPPqFLly6MHTsWpVLJpUuX+Pnnn9FoNLi5uQlC/IO3mkR+lsLa2pq6ujrGjBlDTk4OZ8+ebfIaOzs7vLy8yMnJEWVSSY3Fw8OD0tJSFAqFEPiVQuI/Hj11juEbr6D7C/JzD4bcbKRy61u0Dw+iuLgYKysrnn32WdatW0d6erooxUrgqilTphAdHU1UVBSzZ89my5YttGrVirVr1zJt2jS6d+/OiRMneO+993jrrbeQyWSC35mamsq3334rJk3+/v60b9+e4OBgoCHRS9xN6XthYSE6nQ6TySQSlSTCbjQaBfpXuva2trZ07dqVyMhI4ZJhbW1NUVERP/30E3FxcRZlwAfD29ub2d8fZc3JNPKP/2QxGAJiMNQVZlB8aDX6wnSstO449npBlOIBFBjxq7iBOu2MSGiFhYXY2dnh6emJh4cHTk5OaDQa5HI5VVVVFBcXU1RURHFxsUAySpMea2tr7O3tsbe3R6vVYmtrK9R9amtrhTJMZWUldXV1FoP+w4A8jcN3wmJo+USztJg/DZOJ+rR4SvYutUhkzX2XgFOJiYnExcVx8+ZNcnJyqKystHh+oGk5WKVSiYmABGAJCgqiTZs2WFtbU1BQwKVLl7CzsyMsLKxZ1Zh+/fpR22ECuVbujxQkeFj8Px7f/0DodDocHR0pKirCxsaGOXPmoFKpyMjIICoqijfffJOIiAjWrVtHfHw8S5YsYdmyZUyePPmxj3H+/Hn69OmDo6MjvXr1wrrNQE6UO/0l1f7GtICuXbuye/duPD09qaqqYt68eWzatInKykoUCgUdO3Zkzpw5DB06VKzkli5dSllZGUuXLiUzM5O2bduSnp4u1DeuXr3Kjz/+yE8//YSjoyN5eXl4eXnRokULsrz7Yx1mCTZ4MPGVn/+N+qwk3Effdwsv2LUYtXc4Dl2eAZp3sYcGMWxPT0+8vb3x9PTkt99+Y8yYMTz55JO4u7uTnp7Ojz/+yLlz54Su5ubNmxk8eLAYTBqjOxuHi4sLXbp0ITAwkI0bNwp6Rm5uLtHR0eTn55OYmIhWq2XFihXs2rWL/Px8oShy8+bNZoEjarVamPv6TviEAqXnf2ym61R9jw/7NCTZ9evXc/fuXRQKBfv37+f69evMnTuXyZMn891331FYWCjQqxUVFbRo0QIvLy/i4uJQKBTMmDGD2NhYioqKxKoqPDycjIwMrl+/joODA8XFxaIk2apVK+EHaW1tjZeXFx4eHkL+rLi4mIKCAvR6vaDM5OXliRJlQEAALVq0ICEhgQ4dOiCTyYiNjQUaylotW7YUwt7e3t4olUru3bsnEvzIkSP57TdLg2cfHx8uXE2i5/KTzZb+HjfkZiPDDWcx1Tb0rwoLC8nJySE/P5+KioomQCewHOgb9/Eal/4UCgUajcYCSavX66mqqsLa2pqWLVsKMfj09HROnjxJXl6eKKl7e3tz584di+P27duX+LRCnMYs+I+8KdUKGd9PeIJuIQ1aqPn5+cTHxxMXF8fFixe5e/cuhYWF1NTUWCTgB9+f9AzZ29vj4eGBi4uL8OVMTk7G09OTjh070q5dO6ytrcnIyODEiRPcvXuXPn36MHjwYAYNGoSLiwsTJkxoYrrr6elJaGgoE2d+zOKzVehNf51Q/38iR/Nvl/iuXr3K+PHjxSpi3759rFu3jmnTprFixQpOnDjBpk2b+PXXX9m7dy/BwcGUlZWRkpLSLLXhwcjPz6dt27Y4OTmRkpKC0WgkOjqaEpcI9BEj0BlNj5zhSUTwxjY8UllB4kDJ5XIcHR15++23mTJlCh4eHk32s2zZMuG6/f7771NXV8eqVauAhpLdggUL+Oabb3jyyScFQRqgqqoKmw6jBGT/YXX4+qwkCnd/isdzi1F5BKDLu0v+9g9xHTULjX97ZCYDFWe2URK3s8m52dvbCzK+i4sLeXl5BAQEUF1dLSDRjZGFUsjlciEq7ePjQ1mdEU14X/S2bqjtHNFqlNgbK+nhJWfn5u8ExNtsNtOyZUsqKytp164dQ4YMYf78+eh0OlatWsWpU6fYt28fSqWSgIAAkpKS0Gg06PX6ZpNgy8huyAfN/Ev8RilkRj0v+5RzZPtGYWsTGhrKN998Q0JCggD+7Nu3j169enH48GFBtpd6bdK1aExvcHNzo6CgAHd3dwDGjh3L/v378fDwwNnZmUOHDgl/Pa1Wi6+vr6BsZGVlIZfL6dmzJyNHjmTEiBGiLCnFtWvXWLFiBTt27BD3ozTjN5vNFsR7aFiNd+vWjT59+hAaGkp2djZz5sx5ZG/IffSHWLfu/B9PKB4m7yf1tmxsbATASyrzubq64ubmhqenJy4uLqLUqdVqKSkp4fr161y4cIG4uDju3r1Lu3bt6N69O+3bt8ff35/CwkK++eYbTp8+TVlZmSjhu7i4YGtrS3FxsQViFyxpQ4P/+Qmp2rbo/kIBQW42YHP7MEVnd1NWVtbEG1KSWZRQvBI4SSaT4eTkRKtWrfD398fV1RWFQkFqairx8fHY2trSqVMnOnbsSMeOHXFycuL8+fPExMRw6tQpQkJCGDRoEIMHD6Zr164olUri4uJ44YUXBGXDwcFBCOYrlUoWLlzI5cuX+fXXXxnz/pdctwr8f1qd/zvi999/59NPPxWz1Pz8fPFgenl5kZKSglarxd/fn8OHD5OTk8Pzzz/Pk08+2UTC7MEwm81ERkZaaFVaWVnRvn170tPTGfXym+xJqWtAQGLGLL9f/jTp65HJZNTcvYhzXjzJZ482e4zhw4czb948Onfu/Ei01xdffEFGRgaffPIJvr6+nDx5ksLCQn7//Xc2btxIcXExPj4+FBUVMXr0aIYMGcLEiROxt7dHptFiPXYZMisVZae3PrT0VHFpP5UX92GsKUOh0WLffjjaf6/2lHKILj7MD9+ssXitp6cnCoVCSIs1vn2kcq3UmJeuqVSaio6OJiwsjOPXUslxjEQT0KGhad8IhGPS1zdIe+Umobuyn8qMGzz//PNs3rxZNOmrqqpET00CkQwdOpTz589TUlJCSEgIVVVVZGdno1arxYMMCKDGzK/38O2lEkzyx29zy0x6Sn7/lkhNA0E4Ly9PlFOVSqWoRCgUChwdHamqqqJNmzZcvHiRefPm8d133xESEiKsluLj45vtf0qDb2BgINnZ2axcuZKysjJWrlzJnDlzWLx4Mdu3b6dfv37iGl+/fp09e/awe/dusrOzGTx4MBEREVhZWXHjxg0SEhK4ffs2vr6+qFQqkpOTMRgMgjcqTVQaK/Y8KBzwsFW6FBJ39D+ZUGDU0b7kJB0D3AkJCSE8PBw/Pz8L2bRHRXV1NceOHeP48eOcP3+e69evI5fL8fLywsHBQUw6CgsLhUC89J4bX+/+/fvTvXt3srOzWbNmDVlZWURHRxMSEsKmTZuaHHfr1q0Y/buzYN91jDSIbz8sGk+KDbeON5gfazTIZDJRetXpdAKU4uvrS2RkJJGRkbi4uHDv3j0uXrwo6ENSkuvUqROdOnVCo9EQGxtLTEwMR44cQafTMXjwYAYPHkz//v1xdW1AmxqNRlasWMHChQsF7adHjx788ssvHDlyhIkTJwrQUOOknJeXx9G02v/tOqz/E/G3S3ynTp1i7ty5FkohAQEBHDx4kHnz5jF06FAmTZrEZ599RmJiIps3b2bo0KGcPXuWPXv2CBHr5uLbb7/liy++QKPRcOnSJQCCg4O5du0a3t7eYjUz/JlxJNbao3YPoKSqFlN9NfrCdAwpf9C/R2eeeeYZXn755Sb7d3d3Z9q0aXz44Yd/2nNcunQpZ86cEf5b9fX1BAUFkZmZSceOHYWn2tNPP90gofTJJ3h6elJUVNTgRjDq/f/YTRyzCV3aJewTfsbd3Z24uLgmq7fGqi6VlZV4enoK9JuEQPP29sZoNDJs2DC+/fbbhl5haF9so18AxZ9LqGHSY3Wtwdfwzp07VFZWCk8/lUpFUFAQt27dQqVSUVtba4Fm9Pb2xtnZmRs3blgM1nK5HI1Gg4eHB57Rz5Lp1umxPBZlJgOyhN1knfgZmUyGn58fgYGBhIaGCmDAuXPnuHLlCtDQrzSbzRZJ18/PTyDrnnrqKTp27EhZWRnLly/HxsaGgoICNBqNGIwNBoO4T7p06YJOp6Ouro4333yT2bNn8/bbb9O9e3cyMjK4fPkyiYmJpKenk5ubK9Cv0mchfS6PetylMtqDAAeptCYJj6ekpFi8r8ZhFzUUp/6v/DW1IH0dtrdjOPPDpxYCzVKiys/Pp6CgwOJ7Wload+7cITc3V9gjKRQKtFotnp6eBAQE4OfnJ/pkdXV1HDx4kPPnzwsBamjAC0yZMoWhQ4eiVqs5cOAAb775JhkZGfTt25fvvvsOX19f4uPj6dSpk8V5KxQKWrRo0aCN69QKbbdn0bTuBA9M5jA29OGsCm5TE7+b4pQr6HQ6lEolLi4u+Pn58cQTTxAdHU3Xrl3Jzs7m4sWL4qukpIQOHTpYJDpfX19MJhMXL17kyJEjxMTEcO3aNXr06CFWdeHh4RaT67y8PF5//XX27dsn6CtTp05l5cqVpKSk8Prrr1NTU8PixYsZNmyYxb0SGBhISkoK8GjHHMl5o2+IG2/0Cfw/qrzZOP52ie/27dsMHjzYQlNu/PjxDBo0CJVKxbZt2zhw4ABlZWW0bt2aK1euUF9fT4cOHXB3dycxMRG1umlN/saNG/Tt25cff/yRF154AWtra/Ly8pg+fTqXLl3i7NmzTVy7pYElKChIIK+aM1vt2rUrSUlJwl25U6dObNmyBTs7O6BhQEpPT7cwl0xLS8PFxYX6+nrmzp2Lr68vU6dOZdGiRbz00ksMHTpUrHQfRFFCgzC1+3NLMMoe31BVCrO+nordC6lIvw4gHM4l0rrRaKRFixZkZmaKFYuDgwMmk4nAwEAx+Eu0DWgYJFoPeomcrAxq0q82cUOA5pVk7II6YXP7MFnHf6a+vh65XM7777/Pnj17yMrKQqPRUFFRQUVFxWMpm0hC39Jn13bQODLdOqN09UEul2GmkdKKvh5kMqzyb/LWoAjkZZns3buXu3fv4uLiQnZ2tpgMKZVKjEajIPLX1dVhMpkICgoSPTZ/f38WLVpEdnY2S5Ys4ZlnnqF///5cuHCBTZs2ERISwpUrV1Cr1djY2DQB5zzOo9p4O0kU22g0ir87ODgQERFB9+7d8fb2xsHBgZqaGnbt2sWJEyfEgBgWFkZVVZXwcHyQXtJcvPHGG/j5+XEwuYJUh3bIrJSPbAvIMKOQmQmru8mJjYuorq4mMDAQmUxGQUEB1dXVuLm54ebmZkGnkErgERERdOrUiT59+tC/f38cHCw5mmfPnmXZsmX8/vvvQihCal1MnDiRUaNGYW/fQMHYvXs306dPJysri/bt2zNgwAAyMjK4desWycnJFg4ija+1o6MjOp2OgIAAbt68ia2zB17Rz1Aht0cvU2KsqcRYcg/b/Ov4e7kRFRVFr169GDBgANbW1ly9etUiyd27d4+2bdtaJLng4GAxecnMzBQrutjYWLy8vMSqLjo6utkVcmxsLK+99proUzo5ObFq1SpefPFFqqqqWLhwId9//z0LFixg6tSpKBQKQQuT4vvvv2fixIkW+33QMUdrrSS0hT1j2v8/B/b/8TCbzbi7u3P58mXhML169WoSExP5/PPPadWqFdnZ2djb2wsR6zkLP2XSog0kpBfiFxRK+8gwQj21PNuh4QOqrq6mU6dOjB8/ngULFmBjY0N1dTVPPPGEsAd6UJ0dGgbR0NBQKioqRCJWKpWsW7eOPXv2cPr0acaMGcP58+f5448/6NWrFzdu3ECpVKLVann11Ve5c+cOZ86cwWg00rNnT6Kjo+nZsyfnz59nz5495OXlMW7cOL766it27twpCPc1NTVcv36d/Pz8JgkZ4P333+eb2CTser34l2bfMlODe/yJjYvQarXMmDGDrVu3otPphAxZixYthGfcsWPHMJvNgn/YuDQik8mIj49n8uTJOPg/wV3vwVRc2t+sGwIKBdlfT25WSUamsraQUAPw8vLCZDIJAm/btm3JyckRyD4bGxtqahpklnx8fFAoFKSlpWFvb091dTUqz0DsuozBpnXHJuVWs6khgeqKMimL/Zb6e1cZMGCAsI7at28fb731loD+19fXC2KxxCOTgBkP9m+kkMqLEoDCYDBYeDb+WUgarkVFRVhZWVFbWyvOr7S0lNDQUAYMGEDv3r3p0aMHzs7O3L17l507d3Lw4EEuX76Mvb09CoVCyLxJper6+noLsIgkJg4NCbBNmzakpaU16X1NmDCBoUOHkp+fT8K9Uv4os0XvGgwyuaUwgKlhYuhQlUmY+R5BLmrc3d05dOgQhw8fJjIykn/+85+kpKRw9uxZrly5QuvWrenevTvdu3enW7duD3UWj4mJ4YsvvuDUqVPU1tai1WrR6/W0a9eOF198kcGDB1NRUcHVq1e5dOkSx44dIykpSUyaGq+SG1c5lEolPj4+VFVViapKmzZtyMzMtFj9qtVqunfvTrt27ejTpw/9+vXD1tYWvV5PYmKiRZKTRPKlUmXHjh2JiIiwoCpVV1cLO6GYmBiKiooYOHAggwYNYtCgQYIS9WDodDo+++wzPv/8c/HZRUREsHnzZtq3b4/ZbGbPnj289dZb9OrVi+XLlwuswYwZM1i9ejWenp7k5eUJBO3jlp3/DvG3S3wAL7zwAk888QSzZs0C4OLFi0yePJmrV68yZMgQJk2axNixYzl6KZmpq39D6dMWMFNvuP9WG5thFp3chqz0HhcuXCArK8ti4Fm4cCEbN258JBfNzs4Of39/OnbsyO7du5HL5bz66qu88cYbeHt78/LLL5OWlsagQYNYtWqVGKyMRiMDBgxg1apVhIWFWTzI33//PXPnzhWOyb/99hstW7Zk6tSpnDp1ivT0dKGf2ByAQ5qhh454lZrgQQ18o0fNvmWgUsioPv0THR1rOX78OEqlEicnJ1JTU1GpVLi6ulJcXCxKe/7+/qL84eTkRHBwMGfOnGmyb4VCQZvXV1Nm0woeKClKbghWWlcKfl1Iq+n3Z5mZX47Hfcw8rFuG0TvQidY5sZw6dQoPDw/27t1LZGQkFy5csFjReHp60qdPH7Zv397ovcno3bs3ly9fbqBkdHgS254vPFaJszFQSS6Xo1AoMBgMaDQasXoEhC6iBKdXqVTiM66urragbjTmakl9M5lMJpJOY51RSQc0NzcXNzc3Dh48SGxsLAsXLsTd3Z179+5hNBpRqVRERETg5OREcXExd+7cEaVoydRVgvdLXnXSxEBKvsHBwXTt2pWOHTuSmZnJzp07SU5OFitHOzu7ZrmTje+5Z599Fg8PD2SufsTXuJBpsEcmk0OjxKeQgUIuo2+oO6/1DEBelklcXBxnz57l2LFjwjx53LhxTJo0ic6dO6PVaps9pslk4tdff2Xt2rWcO3dOoL7r6+txcnLCw8MDo9FIXl4epaWlohrzYG/ay8uLkJAQoqKi6NixIykpKSxatAi9Xi+EEqTXSn3iDh06EB8fL6zOjEYjHTp04MKFC9y+fZv4+HiR5K5du4avr69FknvQ+kk6r2vXrolV3fnz52nfvr1AX7Zv3/6RbZL09HRmzJjBgQMHBJ911KhRbNiwQfT4UlNTmT59Oqmpqaxbt86i/fPcc8+xY8cO2rVrR1xcHDt27CAtLY358+c/9Jh/x/hbJr6rV68ydOhQUlNTsba2RqfTCfX6n3/+mePHjzN8xqeP14QFzEYdsoQ9tLevagLV/rPQaDS8+OKLbN++naSkJAYPHsyMGTNYt24dWVlZeHp6cvfuXWQyGW3btmXWrFn8+OOP7N+/n1deeYUffvgBW1tbli5dyssvvyxme5Lf4NChQ5kwYQKZmZls2bKF69evN3sejdFY48ePZ/ny5YLMv/1IHN+fz6Ha0b/h/TYGdBh0qK2tiQ5wolVlEr98s4Jbt27RuXNnbt++TVRUFCdPnmwy+5V6Ko3Li2q1usmKT6lUonZwxe2VbzBiOUNv7IZg5eT1SCUZmcnIoNqT7Nr2I88//zzHjx8nKSkJrVb7UL3PB0Oh8wbiVwAAIABJREFUUKCJHIRz/8lCU/FxwqSro/zE99TdOCqkwaTVkLTabiwBZWNjg4ODAy4uLnh6emJnZ8exY8fo0qULMTExwlGivLwcmUxGfX296KGFhYVx7tw5Ro4cyeXLl7lz544FH08KyXLGz8+PwsJCCgoKRBKWVGQAoeAhk8kEN1VavURGRuLk5ERRURGpqali9WI2N9h6OTk5iRV048nVo0qePj4+DJ+xlNhSB+p0xkf3mM0mzAY9yhv76eUlE6u54OBgJk2axNatWxk+fDi7du0SPTmAkpISvvzyS7Zs2UJaWpoFQOdBpRPpM7KxsaFly5bY2NiI0mW/fv2YNWsWN27c4Ny5c9y8eZOsrCyLFZyULNzc3FizZg29evUSvplfffUVn3/+OVlZWWJ7CX3q4uJikeTat2//0ORdUFDA0aNHRbKzt7cXfbq+ffuKcuxDL6PZzL59+5g1a5aYiNrY2DBz5kw++ugjcb719fUsW7aMVatW8e677/LOO++I62o2m+nXrx8nT56kR48exMbGWlzz/7b4WyY+gGeffRZvb2+++OILoAGVtHjxYsLDw4l85g2c+0+m7i/Abs36OmQJu8mI3frI7SRFCAkR5uTkhJWVFSUlJYwcOZLjx49TWlpK7969cXR05Pjx4zz99NPMnDmTAQMG8PXXXzNixAhef/11NmzYwEcffcSGDRuoqanBbDYTFhZGWVmZKK2Gh4cTGBhIRkZGsyoScrmcV155RaBcu3XrxpYtW/jpp5+YMmWKMDX18fGhUmdm8GsfoXTzo7xWj1lXw/VTh7DKvERhVhp2dnYoFApKS0sf6owQFRUlLFP2799PfHw8bdq0oUePHsTHx5Oenk55ebmwI5o2bRpe/V8kx6W9hcpFc24IlVePUPr7BgslGZvABkCBSV9P2emtVF549MREkuiqqqoSJrcSYMMlqD2mVu2oTjrZrFtF5dUYKs7+irG6FLV3OC7DZmBl7/Lv49cxWJFEsKs1t27d4vDhwwwbNozMzEySk5PJzc0VYBcJWFNTU0NWVhYpKSmkp6dbuNZDw6TJzs5O8Dnr6+sxGAx4eHhQXFyMq6srRUVFTXrG0LTnJ6l+GAwGXL39kbfuhknbApNCbQG+ctdqsLW1pba2lsLCQgBCQkJo37490dHR9O3bl8zMTN555x3i4+NRq9WMHj0aOzs71q1bJ3qZzflglpaW0nrwRAxPjIRH6HY+GA9C3o1GI7GxsYwcOVIcp3Xr1oK0/bAhy97enoCAACIiIoiKiiIsLIzAwEB8fHxYsGABa9asoaamBnt7e8xms1hV29vb4+3tjY+PD9euXSM/Px87OzsOHTrEO++8Q1hYGBs2bMDKykqoupw+fZovv/wSGxsbsYKWyqMSwvxhodPp+OOPPwQoJTU1lb59+4pVXUBAwGNdt+rqaj755BNWr14t3ou3tzerVq1i9OjRFtvGxsbyxhtvEBoaypdffomfX8O1lrRAO3ToQGJiIgMHDmT//v0W5db/xvjbJr7S0lI6dOjAkiVLeO6555g5cyaurq4Mm/A6o744SlHsRurSE5qAKMxGPUX7llGfewdjRQEezy/B2vcJoIFUmr5pBrq8O02OJ5fLSU1NJSYmho8//phevXqRnp5OQkKCQGgpFAreeOMNfvjhB3JyclCr1RQVFTF9+nSOHDlCz549OXLkCD169KCwsJDExESMShtaRj8Djt6YrNRQX0Nl1m10t07Sr0dnfvvtN0aPHs3BgwebPPDu7u64urpSXl7OiBEjRM+nsLCQU6dOUVlZib29PWVlZULIuFu3btjZ2VFcXMzdu3fR6/WEhoYyffp09Ho969evJycnB71eT0lJCZ6enuTk5BAZGUnPnj3R6XRCJDczM5ObN29alPEkFRVArGpajpmDzL+LOG+z2UTRvmWY6mtwHz0PmcLqsZRkrLIuk/3rkmaFrSV5t7q6OtRqNYMHD8ZgMHDkyBGCgoLIyclB1f+fmIwGZHJFE6PUuoxrFO79DI/nl6B09qLk9w3oizLvWxGZTGgr04id/5yQjbp79y6urq7CoSImJoazZ89y8+ZNQYA2mUy4uroSEBBAQEAAiYmJDYr3Wi06nQ5ra2tqamrEqu+vPo5yuZzg4GBatGiBzr4F2Q5tMHmENulbSsjC+vQrqFKO0y+qNQMHDiQ4OJjU1FTOnTvH2bNnuXz5MmazmcDAQKZNm0Z4eDjvv/8+Fy5cQKVSMXz4cNLT0wWAqXFMnbOEI8Zwyi4feqgVVm16AiVH1mOsKETlFYzr8LexcnBHZtSjOr2W/JsXqaioeOR1kFazHTp04KmnnmLkyJH4+/sjkzV4VR47doz4+HiSk5PJzMwU96OEBI6MjKRr164MHDhQtBj27NkjwB5du3Zl+/btDBkyhLCwMNq3by/KlrW1tQKN6+TkxKZNm9i5cydz584lKSmJuLg4nn/+eYu2hdlsJjk5WSS6U6dOERYWJlZ1Xbp0+UuJJikpiZkzZ3LkyBExMejWrRsbNmygTZs2Ftvm5uYyc+ZM4uLiWL16dRPPvcrKSiIiIsjJyeGpp55ix44dorTdmNry3xZ/28QHkJCQwNChQ/nwww9xd3dny5YteIyZx+GEdCrO/9YsiEJh70zl5YOoPAMp2rMU15GzROIDMzW3z1K4e0mTY7Vu3ZqQkBCOHDmC0WjkhRdeQKPRCAj5rFmzWLBggVCXCAkJoba2lvT0dFxcXHBzcyMjI0M8tF/8+BsxWXAqpaihL9RokJKZGkSN61IvUR2/m+p7Sc2+f5lMRlBQEOHh4Wi1WmxsbLC2tkalUrF+/Xp8fX158skn0ev1/PLLL2RkZODi4kJ5eTkODg6oVCrKy8upra0VyvyS6K2Pj49wO2/bti1Hjx5l3LhxdOvWTbggnD59mi+++IKYmBgMBgPvvfcely5dQiZrMPLdu3cv5eXluD/7cQPMG8kN4UsM5fm4PztfvO/HUZKpSTlP4a5Fj31/NKY32Lp44jxx7UP94kqPbcJk0OEy6HXgvq+a19SNKJ0a9DFNBh2F305FVl+FyWTCzs4OuVxOWVkZXl5eBAYG4uXlhbW1NUajkdzcXO7evcu9e/eE+7vUC3zYY6dWq1GpVFRVVYltHB0dCQwMJD4+vsn2UonVLmooTv0mwZ/0LTGbwGig7MR31F5ruJdtbW1p1aoV5eXlQk1GJpNx+vRp9u/fj16vp2PHjgwYMACDwcDy5cub3bXbM3OxCexCTco5kMmaTC6MNeVkfzMFl6HTsQnsTNmpLdRlJdLixRWYTSZqU85RvHdpk9Wk5E2XkZGBWq1m6dKltG7dmjNnznD58mVSUlIoKCigtrZWcCglcr7RaOSZZ57hxx9/FNWaxlFXV8fbb7/Njz/+SG1tLf3790ej0XD48GHkcjldu3a1KFkGBASQkpJC9+7dSUpKwt3dnYiICHx8fDh06JDYb1lZGbGxsSLZGQwGC05dY9rG44TJZGLbtm18/PHHgmyuUCgYP348q1evxtHRkjZgMBj4+uuvWbhwIVOmTGHu3LlNnGoKCgoIDw+nvLyc5557jh9//LFJ/1B6fv7b4m8pUi1FVFQUf/zxB8OHDycsLIy4S9dwfqIQuUpjIZRqE9gZKwcP6vPuYOvY474afJMBQoZtUGdqXDyoLs63oCa0bt2avn37cubMGQIDA1GpVJw5c0aUJL/66ivatm3LjRs3qKqq4ubNm7z33nv4+fkJ+aX8/Hzi4uLIVPvy3tFckDdw2Zr4w8mtkMnBOrALav92yBqpwDwYaWlplJSUiGSk1WpF36tly5bk5uZy8+ZN7t27h5WVlbBccnd3R6vVkpaWxuDBgzEajXTu3JkPP/yQYcOGoVAoqK2tpU+fPrRv354PPviAUaNGMWjQIMaNaxDcPX36NPX19XTp0oWioiI6derExYsXAdi8eTPQ8HDKDfdXaCUxa9EXZza4ITR63+oWQVSc+xVdfqpQkqnPTMS+/X2rJ1NdU4+9kJAQMjIyxCpQ0mJsDHgxm82oQnoh408eYItk1PCzvjBDJD7MZpTBPam6uBuA4uJisXVGRgYZGRmP3L3kdtDYbsbHx4fq6mrq6uqws7OjtLQUd3d3unfvTlZWFrdu3aK8vJzLly9b7Mve3p76+vqGPkxgTxz7TXo8ST2ZHKxUOPaZhJ+vH84liaSkpHDz5k1UKhV1dXXMnDnTgi85adIkrK2tuXTpErdv3252t0GR7dEHdsL8CCusmuSzqFx9sA2NBsAhejyVq8ejL85E6dIKm8BOFKvtoNbSAULiiUpc0bfffhuZTIabmxv+/v4MGjSIHj160L9/f7Zs2cKnn35KRUUFEydOZPXq1WKyKUV9fT1Xr15l//79fPXVV2KFGRoairu7O4cPH2bWrFksWrRIrH4ax6xZs5g9e7bgB968eZPVq1dz7tw5gb68fv060dHRDBo0iBkzZjQBrz1ulJSUsGDBAr799lsBRnJ0dOS9995j9uzZzQJdzp8/z+uvv46Dg4NYXT4Yd+/epW3btuj1el555RXWrVvX7L7+G5Me/M0THzSQ1y9cuNCg5pIjR6/XgczybRmrS9GXZKNy8/nT/RmNRmwi+tGmPhVbW1tu3LhBQUEBJ0+eJDExkYqKCgwGA7dv30an02E0GvH396eiooK4uDgxuJnNZhYtWoSDgwN2dnZioDO3jsZQWkD215Mx6etQ2Dqh7Toa+7aDLc6j7MzPlJ/Zivtzi3EZOAWA6quH8fX1ZeXKlXTv3h0HBwdBMWgc0kw9KyuL27dvM2HCBM6fP8+8efM4e/YsAwYM4PTp0yxevJijR49iNBpZuXIlb731lsV+NBoNe/fupUuXLgQHB/P7778LOPirr74qyl8dOnTgzp07gpfYOEwmE8bie5j09Zhqyh/phuAQ/TyFuz8VSjIO3Z5F49/gUWjS16MvSucf//gHW7duRaVSYTab+eOPP/Dx8aFPnz64uLiQnp5Oeno6ffv25dChQ9TW1jb0ekaMI6Hs4eUk64AOFO39HPt2Q7Fy8qL8j+2ADLPhPlhHrlSjcvOzIIVLcPm6ujqcnZ0Fl6ympoaKigohVSbx+ySZLXt7e86cOUN2djZ+fg37zMvLIyIigpqaGq5evSr6Ns2BSSQqgUtQe1QDplBxNabZ8mJV4nFKDq+9/0KzGbOhHs+Jq6gMHEju3nO42NszevRoDh8+LExoJZBSfX0933333UOvmxQFtgE4GI3IHqGEoy/MQOl+37xVrrLGytETXeE9lC6tGiTtuo4k7/gWi9dJCM2+ffvSs2dP8vPzeffdd9FoNGzbtg0/Pz8WL15MWFgYOp2OyZMn88UXXwgVoWvXrgnFk4sXL5KUlISLi4ugArVs2ZLz58+TnZ3NiBEj+PLLL3nhhRcePH0Ajh07xvXr19m5cyf37t3j7bffFmjWVq1aMWjQIBYuXEh0dHSThPtX4uLFi8yePZtTp06Jzz8oKIiVK1fy5JNPNvuakpIS5syZw759+1i2bBnjx49vNnHFx8fTo0cP0ZpZuXLlf22Ce1j87RMfNMx+lyxZwr+mrqT8gaRnNhoo2rccu8j+KF1a/em+5Eo1OLbk0sFfxGpPWjlI5qaSFqQER3d1dSUkJARXV1dcXFxQKBSsXr2abt26ce/ePXx8fJg3bx7V1q68dyQXRW46yuFeyKyU6Iszydv2ASqP1qg9AwHQl+ZSc/sMin87OKNQ4TZoKi+P6k/cgZ9ZsGAB8+fPZ9SoUeKGNRgMxMTE8N133/Gvf/0LlUrFV199Ra9evdi4cSNqtZpp06bx2WefER4ejslkYtq0aaSmpgqEIDQkqtLSUgu7l7FjxzJp0iT69u1Lq1ateP3113nttdfEYJyUlISTk5OFMIBkrfTee++xct1GNJ2fxcrBHd/3m6q/S6HtMAJthxHNfy5yOfU3T7L1fHGD5NjMmSQmJhIWFobBYGDYsGHU1NQQHx+PyWTi6NGjREdHExMTQ1VVFQpre6B5Th2Axi8Kx+jxFO5egqm+Fm2nkcjUGhT2liUpubWtRSVA4khZW1tTWVkpVmz+/v7CQcPLywsXFxfMZjOlpaXk5ORw584ddDodcXFxgi7i7e3NrVu3mDJlCgMGDCAoKIiAgAAWLFjAkiVNy+9KpRJ9cD+Ucius7Fxw6D5OlBelsIvoi11EX/F71bXfKY/bjsqjNQazGXnkMFL3fcbNmzfFNg/jHj4q2vV9kjTzo5GyJn0dChtLkrlcbYtZ10AON8kUaFoE4ufnR05OjhCT9vb2ZvPmzRagj/Hjx9O/f38CAwOFgPdrr70maE2S60lCQgItW7YU5cqnn36aDRs2cOLECQwGA+PHj2fz5s2cOnWKsWPHsnHjRkaNGkVzUVFRweTJkwkNDSUqKori4mLq6upo06YNhw4deqRl1OOETqfju+++Y8mSJcKP02Qy0b9/f9auXUtISEizrzObzWzevJn33nuPMWPGkJSU1KT0KUVMTAzDhw/H2tqaGTNmsHjx4v/rkh78lyQ+KZw8vChv5NJhNpsoOrACFFY4D3ztsfcTFPEE4wetwtramsmTJzNjxgy6dOnC5MmTiYiI4Pz58wBCC/HChQtN9lFbW8v27dvJyclh1qxZTJ06lQ5vfYPOaEbl5ttoSxkyZBhKc0XiKznyNU59JlIc8/X99yK3QhfYm4sX32H//v18/PHHLFiwgLCwMLy8vPj555/x8fHh5ZdfJjMzE41GI/g53377LQ4ODrRu3Rp7e3ucnZ0ZM2YMZ8+eJTU1FV9fX+bPn8/nn38ubGA8PDzw9PTEzc2NmpoanJ2dOXjwIHAfXFBfX0+/fv04cuQIBoOBLl26iBVDfn4+b775ZoNWp8yAc30eJXLv/1jAuD7tEvqqUpRKJbW1tSxevFiIXgcEBJCdnY2trS11dXWUlpYCkJycjJ2dHSUlJeTeuwuqR/uB2Xd4EvsODbNpfUk25XE7ULr5WWyjxICVlRVqtZqamhqMRiMajYZx48bRv39/HB0dKSkpERSD+Ph48bNkGVRfXy8USdzc3CgtLSUoKIiMjAzCw8P5+uuvOXz4MBUVFU2QoNAAGpLL5cTfuE3/L+Mw8vDy4oNRdSMW2zb9GgY7mQyVbxR6uZoHJwV2dnYCAenp6UnLli1xdnYmKyuLc+fOWWwrk8mo1hnhT/AZcqU1pvoai7+ZdDXIGhkA68wKHG1tWblyJf7+/vz6669kZ2fTuXNnRo4cKVSMPv/8c27fvi2k3dRqNd9//z27d+8WSW7hwoV06NBBrMIvXLjAuHHjqK6upqysjO+//56XXnqJffv2MXnyZHbs2EHfvvcnCSaTiWvXrjF9+nRu375NWVkZGo2G6OhoFi9eTHBwMFqtljVr1vwvJb2cnBw+/vhjtmzZYmEWPHHiRJYvX/5IOsONGzd44403qK2t5cCBA3Ts+HDrny1btvDSSy9ha2vL7Nmz+fDDDx+67X97/FclPi83Z9JzGjJfA4hiNcbqMtyfnW+pHPEn0crDlRs34ti2bRsAa9as4fr167Rt25aoqCgAEhMTyc/PJzw8vNl9fPrpp6xfv54zZ87w1Vdf0alnP+ZdrBLgiuKYdVRfj8VsqEfl0fq+bNetM8gUyn+DQRolPuD3pDxKqnX07NmTiIgItm3bRkJCAlqtlrFjx9KmTRtBe/Dz8yM4OJjMzEzq6uoaXKN9fdFqtVy+fJmAgAAuXrxIly5diIyMZO3atXz00Ufo9Xpu377N9evXuXLliuCa2dnZCYh+aGgoZWVlpKenc/z4cdRqNWZzgwu41F+EBl3Vq1ev0rVrV5xrkynTtMDMf5D4jDpKz2wX5UUJNm5vb09hYSEhISE8/fTT2NrasnHjRvE6SW7LysqKpLjf0fZ4vuE+aMYoFZMRfWkOSldfjBWFFB/6CvuOI1FY3y/fmvT1GIsycHNzIyAggNOnT2NjY0Pbtm354YcfuHXrFjt27BCKQg+Luro6kQxzcnIYM2YMKpWK3r17c/ToUZydnUlOThaE+Qc910pLS7GysuLdtb9iZeWD8TG9BQ3lBdRnJuIybMb9a2s24xA1mNKzv1hcW6lsW1NTQ0ZGBikpKQ/lSprNZhxt1BTom/23CKWbL9XXY8XvJl0dhtI8ixZEC1dHktLSWLJkCRUVFUyYMIHly5ejVqv5+OOPCQkJEdxRGxsb+vfvT3BwMNu3b6eoqIjPPvuM116znOSaTCaWL1/O0qVLqa+vR6PRkJSURHBwMFu2bOHdd9/lX//6F506dSI/P19w6o4ePSru56KiIkwmExMnTuTtt99Go9Hw6aefYmNjQ3R09GNd/wev2fHjx5kzZ47oi5tMJtzd3fnggw+YPn36I4nqjaXGFi5cyKuvvtpsP1KK5cuXM3v2bLRaLXPnzhXiH/+3xt8a1flgfPX7TZYfvolMqab48Bp0BWkNIArVA+oIBj1gbkCYDZuBdas2DaLJMhnWVnKUt45w49dVYnuVSiVsX5588kmmT5/OW2+9RWlpKSkpKcTFxTV7PmFhYQQFBbFv3z7Wn7zL8pibGMyNYM4mI/XZt6i7dx2HrmMwG3Tk/jADj3GLsXL0IGvdJFyGTUfj15BsTfp6quK2i0FKCsltWy6X4+LiQk5ODlZWVshkMqFlKelHajQadDodzs7OFBcXExoaCjRooErgBisrK0wmE/7+/kRHR9OtWzccHBywsbHhm2++oaysjH/+859MnToVGxsb5HI5//jHP1i+fDnTp0/n0KFDDB48WDTQP/nkE8xmM/2nfsxdbdu/5GuokkPl6R/JO/1Lk/9JhrR/RgNwd3dn17+OMGFnGmVxO5t1q9B2GkXe1vcxlOUiU2mwixyAY68XkMnvDyZmg44Dr7ajZ6co7ty5Q2JiIn369MHZ2Znp06fz008/kZaWxrhx4/j222+bRRE2F9u2beMf//gH3bt359q1a5hMJkaMGMG1a9fo378/Z86cISEhAWhYXUmKME7D3sKuTT+LfT2IVm0cZX/8TF36VUHRkELyXZQI340Rq5KTt+TV16pVKwuzUo1Gw86dO0nXBPHViVTqDaaHWmGZ6qr+jeqcgU1gJ8pOb6Uu8wYtXlwBNKgpvT0wmCG+VqxcuZKdO3cKeTApFAoFwcHBAn7/4Ycf0rp1awDee+89li9fTufOnYmJiUGr1QqvxpSUFDIyMoiOjubo0aOoVCrWrFnD0qVLWbhwIcnJycTExIj+sMSp8/f3JzIykhs3bojjDx8+XFiehYWFsXfv3sf6nKGh97t27VpWrFghvBr1ej1t2rRh5cqVDBw48JGvl6TGZsyYQe/evS2kxh4Ws2bNYsWKFTg4OLBgwQKmT5/+2Of73xr/VYmvqKqejgsPYagqJfvrSf92ALg/cEkgiqx1kzBWFFi8tuVrm7By9ACjnvh5Q/jkow+E/52k9i89hEFBQaSkpDB+/Hji4uL4448/hMJD4/jggw9Yv349paWljFiyi+uVzQ/4xYfXoHT1wVBegFxti2P08wBNEh9AbdIJCvYtF4O9Wq3m5ZdfxsPDg99++40bN25gNpuZMWMGkyZNYtmyZRw+fFg4g9+8eZPPP/+c2NhYCgoKxICWmpqKwWBg7NixjBs3jgEDBjSr3KDX6xkyZAgajYaLFy/y2muvsWjRovu0AVtb3NzcePbZZ4mNjSUuLg6VSsXHH39MTEwMFR5R1IYMwSxTNIOqbRRmEyaDjtJjm/CsTCE3N1eAPRqHtNp87rnnCAwMZO3atcIlQoro6GhOnTpF1JvrKLP1+Y/KrTKgOvksQ2zvUVdXR7du3Xj77bcZPHgwp0+fpnXr1iiVSoYMGcLXX39NTU0Ns2bNYv78+UI5o3GYTCbOnDnD5s2b+e2334Q7+qpVq0hKSuK7777DZDKJcirc1/eUZvZOT32ATWAXi/0+KvFlfzMFh25jsXvCcnCtu3uRkj1LLOS82rRpQ2lpqXDsjoiIICIigvDwcMaMGQM0TAhdXFyorq5Gr7CmxWubMJplj7TCus/jK0DV4t88PseGgVtmNmJ14GNy01No164dUVFRXLhwQbQSNBoNSqWSKVOm8MILL7B7927WrFnDiBEjmDt3LoGBgSQmJjJgwADKysqYOXOmKPMnJyfz0UcfMX/+fG7fvs3MmTM5ceIEMpmMNm3aiETXpUuXJp9Xq1athCB6p06d2LZtm0BQx8XF0bVr1z+9f+7cucNHH33Erl27hOuG0WhkyJAhrF27Fn9//z/dR2pqKm+++SZpaWlNpMaaC7PZzIsvvijO99NPP2Xq1Kl/epz/G+K/KvEBdH13E3lKD/gz6HozIZlhvhJs4vr16yQkJIie0eXLl+nZsyfJycls2rSJ7du3ExkZyf79+4UdilQKlb5SUlJ4+umnGT16NHHKtphbRDR73OKDq5Ep1dRl3sBYWSwSgqmmArnaBm3XMTh0bRhsuvnaYTq+jlOnTlFVVUV1dbUQaJ4yZQrXrl3jwoUL2Nvb06JFCxITE/Hy8qJVq1bExcXh6elJmzZt2Ldvnyhhjhw5EhcXF9LS0ti1a9efXiepJ1VbW8uOHTt4/vnnBchDoVDg4uKC0WjkzJkzhIaG8tNPP/Hhhx/SqVMndu3ahbpFEM49x6P2a9egN/qAH59MJkOXkUDJ6W1CTKCxPJrkZi6TyWjXrh3u7u4cPHgQd3d33nnnHZYsWSKsZ6Qe0MyZM1m9dS/uzy0Bq78uxaS2kpHx3dsYC1KxsrLC1taW5ORk9u/fz4YNG0hPT2fevHksW7aM0NBQvLy8BHfsk08+oU+fPiQmJvLHH39w/PhxkpOThRSZJCX24KMouUhIYJqAgADCw8MJDw+ndevWfHYyD713O8vP5iGJry4riYId8/j/2HvPqKjO9f3/Mx0YelcEFFBABQF7wd5L7IoYe9QkanJiNJYYNRq7scReY68xGqPUouZaAAAgAElEQVSiIrZYsAt2mlJEeu8D8/xecGZHoqac7/mv9V85udaaFwyz27P3fu7nbtdVY+Ju5JqqnqjsxS3iD86rcvwuXbpQu3ZtXFxcpCrPjIwMnj59Smho6BskAq1btybNsw9FVh7/mRSWXo+jPo1v+3jh4+PDZ599xu7duzE2NmbWrFlMmDCBn3/+me+++07qFW3YsCETJkzg6dOnrFu3TjKAzs7ONGnShMjISFQqlaQ7WLduXakASaVSsXjxYgYMGIC1tfXvnpqhL3PDhg2MGTMGmUzGvHnzWL58uaRs//ZL0kv5+IcPH0rMOsbGxpJ02p+JCvwe1djvHbtbt26EhYVhYWHBt99++4a6wv8y/naGb/GW/WyOMflLAqMG6HUlpO6dTv92jdm/fz8tWrSgQ4cOhIaGsn//flq1akVSUhJt2rThk08+wdPTk8GDB/Pw4UOJxeX1T3p6OiUlJZiZmVG9/0yKHepTUZhDSXwExh5NkCnVlLy4T/rRhdi+9wWaGt7wWljn1c7PsOrwAcZuDaVwbcHD8+SfrRSHNTBSTJo0iSVLllBYWCjxL1pYWHD37l3Kysqwt7dn5MiRaLVaTp8+zbNnz7C0tCQ1NZWsrCzUajUJCQk0atSI1NTUP1Xl1b9/f3788UcOHTpEUFCQRIhrKLwYPnw4/v7+XLhwgZ07d0o5QAOsra3JK9Xj0Ow9TGt4kl9WQWleDmXpLyh8cA5Rki/1qpWVlVG/fn02bNhAYmIiZ8+eZceOHdJEPXz4cL766iumTZtGcnIyXbt2JSwsjM2bNzN06FDu3bsn/bZu7/GUeHengj8v16SWQ0N5PIcWTqqS5zI2NsbCwkJisDcoZBcXF1NUVCRV5b0NMpkMMzMzHBwcqFWrFnXq1CE9PZ2DBw9y69YtnJ2dSUxMZPXq1Rw9elTydl83kNXaD0Pp3we5SvPO8KIh4pEZsgZRXoZtr8+rnkh5GY2N0ujkLGPy5MkUFxdjY2PD9u3biY6OJiYmRgrrvk18+HWYutbDasDX/5EQrRI9Do/2czPksFSsYsjv/bZCMT4+ni1btrBx40aKi4vRaDSMHj0agO3bt6NQKDAzM5NyvK+jZ8+eZGRkcPLkySoGL6OglB/uJPE0JY+8knLMjZSSgsuMyZOYPHmylBaASn06X1/ft3L75uTksHLlSqlH0KAXWb16dWbNmsX48eP/UI/TgHPnzjFhwoQ3qMZ+DzqdjmbNmvHgwQPMzMxYs2YNwcHBf+p4/yv42xm+2NhY2o39Cm2rYRT/Ra7OrH83ihti+h9++CGbNm2iT58+9OjRg8OHD7Nq1SratGlDYmIicXFx9OrVi6ioqDf2d+/ePTp06IBMJqtsMG/aD4tWQxG6EtKPLqIs7TkIPUoLe8wa9sLMr+sb+3hbju9tfJUGQ2WYaJs2bcpHH31EWloa06ZNo1atWrx48QJHR0emTJnChAkTuHnzJq1bt6agoEBaddaqVYuTJ0++s2DHgNzcXFq3bs2zZ88kXkyoZNgwNHH7+/tTrVo1Ll68KDXevg5DLkmj0WBnZ0d6ejozZ85k4sSJuLm5kZubK3FVWltbU1hYSEBAAA8fPiQwMJD09HRu375N8+bNCQ8P5+uvv2bAgAHMnDmT06dPSzppNjY2mJmZSV6Cubk5rh2GUujZlXI9v6tYwb/VGbLCtlHyMLQKZ6ZBkshQYPP6a2RQcHj9/qjVanQ6HbVr12bx4sW4urqSlJREUlKSpGuYmJjI9evX0el0WFtb4+TkhJmZGUlJSW9tjj9w7CSzbgp0en43vCjKy0hcMwy7vjOqhM2hUpHDJHQhTRrUZcqUKQwZMgQ7OzspPL5p0yZ27NhBRkYGWq0Wf39/qQ3jbffUpEEXrNqNQa7+88bPSCmneup1Lm9fiIWFBSNHjsTGxoYLFy4QHh5OnTp1aNu2rdTHZ6jS1Ov1hIWFsWzZMi5evCgRhhvuhbm5OQUFBVUWH9bW1sTHx0s9pxGJOay7GMOlqEre0tK3iKq29bTj4zYeNHCuNMB5eXlYWlpy8+bNKlWUERERzJ49m5CQEPR6vWTw/P39WbVqFa1bt/7TY/Lq1SsmT57M9evX30o19i4UFBTg5+dHcnKylJP/LW/nP/gbGj6DXt/s3aGsv5byh+oMIJDrK/gksAbbZozk4cOHaLVarK2t+WrBUlYfv4G1W32iXyRhqlFQ01JFPZMCVi2eT1xcHB06dJBWluHh4UyaNImJEycyefJkSktLpZW61sYRh7GbqfgPqhqlMy0vI3XzWErzMqt8L5PJMDExwdTUlNTUVExMTCgtLZX6DLt160bXrl1JTk5m165d+Pr68vXXX9OmTRu+/vprpkyZQl5eHhMnTqR58+aMHj2a+Ph4nj9/Ln3i4uKITUoj2cgFLKsjlEbIK0qxpIio0zvx8/bgvffeY/78+Xz00UccOnSIoqIiScrm9dBYrVq1mD17NpMnT2bJkiXMmjWLkydP0qBBA/r3709+fj43btygoqJC8moVCgUmJibcuHEDb29vevToQWhoKNWqVSMtLY3S0lKUSiWNGjXC1NSUq1ev0rZtW7KyssjIyCAmJgZzc3MKCwuRyWQo7Gph1mwAJu6N39TjKy9FIEP34i4WL2+SExdRpa3AwsKCsrIyiouLcXR0lOSbgoODWb9+PUqlkvT0dCwsLCgtLSUzM1O6R4aKVzMzMwICAvD09MTZ2RlnZ2dq1KhBeXk53bp1o2HDhiQkJGBnZ0ePHj1Ys2ZNFTFUHx8fIiIiGLHlCpdic/7jvGWXeg4s6+3JwIEDpf7TI0eOsHXrVl68eIFMJqNRo0Y4Ojpy5coVnJ2d6dq1KwcOHCA2NrbK/lQqFbVr1yZB44pd5/Hokf/uwuJ12Sfdk/N06dKF4cOHU69ePTw8PFAqlZSVlXHr1i0uXLjAxYsXuXHjBp6enrRs2RIrKytevXrFhQsXJFo4A4G2qamp1Bf5W9y7dw8/Pz/2hL/4cwouMjBSKviyuxfvN6vJ7NmzWb16taT8fujQIebNm0dcXJxUGFZeXk6vXr1Yu3atJC32Z1BeXs769eulSs23UY29C+np6dSvX196F77//nt69Xp7X+z/Ov52hg+gV69ejBw5ktpNO7D+YgxnHiYjl1ElvGVYzRXF3kITc4mZHw5l1KhR7Nq1i49mLcayxSDUrv6olCp0r42QXleKQqGgRS0LRjSqxug+HUhKSqK0tFRqHzDwXgKSkGdpaSmOA2ejcPGvfJP+IoRej+xlJO1UMYSFhUn6gKNGjSIzM5NTp05JXoa1tTX169fnypUrUj7q9UnY1tZW6nVTKBRMnDiRdevWIZPJ0Ol0EpuFm5sbtWrVQutSl2hlLaIKKitfyyp+HRBRXmmYdAkRZF/Zjy41toqoZ8eOHVGpVJw6dUqaFO7fv4+ZmRn+/v4YGRkREhKCr68v/fr14+nTp1RUVBATE4NGo8HHx4d79+5hampKbm4uKpUKrVYr6cIZvF0hhFTd2rBhQ9zc3AgNDUWr1ZKdnU1BQQGmpqasWbOGyZMnS1yrP4de4IWsGmq7msiNtOhLCqVwq744DxMTE2rUqIGxsTExMTEYGRkRHByMk5MTO3fuxNLSkqKiIh4+fCh5FgYO1cDAQGrUqEFpaSm7d++W2F2aNm3KDz/8gBCCkSNHMnbsWK5du8aJEye4du0a9vb2PH/+nIsXLxIbG8vatWuJjY2VrtnMzAwLCwvq1q3LvfgsTPvMQi/766F9oStlff86BNZz4fDhw0yfPp3MzEyUSiUeHh64u7tL1aR16tQBKvlxc3NzJVUJwzVrtVquXr3KnDlzCAsLo++YTzFp1IewJ5WFRq8HX+SinIoKPUWxt8i7fhhV/iuqVauGkZEROp2O7OxscnNzcXNzw9fXl3r16uHl5YVCoeDhw4ccO3aMR48eSYLRMpkMJycnUlJSMDExYdu2bWzfvp3jx49Xud5q1aqh0+k4deoUaw+c4tD+PZSkVWW6KctIIPPECsqzXwGgdvTAqtN41LYukorE7OD21KtXD09PTzZt2kRJSYm0qNFqtYwbN44FCxb8ZeaW16nG1q9f/1aqsXchNjYWf39/Sal+7969dO36ZhTpH1Tib2n4FixYQE5ODsuWLQNg54EjrDlxizKtHfZOrjyJuMNno4MY1caL44f3sWbNGhITEwkPD2fFz7f4OUmFXKn+w9WqAj1FV/eQcuUwn332GatXr/7dsnqb2gFY9JtDhezP55ek4+lKUF5ay6tHN3B1dSUzM1OSlTEyMmLQoEGcPHmS7OxsPDw8iI2tNECGHJJCoZCkcQxiqb/tEZPL5SiVSo4dO0bjxo2xtbX906tiw+q9sTIReexVysrK8PLyYsWKFVIFm6Hq0cPDgxMnThAVFYWXlxdpaWlkZmZWoQKzsbEhPT2dOnXqEBUVJZFn63Q61Go1rq6u+Pn50axZM/71r38xY8YMli5dyldffcXevXtxdXWlW7durFixglevXmFqakpZWRnl5eXSpG1o8TCEpd4m6Nu2bVvS0tJISkqipKQEnU6Hu7s7zZo1IyYmhnv37knFH9u2bWPo0KE8fvyYdu3acezYMVq0qGwsLywsJDg4mPj4eIqKijA2NiY/P58XL14ghJC0Gnv16kVWVhYNGjSgqKiITp06MXHiREmuRgiBr68v586dQ6VS0b59e+LkTuR7dPxrbSIK0N08xIvQXSiVStRqNVptJStNamoqarUajUZDRUUFjRs3xtvbm8jISGJiYujSpQsnT57kiy++YObMmVRUVHD37l0cHR1xdXWlrKwMX19fIiIiGDB0JJYBXVHb1+KnU2exs9Dy4v41TFIj6dmpLVu2bKFOnTrMnj2b0tJSKaf47NkzoqKipGrh1++Nvb09jRo1QgjBpUuX8PHx4fr161hZWaHT6ahbty5NmjRh7dq1b1y3qakpc7/7npWnIijTizeItPUlBehLClFY2IPQk3/3JAURZ6k+Zq00bvHb/oU+44VUHJadnY2Liwtz585l1KhRf/oeGPBnqcbehTt37tCqVSscHR3Jz8/n0KFDtG/f/o83/B/Gfx53+/8xmjVrVoVdYkCvrkQdX8+qwf5Erv2YavGhNNJmY2OqYfjw4VLfVN8vVnAyWVOZnP+93A8gk8vRy5Womwbh/d44Vq1a9U6jJ5PJcHFxYcOC6Xzdxxdj1V8bdiOVnBG+5uTHP6Jdu3YSgbRB2LKkpITdu3dLq3XDhGHAvXv3uHr1Kvn5+bRv354ff/yRkydPMmPGjCr8mnq9nrKyMgYPHoyTkxPVAgcx68g9inV/FC7m32TbRtwud+ZsXJH0EqtUKsrKyqTil5o1a3L//n2io6PRarUkJydjY2ODq6sr7733Hubm5tSvX5+CggJkMhm2trZ4eHjg7+9PVlYWHh4e6PV6EhISCA8PZ/PmzXz88cfcuHEDExMT5s2bR2JipaL3tGnTpNYGgyahQqHA19eXZs2aodPppDaU173U1yvmDALAL168oLCwkKZNmxIfH8/x48exs7PD3Nyc06dPM2jQIMn7qFevHjt37mTAgAG8ePFC2v/7779PVlYWSUlJZGRkkJaWRrNmzahbty6JiYl89NFHtGrVSpLbqaioYPDgwXTv3h2lUsm+ffto3bo19+/fZ+jQoajVak6fPs2jnzbizwuErvSPa5mFHqEr4dXJdby6fFCqNCwtLSU9PR29Xo+/vz9qtZr169eTkZFBr169OHjwIA0aNMDb25uoqCh++eUXHjx4QP369dm7dy+3bt3C3d1dMlDNmjVDr9dzOfQU41u7E71rFskHZpN5ciVbpwSR/DyKYcOGodFoiIqKYuzYsbx8+ZK2bdtKEkMajYYOHTowadIkli5dysyZM+nXrx/m5uacOnWKkydPUlxczPXr15HL5Wi1Who1aoS7uzuXL1+u+nzKZLi6uuLg4MC9MntUtZthUqc5cuOq4rByI1OUlg6v5c3lkvcHUKrTY958ICYmJuh0Ojw8PLh27Rrx8fF/2egJIdi5cyd169atJFl4/JihQ4f+JaMXGhpKs2bN8PDwoKCggGPHjv1j9P4E/pYeX15eHtWrV5cqFgF69+7NgAEDyM7OZt68eUyfPp0pU6YAlZVTH0ybD20mvlPH7/dCIIZqUF1q7BtFDnq9no4dO9KoUSNOnjyJu7s71zMqDaZMofpDr1Iuyin4ZTfyuKvk5ORIBkQIgaurKzqdjvj4ePz8/Lh//z4uLi5Ur16d8PBwZDIZjRs3xt/fH2dnZyIjIwkPD5fCsW5ubpSXl7+Rq6m8vtrYD55H9oXtbx2P0pdPyfllT2W7gUyOkYsPVp3GozS1hvJSPOJPsP6b6bRs2ZK8vDzKysro1q0b9+7dIz09HVtbW9q2bStVw5aXl6PVavnwww/p3LkzTk5OUntGx44d+fHHH6lfvz5xcXFSsYyRkRElJSXSJGkohtHr9RgbG2NsbExKSgoADg4OZGVlUb16dSoqKpg+fTpFRUXMnTuXoqIi2rRpw+XLl5k7dy7z58+XqjRLS0txcHDAw8ODmJgYqRrW0dGRX375hY0bN/Ly5Utat27NgQMHqjQzz549m61bt+Ll5cXt27dp0aIF7du3Z82aNWzdupXmzZszf/581q1bh1wulxQaLCwsWLJkCZcuXWLHjh2kp6fzww8/MH36dAYOHEi/fv34+uuv+eWXX6RQo5eXFy5+gRTXCiSh3KzyOXld6qpCR4UQFP87vGhoE5HL5dSqVYu4uDiaNWvG5cuXUSqVnDlzhsGDB2Nubk6dOnWoX78++/btk3LYQUFBaDQaDhw4IOncJSUlSeH2efPm0bhxY/r3709xcTHOzs6SzqMBERERtGjRokrxU926dRk4cCCdO3emSZMmb/TU/fLLL7z//vt06NCBU6dOkZuby7Rp09DpdNy7d4+oqChevnz5Vs3GatWqceV2BN023JaKWN7V/pGwcnAlh6gQWAQOxbJlkPQ/fXkZAQlH2Lh6OY6Oju98f38Pr1ONbdiw4Xepxt6Fffv2MXz4cBo3bkxMTAwnTpygadOmf7zhP/h7Gj4AX19ftm/fLj1QO3bs4Pjx4xw5coR27doRGRnJ7du3cXNzIywsjCHrL6BxaUD+raNv1fEz5H/eGgIReoqiwiUdP5lMxoQJE8jMzOTgwYMYGRlRs2ZNYmJiWLt2LdbW1mw/Fsa9Ujs0tQIqjeVr6uSGXrai2FsU3vwRM122pJkVHBzM5s2biY6OZvv27ZiamrJy5Uo2bdoEVPZTGQQzTU1Nq7C3GHTgDAwdhiq412HoGbPtOxMjV793jocuMxG9rqRSPUEur2xKLsjCYfA8hF5PUycjjO/sYc+ePVKxgUEvzcHBgcTERFxdXcnIyMDc3FwKX8bFxZGSkoJWq0WlUpGRkYGxsTHFxcWo1Wop1we/emnm5uYUFRXh6upK06ZN+emnn/D19SUhIUHi8HR3d2fRokVMnz6dpKQk1qxZw9ChQ+nbty/Hjh2TjGhxcTG1atUiMzNTmqQ1Gg3e3t6VFcPt2nH27FkmTZpEWFgYu3btIjAwkPv371O/fn1++uknzpw5w4kTJ0hPT8fKygqtVktYWJhUln/w4EGWLl1K06ZN2b9/P4GBgVRUVHDr1i38/f25fv065ubm2NraEhsbK+XcNm7cSMOGDRk0aJCUIzScX8OGDXny5AnZ2dmY2jjSYuhn3IlLRa6pfG51GZUK7GV5mZSXV/KNfvnll9y8eZOcnBzmzZtH//79MTY25sSJE6xcuZKwsDBKS0upVq0aT548wdXVlW+++YaVK1fSsGFDqZAHKqMOLi4upKenI5fLcXd3Jzo6GnNzc/bv30/Xrl1RKBRkZmZy/vx5zpw5Q0hICC9fvpSex2PHjtGjR4+3vs8VFRUsWLCA9evXM3r0aJYvX06dOnW4du2aFPmASlUDQ0HH60QG5ubm2NnZ4TdkKg9w+UPDB5WUaoUPw1CY22Pi0Vj6Xq2Azzt7Mb61+7umn3fir1KNvQsrV65kypQpdOjQgcjISE6ePEnDhg3/8n7+V/G3NXzjxo3D19eXiRMnApXaaW5ubrx69YrLly/z6aefkpWVxaxZs/Dya8y4E6kSj+brSN42EYuWQ9B6tZS+E/oKCu6FkH3he1ymVDZ8i/IyktaNxFheWYkol8uxtbWlb9++tGzZkqSkJJYtW0Z+fr40YRsbG1PTsz4Z5h6YO3uRX1qBvqSAwpfRVCuJJ/ZxBB9//DHZ2dm8ePGCW7duSUz0hsbZatWq4eLiwtOnT8nJyaFhw4Y4ODhw6tQpPD09sba25smTJ7i7u/Py5UvS09Ml8VFzc3NJrPN1yE0sqPHx9396PKCSHDl13wxcJldSi+nLy3i5biT64jwUCkWVnjZDtd7rDdp6vR4hBEZGRpKMj0HU19TUFDMzM/Lz86lfvz5ubm7ExcVRWlrK8+fP2bJlC+3atWPZsmVs2rSJRo0akZiYSH5+PklJSTg6OrJw4UK++OILpkyZQkhICNevX+fhw4dMnDiRsLBK/kiFQsHOnTsZNmyYFAI0vB6G+7Z3717+9a9/4eDggJ2dnaT7Z2CycXFxYciQIfTs2ZMmTZpI7Bx+fn4sWbKEn376iTVr1nDlyhVGjx7N3LlzqV69OoCkKhAVFYWNjQ1PnjyhuLgYIQTffvstkydPBiqLIFq0aCGNZ4cOHXjw4AFpaZVsRIYxNRhuCwsLKioqaNGiBUFBQaxZs4YHDx5gZ2dHVFQUa9as4bvvvmP9+vV89NFHpKamSoocY8aMITc3l9LSUml/Wq2WOXPmYGNjQ0lJCVqtloKCAj755BNkMhkVFRXY2dlhbW3N4MGDpdL/AwcOYGRkhJdXZZN67dq12bBhgyST1bx5cxo1akRFRQXl5eXSJysrS/KktVotT58+xdvbmxYtWlT53atXrwgPD8fX15f4+HgpB27ArFmzyK/fj2P3k6Xvfs/wQSXRfdLqoVQfuwGF9td+wr5+Tqwc7PfWbd6+n1+pxtq2bcuyZcv+kGrsXTBQs/Xu3Zvw8HBOnz6Nr6/vH2/4DyT8bQ3f9u3bOX/+PHv2/KrtZcgXBAQE0KxZM86ePcvUqVN5KqtBRd1ubwjCVhRmk7R+NNVHfydJGr0rBKLXlWIcHUb1vMfExsaSlJRUxbsyTOoA9evXl4iKMzIypLyIWq3G2toarVYrveDffPMNNjY22NraYmpqyqZNm7h16xYHDhyguLiYoKAgPvvsM7Zu3YpWqyUiIgKNRiPpAur1emlV3qNHD4njz6AcbmVlJeUU+vXrR05ODrcKLLBoNfRPjYcBebd+ovDJZYl30dBzWHDr6O82cltZWdGgQQPq1KlDnTp1cHFxkUr7HR0dWbduHdOmTeP+/ft4e3tjZ2fH1atXsbCwwN/fHyEEzs7OkmJGSkoK33zzDZs3b0an09GhQwcuXLjA7NmzGTp0KCNGjMDY2JiXL1/y8uVLLCwsePXqFcbGxhQUFNCiRQuuX7/OsWPHMDMzk/IlhkrOixcv8vDhQ8koA5Lqd5cuXdDpdHz88cdVJuT4+HimT5+OEAInJyfat2/P06dPsba2pn379tLvDBN+aGgoly9fRqVSoVKpJKPj4uKCvb09d+/elajLDC0rbyxe/t0naYCjoyO2traUl5dTVlZGQkIC5eXlKBQKrKysKCwspLi4uEqVLFRtmH8dGo1Geq4MOUIDDM9wYmIiCoUCY2Nj7O3tefHiBd27d8fY2BilUlnlk5WVRUhICCNHjsTExET6PjY2luPHj9O0aVMeP35MWloao0aNolGjRlW2j4iIYNOmTUyZMgV/f3+OHDnCrl27KoWQ5XJ69erFqlWrmB32ivNPf6Ur/EPDp68gccVAHN9fhtrxVw+vg5c920Y0fus2v8VfpRp7FwxVwHv37mXIkCFcuHCB0NDQv1T9+Q8q8bdSZ3gdzZo1e0PDrG/fvhw9epTevXuTl5dHjRo1CAkJYch3p7n+qurE8S4dP5fPDlYJgRggV2nI1BsRdfGi9J3BozE3N5cYJgxqz+np6eTm5tK0aVPu3LnDwoUL+eWXX9DpdHh7e0uhLIM3kJ+fT35+Pr1798bBwYH27dtTt25dbG1t+fLLL6XcikqlksioP/nkE6pXr86ePXuIi4sjLCwMrVYreXmrV6+uvNZ/G+grV64we/ZsUu8Xkf9bVfjf0TUsS3tO7tX92PX/VebkddFWmUyGm5sbXl5elJaWcuHCBfR6PVqtlsLCQiIjI0lLSyMmJgZ7e3vs7OwkJfWysjJ0Oh3jxo1Do9GQk5PD3LlzKS8vp1atWty8eZOUlBQaNGiAnZ2dZETMzMzIysqSvLnFixezbNkyrK2tyc3NlTxmQ1+doQnf0Jg9YMAAaVItLy+XlDp+Cw8PD5KSksjMzOTw4UpvNzk5GSMjIwoKCkhMTCQtLQ0HBwfS09NxdnamqKgIIQT37t3D0dERhUKBUqmkqKiI8+fPk5mZyYABA0hKSuL27dtS9W1CQgIJCQkA1KxZE5VKRXR0tFQxa2ZmRmFhIaWlpVWMnkajoaSkhL59+zJkyBCUSiXR0dEMHTqUoqIi8vPzMTc3Z/HixXz//fdER0cjhKCoqAgnJyd69OjBpk2bJBL0M2fO4O/vz8OHDxk1ahS3b99GpaoM1RtC2gUFBRgZGfHDDz9I4UsrKyt27dqFlZXVW8dy9OjRmJiYsGzZMkpLS/niiy+4evUqK1asYPLkyZibm/P8+XNcXKoKSu/Zs4fdu3dz7tw5mjRpAlRKUslkMoYNG8Y333wjvUfmRpVeoIHp5rcqHSXxkSiMzVHZ10ToSsm5vBu5kSkq26rPvLnRH2gwUZVqbOrUqRw9evQPqcbehYqKCnr27Mm5c+cYOXIkoaGhXLhwgdq1a/9H+/tfx9/W4zNIq0RHR2NnZ0ofFM0AACAASURBVAdAUlISDRo0ICUlhRYtWkhisaN33qqyChRCT8bxZehLi7Dv/9VbJY3eFgIpir5B+pH5VX5nbGws0XW9HjozTKpQmR8x8AHq9XrJeP12+98yU/wWMplMqqKEX9sTDPk8Q6jKYJDftS/HQXPRuP2abP+98dBlJ5O6dzqWbUe+oRSge3GXlENzcXBwwMzMjJSUFMng2NraUlJSQq1atWjcuDEZGRmkp6eTmprKq1evUCqVODk54eLiwqNHjygtLcXMzIyEhAR27twpjd/333/PqVOnMDU15dtvv6V27doolUo6deqEtbW11LtoY2ODi4sLCQkJODg4kJycTHFxseSpKJVKPv+8ks5ryZIlREZGcvz4cebMmVPFm9JqtZIxbtiwIbdv36a8vJz69euTl5cn9Ueampqi0Wj47LPPGDVqFNbW1pw/f57g4GCuXLlCbGwsK1as4MyZM2RnZzNjxgx2796Nu7s7hYWFpKWlERAQgJ+fHykpKfz8889VGtgN908mk0mEycOHD2fIkCFcunSJjz/+WPqtWq2md+/eXL9+nfnz5zNy5Eh0Oh3BwcH8+OOPUu60efPmhIaGSguHJUuWMHHiRMrLy3nvvfdYvnw5GzZs4MiRI8jlcknEuKioCGdnZ9LT06Vq1lmzZknSVq1bt2bDhg3UqVOHyMjId4b4UlJSqF+/Pnv27GHGjBm4ubnh4+PD/Pnz6dKlCydOnHiD6mvdunUsXryY06dPU6/er1y4ubm55Ofnv9E8/l3oE747H0PGL/vfynSjsnMl5/IeKvIzkCnVaKrXwbLNCNSvKccbVCR+L8dnoBrz9vZm9erVuLq6vvO3f4TS0lJatWpFZGQkH3zwAadOneL8+fN/itj6H7wdf1uPTy6X06RJE27cuEHPnpXiojVq1MDN25ev9l1C1mIks88lUy/hHslZv7L+/2kdPyEQ5aVU5GdKhk+UFr7RD2Ywdo6Ojnh5eWFpaUlYWBhmZmYoFAoGDBjAwYMHiYmJ4dSpU2zatIng4GC++OILiRvR4MG5u7vTqFEjunfvTq9evVCr1cyYMYNt27ZRVlbGsmXLmDZtGjKZjOvXr9O8eXNpInnx4gWPHz9m586dREZGAlQxkq+PW6MG9XiQ/8fjUZ6bRur+WVi0DHrD6AGU5ufg5eVFQkKCxERiILAeM2YMERERnDt3jri4OLp168agQYNo3ry5NNnfu3ePu3fvUlRUxJUrV6Rev6NHj9KnTx98fHw4fPgw1tbWBAYGsmzZMm7evElERAQlJSWEhISwdetW1q1bh7e3N+Hh4cjlcoqKitixYwd169bFx8dHuk+HDx+mdu3ayGQyGjRoIC0YXodSqcTR0ZHY2FhJpUCpVLJu3To6d+4MgLu7O82bN+fSpUscPHgQKysrBg8eTPv27Zk1axYdOnSgU6dOPHz4EDc3N168eIG5uTn9+vWjY8eONG7cWFLbvnDhAnv37n3jPr1e2DJixAgWLVqEsXEln2vdunUJCwvj3Llz5OXl4evry5o1a8jJyaF9+/bExMRw9OhRnJyc6NatG9HR0eTl5XH69GlUKhVXr14lISFBCjuamppy+vRprKysOHr0qNRI37lzZ/R6PV5eXsTHx3P27Fn69euHXC7n/PnzLFq0iCZNmvD555/TqlUrFArFW3slDXBwcKBDhw707t2bb7/9lmPHjjF//nyWL1/OZ59VDUUKIViwYAE7duzg8uXLbxgBCwsLidoMKsON69atY+eBI5gOXYVl4FAsA4e+9Ty0Xr+vryeAAQFvZ2N5nWpszZo1/2fmlPz8fAICAkhOTmb8+PGEhIRw6dKlN7zef/DX8Lf1+KCynNxQDWbg5Lv4LA2ZDErLf71spVxGub7y73fp+BU/v/dGCKTo2VWcPtyKTKlGlJdSfPMHcq7/UIW1JTAwED8/P+zs7DA1NaWwsJBFixZJfJ+PHz+uwusIVT233r17S71NDg4O2Nvb4+DgINEYGSRknj17Rr9+/QgNDSUvLw8HBwcKCgrIz89HLpdjZmaGEIKCggIptGnIAULlBGpqalqpdD3tOxadeIBMqX7neJTnZ5C6dzqm/t2xaNrvzcGv0GESe4GOToLS0lI2b96MSqWSJr8+ffrg5+dHnTp1WLx4MRqNhgYNGhAeHk5sbCx+fn60aNGC5s2b07x5c7y9vSkrK6NatWqUl5fTpEkT7t69y6tXrzAyMiIvL09igklMTCQ9PZ1Ro0ZJAqUDBw5k8+bN3L9/n0mTJvHs2TMCAwO5cOGCZETUarWkqF5RUUFxcTEqlUqqioXKxUKXLl04deoUly9fprCwkHXr1nH16lVMTEwkyZmEhAR0Oh1bt25ly5YtPH36FAsLC/Ly8jA1NZUEUQFWrVpFUFCQ5MXdvHmTffv2ceDAASwtLSkoKCA5ObnK8KrVaon2TAhBVFQU8+bN4/3330ehUBAXF0eDBg0oLCzE0dERpVLJnj17WLJkCadPn2by5MksXbqUQ4cOSb1jtWvXZuDAgWzcuBF/f38ePXpEUVFRFeo9Kysr9u7dS3FxMWPGjEGhUBAbG4ubm5skbpyTkyN5gEZGRgghWLFiBdOnT+fatWs0bvxmbiw/P5+PPvqIO3fukJeXJ8kxnT9//o1SfyEEU6ZM4ezZs5w9e/ad6udCCMLCwvjuu++4du2a1ENq9d40tHWa/WGv7tsgk0GXug5sfL/qORmoxubPn8/YsWOZNWvWn9ZjfBfS0tLw9fWltLSU4cOHc/bsWcLCwqSw7T/4z/G3NnwhISEsX76cUQu2/Sn2kfLctHfq+MkUqt8NgRiqOvXFlROkXC6nZ8+edO/enQcPHhAZGcm9e/fQ6XRVOAXlcjlqtRoTExOpsvHQoUNERkYydepUpk6dSlpaGvHx8SQnJ0u5QfiVlNoQ8oLKl12lUkkhsG7dunH48GHMzMw4c+YMX331FT179mTMmDF8+OGHbNu2DZlMxpw5cxg/fjxeXl7cefiMjmvC0eVnvXM8yrNfkXtl3xtsIS6f/wBUkh/vHliTbu1aUVRURLVq1SguLmbBggVs27aNTz75pIqSRVZWFubm5gQHB1OvXj1kMhnJycncuHGD8PBwiouLKSsrY8SIEezatYvCwkKMjIzIzc1l4cKFHDx4kKysLIqLi6WiDR8fH3r16sWWLVsoKSnhzp07WFlZERISwpo1a6qQHMhkMnr16sXZs2el3kDDq1GvXj1q167NsWPHMDY2pk2bNjxPzqCshj8Kaxdc63jhWcuV3PhH3Ni/mtjHEdjb21NQUICTkxONGzfGw8OD+Ph4QkJCMDMzIzY2lurVq/PkyRPMzMx4/Pgx+/btY//+/ej1epycnHjy5ImUs4PK8HBWVhZ6vZ6dO3eyatUq0tLSyM/Pp2/fvjx79oyCggIWLVpEjx496N69O2fOnGH+/PksWLCA4uJihg4dyoQJE+jduzcNGzbk6dOn9O3bl1WrVmFubs6kSZNYv349WVlZWFpaIpPJyM7OxtjYmMGDB7Nr1y769evHvn378Pb2JiMjgxkzZrBgwQI++OADVqxYwbFjx9iwYQNnzpyp8mzY2NhQt25dLl26VCVkefv2bYKCgmjfvj0tW7ZkzJgxKJVKUlJS3lBmqKioYNy4cTx+/PgNhQUDCgoK2LVrF2vXrkWv16PX64mOjpbuc88RE4h27kGxruKNbf8IxioFB8c1w7fGr+dloBqztLSUogv/V8TGxhIQEICpqSn9+/fn4sWLnDt3Dnt7+z/e+B/8If7Whi8zMxOvnh9g02kcJX9BqeGvQuj1qNOekHrkG2nifT0HYzBQhh42a2trYmNj6dmzJ1evXpWKH8zMzHj69CnGxsY4Ojry/PlzTExMKCkpkQRXy8rKMDc3x9HRkWrVquHo6Mj+/fsJDg6mqKiIY8eOodFocHd3JykpSSragF9zewMGDMDJyQkHBwdu3brF8ePH0Wg0bN26lSNHjtCyZUuOZdoTU2zyfyI//shHRUBAAK6urkRFRbF+/XoWLFjAkCFDJJFfAxITExk+fDgJCQmStxEfH4+XlxcNGjTg559/JjMzU1JjUKlUtGzZkoCAAEnOxyDMm5+fz4oVKzAxMeHevXvs2rVL6mFUKBR4eHjQpUsXsrOz2bt3rxTOPHHiBAMGDJC4F/V6vcRdmpCQQGBgICllGqxaBaF29UeGqKLtZ+AtFckP0T8IoX+7xqxatUpalERGRjJ+/HhpISOEwM3NTWpPqVu3LnFxcbx8+RJAYkkxeJ42NjbcuHGDPn36kJOTQ0xMDAcOHOCLL74AKo1CcHAwISEh2NjY0L17d2bOnImnpycmJiZER0cjk8mYOnUqW7duJTU1lY8//pht27ZJHq5SqZTyjAkJCRgbG3PgwAFSUlL48ssvmTBhAosXL8bc3Bxvb282bdpE69atKS4uZsuWLQQFBTFx4kRcXV2ZOnVqlXvs6+uLEILp06czdOhQ9Ho9q1atYvHixaxdu5YzZ87w/fffM2HCBGJiYujcuXOVEGdpaSlDhw4lNzeXo0ePVmEdgkqx13Xr1rFr1y7puYiIiKj6bMpkPH78mNs5Rsz5KfIvyVMZuDrfb1YTqKQamzFjBj///PN/RDX2Lty5c4fAwEBcXFxo3749N27c4OzZs9jY2Pyf9/0PKvG3pCwzIKlIgbbVcEp0ejJ+Xk7SmmEkrBjIy03jyI+oXI2KCh3pRxeStH408Yt7UhIf+ZePo6CClPO7MDExqeJ5WVlZSX1nJiYmVFRUSCwVMpmMO3fukJmZSUVFBampqZK8UWlpqUR1pdPp8Pf3JygoiNWrV/Pw4UMyMzN58uQJ58+fZ8SIESgUCvbu3YuRkRHOzs6cPn2a3NxcPvzwQ1avXo2NjQ0bN27E1NQUIQRNmzbF3t6e1NRUNBoNzZs3R6fTMWjQIA4ePMgnn3xC+LavERXvzsf8HjQqOa2si2jcuLGUR1MqlUyaNAmtVsulS5feCO86Oztz7tw5OnfuTEJCAleuXCE9PZ0NGzbg4eFBUVERRkZGhIeHS20hz58/57vvvuPnn3+WGq3z8/OxsrJizpw53Lhxg/Pnz6PX6+ncuTMeHh50796drl27cv/+falS03DP3nvvPamoqKysDAsLC1xcXHBzc6Njx47k2TfAPngh6lqNkClVbwjaypRqZEo1cmc/1N2ncTq2iHnz5lFQUMCUKVPo2LEjAwYMwNPTExsbG0xMTIiLiyM6OpqUlBQuXryIiYkJq1at4sqVK7x69UoKmwcGBpKQkICLiwunT58mMTGRhQsXEhwcTExMDJ9++inFxcXs2rULU1NTGjduzLx584BKuag7d+5w6dIl9Ho9s2fPlkLg3333HRqNhhMnTmBkZERZWRlPnjyR2Fw2bdrEmDFjpJzprl276N+/PxkZGdy+fZvi4mK6d+9OUVERR44cQafTce7cOTp27Pjmc6HR8MEHH7B06VJSU1Pp2bMnhw4dIjQ0lDlz5rBnzx6OHTvGmjVrWLlyJQsXLpR6EwsLC+nVqxdCCE6cOCEZPb1ez9mzZ+nZsyfNmzeX8qXnzp3j+fPnWFtbS0Vkcrmcfv364eXlhUX6AypuH0am11UuYH4HQq9Ho5RJRk8IIeWIVSrVf0Q19i6EhobSvHlzfHx8aN26NXfv3iUsLOwfo/dfxt/a4xu3+zZnH70CmZyy9HhUVtWRKVXoMhNJ2TcD+4FzUdu5kn/3FGpHDzKOLcb2vakYuf75ZlB9WQnZF7ahSbiJEILi4mL8/PwkYmNDDs3gBRpUt1/PK7Vs2ZIvv/ySOnXqEBgYyPnz53Fzc5Not4QQBAQEoFKpePLkCZmZmdStW5f69evz+PFj4uLiiIyMxNfXl969e7NlyxbS09MZMWIEOTk5TJ48mU8//ZRatWrx7NkziouLiYiIwN3916q0iooKPv74Y3bs2CEVIJj6dcOq/V/TVqO8lPJbh3n1yyF8fHyYPn06EyZM4NmzZ1hbW1OrVi2cnZ1p1KjRG14fIHkEJ0+elGSHli9fLlXnLlmyBK1WS25uLoGBgahUKp4+fUpKSgqmpqZSLs6Qw2zcuDG5ubkMHjyYoKAg2rRpw4kTJ2jSpAl+fn5UVFTw+PFjateuzbNnz6qcy+u9cO5dRyEa9PlLBONGSjkFV3ZRcC+E+vXro1aruXnzJmVlZQQEBPDgwQPJE+3YsSPZ2dm8fPmS4OBgDh8+zKtXrygrK2P27Nl8/fXXVfa9ePFiZs2aRUJCgpTzyczMZO7cuWzevJmysjI8PT2la3J0dCQtLQ1jY2OJpLt3796kp6dz+fJlysvLJX1ElUrF/fv3pecjJiaG4OBg7O3tWbFiBe3atQPAzc2N69evS2HdwMBACgsLefDggcTg8jpatmzJkiVLGDJkCCUlJXzwwQd07tyZnj17YmVlxc2bN6vkryZPnkx+fj5Lly6lR48eeHp6smXLFpRKJfn5+ezcuZO1a9ei0WioWbMmv/zyCzk5OdStW5fU1FSCgoLIyckhLCyM7OxsabFpa2uLr68vHh4e3IxJ4f1Fu7kSm40MKPmNHl+ZTkdZ/D1OLfsU3xqWPHz4kI8++oiSkhKJSee/hf379zN8+HA6duyIo6MjMTExnDx5sgozzT/47+Bv6/FlFJRWikv+O4GttnOtXKUDIEOGjPLsV8gUKswb98bIuR78hbCe0OvR60rIvbgd/bNLZGVlkZ2dTUlJCTdu3ODly5fUq1eP9u3b4+7ujoWFBZMmTSIxMRG9Xk9UVBQmJibI5XKuXr1Kp06dpJDR3bt3gcrSeZ1Ox5kzZ7C0tOT+/ftMmDCBp0+fsmrVKpo2bUpUVBR6vZ66deuSnp7O3bt3mTRpEkePHmXmzJl0796djz/+mLlz5xIdHU2NGjXw9PSkXr16VcJAcrmcGjVqVKm6K7gfQvaFbVBRBu9oQH99PJQyPR75kSRfPohSqaRmzZps2LCBrKwsPD09UavVJCYmkpOTw5YtW2jatCmff/45S5cuZceOHYSEhEjnHxQURGBgIDdv3mTdunWcO3eO77//HiEELVu2xMHBARsbG0ntQalUUlBQgFqtxtvbGyMjI2QyGY8ePSIlJYUNGzYQEBCARqOhU6dObNq0icTERLRaLXq9/q0FA3q9nho1amDh5ouuXk9ST6x8a9QAoPjFfV5u/pCE5f1J2TeD8tw0Ssr1KBoOpNjYjoyMDIlc3CC7NGbMGJ4+fcr27duJjY0lJCSEn376iV27dhEfH09ZWRkzZsxgzpw5b5zb9OnTqVmzJt27d5e+i4iIIDQ0FA8PD2rUqCFFEAy9mxqNhg8//JCIiAiCg4M5evQo586dk1h0jh8/zpUrVwAYNGiQ1D7j7OzMlStX8PHxoUWLFuh0OsaOHUtMTAz9+vXj1atXmJmZSewqer2+Cl2YASqVig0bNpCZmcmgQYMwMTGhY8eOdOrUqYoBN2D27NkcO3aMpk2b0qxZM7Zt28bz58/59NNPqVmzJmfPnqVGjRo8efKE0NBQ6R1Sq9Vs2bKFy5cvS+9acHAwnTt3xsvLixEjRiCE4OrVq5SlxLB1RFOuTWvPZ53q0NfPiQ5e9vT1c+KzTnUo2j+ZHubJuFkqmTp1Ku3atSM4OJjw8PD/qtFbuXIlw4YNIzg4WBLLDQkJ+cfo/X8F8TfFhosxos6sU8J1+gnpY+rfXciUGgEItYO7cJ58uMr/FWY2wmHIwl+/m/azcJ56rMpvnD8/Ipyn/Cjs+30p7L0aCblcLiZMmCAuXLggUlJShF6vF+Xl5WLjxo3C3t5ejBs3TqSlpYmnT5+KCRMmCCsrKxEUFCSuXbsmWrduLdRqtcjLyxPXrl0TwcHBQq1WC0CYmZkJtVotXF1dRVhYmBBCiAcPHoigoCBhZ2cn5s+fL3JycoSRkZHYunWr+Pbbb4VKpRIhISHi22+/FSNHjhSNGjUSJiYmwsHBQRgbGwtbW1vh7u4uatWqJZo2bSpUKpU4f/686NOnj+jXr58oKioSdnZ2QqlUCiqrtgUgrNwbCNeh3wiXKT8K58+PvHU87PrOFCY1vISxsbHo3LmzmDhxovD19RXJycnC8JidOHFCNG/eXNy9e1ds27ZNmJubiw8++EBMmTJFDBs2THTp0kX4+fkJR0dHIZfLhVwuF4CQyWSiVatWYty4caJatWpCLpcLExMTIZPJxJAhQ8Thw4fF7t27BSC2bNkiysvLRdu2bcXMmTOFp6encHd3Fy1bthQ+Pj5CpVIJuVwuZDJZlWt0cnKq8retra346aefhE6nE2N33RI1p58Q1casEy5TjgrX6SdE9bEbhFxrKRxHrhI1PtkrZBoTYdtnunCZ8qMwb9JPqKt7/vsZOi5ch34j7bdBgwbizp07Qq/XV3lep02bJlq3bi3atm0rndv48eNFQECAqFmzpli0aJFISUmpsk1MTIyQy+Xik08+ET4+PkKj0QgjIyPRvn17sWTJErFu3TrpuDKZTKxfv16MHz9emJmZCTMzM+l/NjY2Ytu2bcLe3l7cvXtXrFy5UpiZmYnRo0cLU1NTERAQIIQQorS0VLi4uAhra2sxZcoUERISIqytrYWxsbGQy+XC19dXDBo0SPTp00e4urqKx48fS+f6/PlzYWFhIRo2bCgWLVok3eM1a9a88x1+/vy5sLe3F87OzuLEiROiW7duws7OTowaNUoEBAQImUwmHBwcxPLly8XChQuFjY2NWL58uTh8+LCws7MT69atqzLOFRUVYu7cuUIulwuFQiFdf0VFxVuP/+LFCwGIjRs3CmdnZzFs2LA37sF/A9OmTRMKhUJ8/vnnYsCAAaJLly6iqKjov36cf/Ar/raG79MDd6tM0IaPyxc/CYehS4RF4PvC5TdG7Q3DN/2E8P5sp6gzYoGoNvhr0WXuPuHd7xOhNrMWtra2wtbWVpiZmYmxY8e+9RyysrLEp59+KmxtbcXKlStFWVmZyMnJEStXrhRubm7C2dlZKBQKUVJSIm0zevRosWrVKjF//nyhUqmETCYTMplMeHl5iZkzZ4rU1FTx5MkTMWzYMGFlZSUA8eLFC9GkSRPRpEmTN86hvLxcREdHi927dwt7e3uhVquFra2tAIRGo5FefqVSKYKCgkSfPn3E4sWLpckSEJaWlqJ69eqiedtOwqxJP2HTY7Kw6/+VqDHgS2HWpJ9QmFgIjUYjTE1NRbt27URpaanQ6/ViwYIFwtnZWVhZWQkhhFi0aJGYPHmydG6XLl0SdnZ24smTJ6KiokJcunRJjBkzRlhZWYmOHTuK9evXi86dOwuFQiF8fHyEsbGxsLS0FCqVSri4uAhAVKtWTWi1WulcGzVqJHr06CG6desm1Gq18PLyEjKZTCgUCuHh4SEGDx4svvjiC2FhYfHGGPz2o1KpxNqtO99YQFUavo1CobUStr2nCeuuE4XGyevXxcDkH4RMqRbVx26ofOamHhWmNo7C0tJS7Nu3763PSkVFhbCxsZGO/fXXX0v/u3XrlhgzZoywtLQUgwcPFj/88IP4/vvvRVBQkLRICQgIEEeOHBEFBQVCCCHOnj0rGfO1a9cKExMTIZfLhUqlEoCwsLCQFhdarVZYWFiIpUuXCgcHB3H//n1haWkpnYuJiYkQQoglS5aIbt26ibS0NPHee++Jhg0bilGjRgmNRiN8fX2FjY2NkMlkIjQ0VOzcuVPY29uLy5cvS4bI29tbrF+/XpiamgqVSiUiIiLe+f4+evRIVK9eXfTr109oNBpRs2ZNMXbsWOHq6ipkMpnw8fERZ8+eFeHh4cLHx0d07dpVREVFiSlTpghXV1dx48aNN/YZHx8vzM3NhZWVlfS8yGQyodPp3noOgwcPFmq1Wnh7e4uLFy++81z/U+j1ejFixAihUCjEkiVLxHvvvSd69eoliouL/+vH+gdV8bc1fKN23Hyr4ZO8P7+uwqrjuD80fJ2/OSp69OghZDKZUKlUQqVSCWdnZ6FSqUSfPn2EVqsV5ubmIjo6+p3n8ujRI9G5c2fh5eUlTp8+LYSoNEgLFy4UgLC3txdz5swRr169EjNmzBDffPONEEKImjVriv379wt3d3fRs2dPaTKysbER/fv3F0OHDhVKpVJYW1sLuVwu5s2b97tjcvnyZeHi4iJsbW3F9OnTpUnQ8DF4Uo0bNxaenp5CLpcLl9p1hUWz/qLjV7uFw8C5wqbnZGHetJ9o1LKt5DVUr15dODk5iRYtWojCwsIqxxw/frzQaDTizp07YuDAgWLPnj1V/r9o0SJhZWUlXFxcRL169cSSJUvE+fPnxZIlS0SrVq2EUqkUHh4ewtTUVBw9elQUFBQIU1NTUa1aNeHr6ysCAwNFTEyMkMlkQqlUitq1awsjIyNhb28vXF1dhUajEfb29kImkwkPDw9hY2MjFAqFZDDkcrlQq9VveLmGj3nT/sJ16tHfjRqYNewlTP27VXluVLYuwrbPjF+94s6jRMeOHYVWqxUzZ84UycnJ0hiUlZWJevXqScf09PSsMkbFxcUiNDRUTJw4UfJ4jY2NhZmZmWjRooWwtbUVbdq0kX77r3/9S9SoUUOEhoYKmUwm5s+fLy2SDN6Oubm52Llzp1AqlcLV1VXY2NgIjUYjJk+e/NZxiI6OFjY2NiImJkYIUTlpr1u3TnonDN64SqUSSqVS7N+/X/z8889CrVYLc3NzcePGDdGoUWWExMXFRYwaNeqdz+nhw4eFsbGx0Gq1YsCAAaJz587SuXfr1k3ExcWJ3NxcaTz2798vkpKSRGBgoOjatavIyMh4Y58VFf+PvfcOq+Jav8fXOXA69XAOvYNUAQEpIoqKRtQIsWEvsaAC9hqjJrbEhiVGxUbEEr0ajEYxdqwxscaKBTuCKKIiSj/r9weXuZ6gJvd+Pvf7ub+brOc5zwMzs/fM7Nmz39nvft+1qtm8eXN++eWXPHTokDCrGmAXdQAAIABJREFUB8Dy8nK9Y8vKyjh9+nSKRCKGh4fX2f+/gcrKSsbExNDQ0JCrV69mTEwMO3Xq9G8511+oi//aNT4T+e+Q0uh0egKT78Lt65eRmZkJkqisrERlZaUQSLFjxw5UVFRAq9WiT58+dVg+auHj44M9e/Zg7ty5SEpKQmxsLG7fvg0fHx9YW1sjOTkZBQUF8Pb2xr59+3Dp0iUANYwg/v7+KCwsRFpaGp49e4Z79+6hb9++uHjxohCKb2ZmBp1Oh/nz52PMmDHIz3/7fYWGhqKsrAwrV67Ehg0b9LTRgBpy4by8PEyaNAmFOhW8ExYCcTNh0rgHblaaQ+7WEEb1W8A0sieeRo6CvNVwWHqFQKvVwtLSErt3766TtFtUVIRevXohJiYGx48fR3BwMIqKipCamoqIiAgsXLgQLi4ukEgkiIqKwooVK9C3b1/cu3cPw4YNg1wux/nz57F9+3YkJCRg27ZtCAwMRGlpKZ49e4Zjx44hODhYUCZv2bIl8vLyUFBQgLt376J///6wt7dHcHAwKisrYW5uDh8fH/Tq1QtATUSnpaUlZDJ9blIA2LlzJz7slaAnGWXROhEOo7fAquccKDwaQWQgga6yDGKZSq+sWKaqITNHDW9pq859MWDAAHTu3Bnz5s2Dl5cXrK2t0bx5c5iamuLKlSvQaDSwtLTEy5cvsXTpUixcuBBt2rSBpaUlPvvsM2i1WqSmpqJDhw4wMTER0j7Cw8Nx5MgRLFy4EA0bNkRubi4uXLggcG5OnToVrVu3Rr9+/eDt7Q1zc3OUlZUhKSkJrq6u6Nu3L2xtbSGRSLBgwYK39p3ExEQkJycLAS8ikQiDBw+GoaEhSKK4uBjNmjWDgYEBmjRpgh49eqBPnz4Qi8UoLi5G7969cebMGSGqNjAwUK9+nU6H3bt3IzQ0FPHx8YiOjkbTpk2xY8cOnDhxAvXq1cP48eOxe/duXLhwAb6+vigrK8Ply5dhbW2NkJAQtGrVCpmZmW+NgPzqq69QXl6OcePGITk5GeHh4cjPz8fp06f1+DMPHDgAPz8/HD16FCSRkZHxL/NrvgulpaWIiIjAwYMHsWXLFmzatAnm5uaCtuFf+Pfjv9bweVmbQGZYc3vVr57j1dUj0FWUgrpqlN4+i1fZRyB3rpEVYVXlP3KwdFVgVUVNDp6uEsX3swWuz9pw5QYNGqBZs2aCdM2tW7dw8uRJGBoaCoKo3t7eaN26NZKSkrBixQqcP38ebdq0wZUrVxAZGYlGjRphyZIl8PX1RVZWFpYvX47bt2/D09MTO3fuRKNGjfD69WtUVlaiWbNm2L9/PwDA0dERKSkpuHHjBiwtLdGqVSshRaK4uBgrVqyAs7MzunXrhtzcXL02kclkGD58OL7//nt06dJFEFutRWFhITIyMvDJmt0w6/Q5Xpm51YTn/4awWiyRQScygMI9DLJ2E5Ard0FkZCR27dqFCxcuCAnXOTk5yMrKwqJFi7BixQrk5+ejb9++cHV1xZ49e9CoUSNERkbi1q1bKCoqwsmTJ5GRkYF79+5h6dKlePr0KerXr4+FCxdi8eLFIIm+ffvi4cOHMDAwgLGxMWQyGSoqKuDk5IRhw4bh2bNneiTI/fv3x/Xr13Hu3DlUV1fD29sbFy5cgLu7O4yMjAQJndrweCMjI0yfPh0xMTFYuHAhKt/C6icSG0Du4Ivql4V4eX43xBI5dOWv9Y7RVbyG6A2mG0qV6NatG9auXYsjR45AKpWiX79+OHr0KMrKymBubo7CwkI8e/YMT548QXJyMr799lu0bt0at2/fRlZWFhQKBfr37y/k+x05cgQ3b95EkyZNIJVKMXr0aAQFBSE4OBju7u6CTNC2bduwZs0a5Obm4saNGzh16hRu3LiByMhI5OTkYMGCBViyZAkCAgLe+T6dPXsWEyZMQGFJOVKP3MLIv51Ht2WHYRk7DjGjU2CkscH27dsxePBgXL9+HQYGBnj+/LnQF27cuAFbW1t06NABhw8fRqNGjQDUcGouXrwYnp6eGD58OK5cuYJ69eohMzMTFy5cwKJFi1BcXIyDBw8iNTUVMTExmDhxIjZs2IAVK1Zg5cqV6N69O9LT0zFlypQ6kaQAcPXqVcyaNQvr1q3DuXPnkJ2djbS0NBgaGgqsMHl5eejWrRsGDRqElJQUODg4wMbG5n+dJeXFixcICAjApUuXsHfvXixcuBAODg5Yv359HdHdv/Dvw39tOkNhSTkazzmE8iodql+/wJPvv0TF4zsAdTA0tYRxcHsYN4gBAOQu64/q4sd65e2GrIGhsRp5y/sD5SWorKyEnZ0dHj58CLVajQ4dOkCtVmPevHn48MMPkZeXh9zcXCxevBjXr19HdnY27ty5g/z8fIFRpJaA2sjICGq1Go8ePUJ5eTnEYjH+9re/oW3btjh27BhmzpyJESNGoFevXlAqlQgLC4NKpcLmzZuF66uVGzp58iQ6deqEyMhITJ48GYsXL0ZmZqYw67O2tsbIkSMxZswYGBoa4vnz53BzcxOi4jp06IATJ07A1tYW9erVw7UqLeQRPaAT/fGXUKyrQqgkF7x5FJcuXcKdO3fg7OyMwsJCuLq6QqPR4OjRowJbjY2NDYqKihAdHY327dujbdu2IImmTZsKBun06dPIzc2Fu7s7YmNj0bBhQyE1oW3btnj+/DlMTEzg4OCA06dPY9euXUJi+s2bN7Fjxw4sXboU169fh5+fHw4dOoTNmzdj9OjRiI6Oxrlz53Dnzh0UFxdDLBbD1NQUz549g1wuh5ubG0ji2rVr0LYfC7l307fe99PdX0EkkUGidcKrSwdh3XtezbOpKEPuVz1h8/EiQcmi/NpRWN/dBzc3N7i7u+PQoUM4ffo0xGIxzMzMUFRUhLCwMMTGxsLa2hr79+/HDz/8AGtra4GuTKvVIiEhAa1bt4afn59Az9a3b1+UlpbizJkzQiSmp6cn1q5di+bNm2PZsmVYuXIl6tWrB5VKBWNjY8ydOxdATdJ+XFycoKP3Nsjlcnz+1Te4JXeviZQGBCFXoCbsnwBeXDuJklMZUJUVIiwsDD/++KNevqZEIoGjoyPkcjm2bNmCpUuXYtOmTWjdujVevXqFXbt2gSQCAwOxaNEiNG1a0+7V1dVITU3F+PHj4ezsjLNnz6K0tBR9+/bFkydPsGXLFjg46Ksn1KKiogKNGjXC4MGDkZCQgICAAEgkEpw5cwZATZrR0qVLMWPGDAwePBiffvoplEoltFotevToISiY/G8gPz8fwcHBKCkpwcGDBzF8+HD4+/tj+fLlbzXYf+Hfh/9awwfU5PHtzy54L03ZuyACYFGWizvrJsHPzw9HjhyBTCZDVVUVHBwc0L59e9y/fx87duwQ5FosLCzQuHFjrF69+q11FhUV4ZdffsH58+dx9epV7NmzB1VVVQIFGVCj7UYSLi4uePToEUJDQ1FUVCSEoI8ZMwZBQUE4fPgwoqOjUVBQACsrK2RmZiImJkao5/Xr11i4cCGWLl0qGEEHBwd06tQJBw4cwOXLl2FnZwedToeMjAwkJSXhhYEZdM2H48nuxSi7ewG6yjIYqMxhEt4JxgGtAQC6yjI8O5SG19eOg7oqSLUusO41B6iuwJxWNujaKhw3btxAt27dcOXKFUFT7sWLFyAJCwsLlJSUwN/fHyEhIXj8+DEuX76M+/fvw9vbG9euXcOAAQPQr1+/GmqwO3fquK5u3ryJoKAg2NraoqCgAC9evMD27dtRUFCA5ORkSCQSqFQqaDQaVFZWIjc3F+Xl5ZBKpfD398fFixdhbGwMiUSC/Px8fPjhh7h9+zZu3LiBBg0a4MaNG2jatCksLCxwsdIKr1yb4fWLIpTduwCFeyhEhlKU3f0VT77/AprY8ZDZeeHhikGwaDMCSvcQPD+2EWUPLgvahKwqR0NZAXo3rJkVbdmyRU9pAaih8woLC4O7uzvc3Nzg5uaGLVu2YNeuXVAqlRg6dChUKhV+/fVXnDt3TshrLCgogLOzM+7fvy/IEW3evBnXr1/HqlWr8PDhQxgbG2PgwIGYP38+Hj58CH9/f1y7dk2gv+rfvz92796tl4LwpsafU3RPyBv1RHm17r3vEnU6GIh0ML9zCAUnMgQGmlqvgpubm6DRp1KpMHDgQDx9+hTp6ekoLy9Hs2bNkJ6erkfAfOnSJSQkJMDQ0BCLFy9Gx44dMWnSJMyePRuxsbGYO3fue92DU6dOxblz57Bz505cvHgRgYGB+PXXX+Hv74+ff/4ZQ4cOhbm5OZYtWwYvLy+hf3l4eCA/Px/W1tbvvuF/Ajk5OWjYsCFkMpkgLRQZGanH7PMX/t/hv9rwXXjwHN1W/fw/4uRTlT/FrFmzkJ6ejg4dOqCsrAyZmZlQqVQCUfCDBw/g7+8vEE67ubmhXbt2aN68OaKiourwDdYiIiICc+fORUVFBfr16yeUPXv2LLp27YqtW7fC1NQUJSUlQmI2UDMoSaVSVFVVISgoCKdOnUJmZiYaN2781ryfoqIijBkzRmAqeTNXz8jICNnZ2fjuu+8w7+cXMHQKQuXTB29N9pdZu6Nw53xQVw11qyEQy41Q8fgOZNbuAIjyW6chOr5KSF42MDCAvb09WrdujaysLJiamuLJkye4e/eukCxdqxYeEBAAf39/mJiYYOnSpRgzZgz27t2LRYsW4eHDh8jLy0NeXp7wd3Z2tqBNB9S4cWvrjIqKQteuXWFnZwdbW1vk5eVh/PjxsLOzg4eHByIjI9GpUyfUq1cPOTk5aN68OQ4fPozKykpMmTIFI0aMgIWFBSorKxEQ2hgVbaai/FXxe70GpXd/RdG+VFQXP4bUxgOadqNgaFYjv8OqChSsHARx5WshIT4wMBCurq7IyMiATqfDli1bIBaLkZOTgxs3biArKws5OTkgCYVCoWcUbWxssHHjRpw8eVLwJGi1WkFbsKqqCp9//jmMjY0xbNgwWFlZoaqqCn369MHgwYOxZMkSKBQKzJtXM0O9f//+W2VzkpOTseHnezBr0R8U/77+nPAsDEV4dnANXl2oIcOupYwrKCiAWCxGVFQUTp06JVCkKRQKnDx5Uo/jsrS0FDNnzsSqVaswa9YsDBgwACKRSOCXXb9+Pbp37/7e6/jll18QFxeHX3/9FdbW1mjYsCGqqqpw6NAhgWps/vz56N69u57x6du3Lw4ePFhnqeBfxZkzZ9C0aVNYW1vjxx9/RHx8PFq3bo05c+b8ZfT+j/Bf7VQOcDDDp229MGt3Nkr/Ca7OGk4+r78T0ZohLS1NkLr5+eefERlZQ7wslUoFd9WFCxcQEBCA169fCwETS5cuRa9eveDp6YnmzZujRYsWiIyMhLGxMQAIFFT29vYgie3bt+P777/H8ePH4erqCh8fH3z11VcIDw9HYmIi7O3t0ahRI6Snp2PDhg3Q6XQ4e/YsRCIRYmNjBWUApVIJCwsL2NrawsXFBT4+PoiPj8fUqVMxdOhQPfLgkpISODg4QGVhDdsha1BRTUi1bw6C/0j2F0tkeH3zF9gnpUMsqwliqTF6NcdJnRogd9cr8O8BN4WFhcjJyYGhoSEePnyI2NhYtG/fHo6Ojrh37x6GDBkiGKrr168jKysLBQUFKCkpwdSpUyESiRAdHQ2tVgtHR0d4enoiJCQEjo6OUKvViIqKQmVlpeAmKigowNKlS/HixQv07t1buAP+XZVizZo1aNCgARwcHARXpkgkgqenJz755BO0aNECLVq0EGaYEokEi+fOQsK60zC0D4B1z9nv7jPODWCXkFp3h06H0ttnMXFUMqZPnw5TU1PEx8fj5s2bOHPmDCwsLDBv3jwkJSXh0KFDUCqVWLVqFdzd3ZGZmQkrKys0btwYTk5OCAoKQlZWFrZt2ya4EBUKhcBC4urqCkNDQ0yfPh2pqanCTL+0tBQhISE4deoU0tLS4O7ujuzsbAwfPhwODg744YcfIBKJIBaL0ahRIxgYGCA7OxsHz+fAomUiis5m4tWlg6h4chcq7yhBrZzVlSj8YR7K83NQXfwYVt2/gNzJH+VVhEXLQRg/sCtmjBqE0tJSgWZOp9MhKysLZmZmqKqqgr29PY4dO6ansHDw4EEMGTIEQUFBuHDhAmxsbPD69WskJibizJkzCAoK0vOSvA2vXr1C79698fXXX8Pa2hrZ2dk4d+4cpkyZAh8fH3Tp0gVXr15960fprl270Ldv3/fW/0exb98+tG/fHt7e3sjIyEBsbCw6deqEadOm/WX0/g/xXz3jq8WGn+9i+q4rqKjUvZedRSQC5IYG+LStl0BEW4vY2FgMGDAA/v7+mDFjBtLT09GrVy88ffoUFRUVOHDggNCRDQ0N8cEHH2DJkiWwsbHBqVOnkJWVhaysLJw+fRp+fn6IiopCSkoKnj59ChMTE0yYMAFisRhffvml4PY6dOgQpk6dik8++QQ7duzAsmXLsG/fPgA1bBzDhg3D/PnzIZFI0KNHDwwePBg6nQ5nzpzB5cuXkZOTgwcPHqCwsBAvX76sE8VZC7FYDHXjeJg07oHqv8c7Pd27DK8uHQSryiG1coNVz9l4ff0nFJ/aBrlTA7y6kgUDI3OYNu4BlVdjAICushxlp7bi2cnvhIFZLBYjLi4OO3bsgJOTE/Ly8qBQKGBrawsbGxvcvHkTYrEYycnJcHV1ha2tLSwtLeHr6wt7e3tMnz4dN2/exOXLl3Hp0iXcvn1boNyqqKiAVCoVIm4PHjwoRDGeOHFCuL/c3FwEBQUhISEBaWlpggK9oaEhDAwMcObMGdy/fx+xsbGwt7fHhQsX9LTcWnUdiDuucaj6F2LB5BIx7q4egfL8m+jWrRtOnTqFp0+fomXLlti1axdu374NW1tbpKSkYMqUKVCr1Vi2bBnat28v9Kf8/HyEhoZCLpcjJycHEokEI0eOxKxZs1BYWIhbt27p/Q4cOCAwtVRVVcHR0RF+fn6orKxEYWEhrl+/jpcvX0IkEiEkJAR5eXl48OCBIFz8xRdfwM3NDaO/vwba+eHVtZ8AkQild86BlRV6hu9ddH8iAOL8S4hTP8b69etRWFj493esRnLL0NAQVlZWKC4uxrp169C2bVsUFhZi7NixyMrKwtKlSwUdzZs3b6Jz587w8/PDihUrBALra9euvVPNPSkpCcXFxVi/fj0AICAgADdv3kT9+vWxfPnyd7KuZGdnCyxIGo3mn37eb2LTpk3o27cvGjdujDVr1iAmJgZ9+vTB5MmT/0f1/oX/Of4UK6q9wp3xbf9QlN8+BamBGHJD/dtmVTmkBiK09rHC3xLC6xg9oEYSprCwEC4uLkhLS8PcuXOxZ88eHDhwAAYGBhg8eDCcnJxgZWWFiooK7N69WzBw58+fR0JCArKysvDkyRPMmjULr169glgshq2tLaKiolBcXIy0tDSUlpbCxsYGs2fPFrgJW7ZsCUtLS5w8eRKvX79GUVERXr9+jVatWkEkEuHw4cNwc3NDx44dMXHiRNja2uLrr7/GgQMHcP36dcE4V1ZW6lFc1c6USEJl5yEYPeDtYfvVL5+i8sk9iGVK2CenQ91qCJ5mLkRl4YOa+iQyiNWOekESOp0OJSUl8PDwwL59+wRqtytXrggitK1atcLmzZsRGRmJsLAw3Lp1C35+fmjUqBG2bt2KTz75BAMGDIC7uztUKhXatm2LQYMGAfiH4gQAtG7dGmvWrMHp06exe/dunD59GrNnz0abNm1QWFiI0tJS7Ny5E0OHDhWur7KyEocPH8b58+dhYmKCmJgYJCcn6z37ZTMnoOTYujr95ndRXYHnh9JQnn8T7u7u6N69O16/fg0rKytkZGQgIyMDGo0Gc+bMwZdffolmzZpBIqlRtKi9p6qqKkycOBG5ubnIyclBt27dUFZWhrlz50IikcDGxgaRkZHo27cvpk+fjtDQUEgkEtSvXx8ajQYajQaenp4IDw+Hra0tVCoVTExMhDSE7OxsPHjwQHhWFRUVGDduHLr2HQiRrS9IQOkZAaVHI4gV+m7099H9EYDOyhtfrUjD06dPERQUBIVCgQYNGggfKnl5eZg+fToGDBiA/v37o379+lCr1bhy5Ypg9LZt24bGjRtj6NChWL9+PVQqFQICAtCxY0d8/vnnb232vXv3YufOnViyZAlKSkowcOBAXLx4EYmJiTh58uR7qcZmzZoFBweH/7HRW7RoEfr06YO4uDisXr0aLVu2REJCwl9G7z8EfwrDBwANXbVwzj2AlCiFHiefh/QZRJd34/OgaqT2aqins/UmLCws8PTpU+H/UaNGwd7eHiEhISgpKcHf/vY35OfnQyqVIiYmBlqtFhKJBLdu3cLq1avh4eGBli1b4ttvv0VgYCDi4+PRsGFDPHr0CJ988glMTEzw8uVLWFhYIC8vD4sWLYJUKsXXX3+Njh074qOPPoKxsTEyMzOxefNmKJVKfP/991AqlQgNDcWkSZNw584dJCYmYsGCBXBzc8PcuXNRVFQkXPPz58+FUPquXbvC3d0d06ZNw+vXr+HmVb/OPf82bF9kKAXEhjBt3A0iAwnkjn6QO/qh9M45oYzcxBzLly9HbGyswJeZnZ0tGOvf5vkZGBhgxYoVaN26NSIjI3H37l1s27YNHTp0wLx58/Drr7/C0tIS48ePR2xsLB48eIB169bhwIEDMDIygouLCyZOnAhPT09UVVXh7NmzkEqliI+PR1hYGD7//HMYGNQQS9erVw/l5eVo1aoVgBqjolAo8Pnnn+PkyZPQaDRISUnBqVOnhAha/l0KyltSiFfH14OV5b/LWyoCIDMQ4fWJDSg6tQMODg5CTuHcuXNx8+ZN+Pr6YvLkyahfvz6OHTuGX375Bbt370ZSUhKio6Px4MEDJCcnQ6FQYN26dfjwww+xdetWQbXht9DpdBg/fjxSU1Nx4sQJHD58GI8fP0ZFRQXs7OzwySefYPXq1cjKysKDBw9QXFyMnj17onnz5nVcbiRh27gjqn+joPHPorq6Gk36jhO0EBMSEnDlyhWYmprCz88ParUaycnJkEql2LhxIz788EOkpKTAyMgIlZWVGDNmDEaPHo3MzEwMGTJE7zpnzJiBTZs24cqVK3rnLCoqwsCBA5GWloaDBw/Cx8cHO3fuhJubG+bPny/0hXdh9+7d6Nat2798z/w7yfq4ceMwePBgfPHFF2jRogVGjx6NsWPH/sv1/oX/XfxpDB8AhIeH4+q5XzC4qRsWdm2ANX1DMCLUHMg+gAc3r7637G8Nn1gsRkpKCi5cuCAsoPv6+iIvL0+IAJVKpZg2bRqio6Mhl8vx6NEjpKamwsnJCSNGjBD0+mJiYjBnzhx89tlniI+PR/369ZGfn4/r168jPj4emZmZSExMhFqtRp8+fbBs2TK4ubkhMzMTTZo0EQYEiUSC+Ph4HD9+HNu2bcPVq1fh5uaGhIQEXLx4ER9//DEGDBgg5Fc1atQIU6ZMgVwuh53le2RP/p7sL7F0rrvvN4Nm5esXSE5ORklJCUaPHo3ExER4eXkhKioK0dHRmDBhgpB3+I8qRJg5cyaSkpIQGRmJzZs348KFC/D09IS/vz8UCgVGjhyJgQMHQqlUoqKiAtevX8fw4cPRo0cPPHz4UDAGOTk5qK6uRseOHVFaWoq7d+9i3rx5kEqlOH78OEaOHInOnTsL53716hW6dOmC/fv3Q6vVQqVSYenSpRg8eDDi4+Ph4OCADz/8EC4uLij59Ud0UedC+SwHMsO3eQ4qwKoKVNw5jfvfjIZ96R08fvwYjRs3RlVVFSIjI5GYmIiIiAh4e3sjJycHIpEI69atExLDk5OTYWJiAkdHRyxfvlxYn9q5cyc6d+6MxMRExMXF6bVhRUUF+vTpg+PHj+P48eNwcnKChYUFZs+ejWfPngluxjchl8sxZ84cHD16VOjPzs7O6NWrFyQSCcrlFnVkl/5ZiCUyNIhqB6lUimfPnmHHjh1wc3PDoEGDkJeXB3Nzc5DE/fv30axZM1y6dAn9+vXD3bt30aJFC2RnZ+Ps2bNvVWzXaDSYPHkyRo0ahTdXa2o/HBYsWICpU6di3rx5ePLkCVauXPm713v58mU8e/YMEydO/JfuV6fT4eOPP8aCBQswZcoUJCcno0WLFvj000/reBH+wv8t/nSG703VbQCoX78+nj9/juzs7PeWrXV1volmzZrB0tISWVlZcHR0xMGDB2FsbAwPDw88fPgQz58/x+zZs/HFF18gNzcX06ZNg5WVlZDce/fuXdja2qJ79+7YsWMHOnXqhJ07d8Lf3x8ffPABmjRpgpUrV2LAgAEoLCzEq1evUFFRgatXryInJwf37t0TGEh+i+DgYKxduxbXrl2Dg4MDIiMjcfToUTRp0gSTJ0/Gs2fPsHLlSohEIpw6dQoHM9IhZvV7k/3lDvVhaKLFi5NbQF01ynKvouz+JShcgwDU5HMl9axR8z537hyOHj2KJ0+e4Pjx49i/fz9evXqF1NRUaDQaxMbGYuHChdi+fTsuXryIoqIigT3k2bNnUCqVuHr1qqAgMH78eBw7dgwAhAi/oKAgnDx5EmlpabC0tIRGo4GzszMiIyOxc+dOFBcXw9raGq1atYJarcacOXNw6tQp9O7dGyqVSph9Pnr0CJWVlfjpp58gl8vRpk0bwVCmpaUhJycHaWlpSElJwdoF0zEsUF6Hzf+DemYoPbUVuUv7Ie9v04Cie0IC+aVLl6BUKrFjxw5BBsnX1xcFBQVo3749oqKicOvWLfTv3x/Gxsa4cuUKpFIprKyscP78eSHMHqhRZfDx8UHfvn2h0+nw8uVLfPjhh3j58iUOHDigl/oxevRoyGQyHDx48K19xNbWFn369EGTJk1w9uxZ3L59W/BABDWKfO/78EdRXFbDdNSsWTM4OzsjKioKcXFxghZhixYtYGJigqysLDx+/BjZ2dnw9PQU5KPep0M3dOhQPHz4ED/88AMAYP24q3k/AAAgAElEQVT69Thw4AB27tyJZs2a4fz581i5ciVcXFzQokWL373WmTNnwsnJ6a2q7r+HyspKtGvXDt9++y2WLFmCjh07okWLFpg5cyYSEhL+6fr+wr8Z/15GtP8s3L17l1ZWVnqM7TqdjgqFgoGBge8tu23bNsbFxdXZPmjQICqVSj5+/JhkDZFvp06dGBoaKvAqhoaGMj8/Xyjz8OFDhoWFUavV0sPDgx07dmR4eDjVajWtra3ZokULjh8/nrGxsdy+fbtQrqqqSuDrdHZ2ruGLlErZpk0bLlu2jNnZ2XVY/0ny1KlT1Gq1XLRoEV1cXGhoaMhp06bx2bNnPHHiBLVaLTd8t4OOY7fRfvhGyhzqUyRTUSRVUKJ1ojomWeCgtBmwlFJbT4okMkosHKjtMEnY5zF5Nwtf1hBu5+fnMyIigu3bt6dcLmd5eTmLi4t58eJFTp06lWq1mvXq1WPTpk2p1WoFrk0zMzM6ODhQoVAwKSmJ+/fvZ05ODjMzM2ltbc1169YJfJNRUVFMTU1lYGAgv/32W5qYmBAAf/rpJ5qYmNDLy4sPHjwgSXp4eAhqAc2aNaNSqaSLi4tA3CwSiWhqasr27dtz7dq1HDduHM3NzWlmZkaVSsWGDRuyW7duFIlEHDVqFPPy8vTa+tmzZ8L5DQwMeO7cObq7u9Pe3p5Dhw6lg4ODQAa+cOFCoVxxcTEbNGggKHI0atSILi4uPH78OJOTkxkREcGXL1/qPc+ysjJGRERw1KhRDAoKYkJCwjuJlgMDAwmgjgpCRUUFr169ytWrVwt8nLWKBSqVip79vqzDb2sS0ZWq+tFv5b59G8+t08RdjBidShcXF06fPp2LFi2ij48Pra2t+e233/LJkyf86KOP6OPjQxcXF4E7tkmTJvT392dubu5b7+lN7N+/n66urkxPTxf6xN27d4X3TCQScffu3b9bD0mamppy0qRJf+jYN/Hq1SuGhIRQKpUyIyOD586do5WV1TsJyf/C/z3+VIZPp9PR2tqad+7c0dseFBREhULxVqNRiyNHjjAyMrLO9smTJzMsLIyJiYkka14CGxsb7ty5kxYWFtRqtQJR78iRIwVy4nbt2nH79u08duwYP/74Y5qamrJVq1aMiIigQqGgXC6nq6srZ86cqXdd0dHRBMCWLVvSxcWF48aNo5GREf39/eng4EAbGxv26NGDq1atYk5ODp89e0ZXV1du3bqV+/bto5WVFbds2cKePXvSyMiIcrmcqampbNeuHa06T6Hze4i93/dz/mQXB68/rdc2ZWVlguG7deuW3nM4dOgQfXx8BMmhs2fPMj8/n3Z2dpw5cyYTEhIol8vp5eVFGxsbGhgYCEoVADho0CBu3LiRP/30E6dPn84+ffqwa9euVKlUTEhIoEaj4ZQpU+js7MybN28yMDCQc+fOZWJiojDAuru708rKis7OzhSLxczIyKC9vT1/+OEHkuTt27ep0Wh47Ngxnjhxgp07d6ajoyNlMhnVajUtLCwYFRXF+Ph4ymQyKpVKgfn/888/Z8+ePWlhYUGVSlVDeG1iwri4ODo5OfHTTz9l165daWBgQAsLC7Zo0YKGhobs0KEDX7x4QbKGWHnAgAFs3rx5HZmakydP0tDQkB07dnxvv42MjKSlpSUNDAw4cuRIxsXF0dPTkzKZjO7u7mzXrp1wfW/+miRMp+PYbYKiiePYbTQJ70yVb3M6jt1Gx/E7avaN/Z6OY7fRwNiCll1ryjhO2EmnibvoPmkXNZFdaWRkxH79+tHMzIzu7u58+vSpXl+oldQyMjIS5Kbi4uLo6OjIy5cvv/PeyBrjZmtrS0NDQ/bo0UNvX0xMDB0dHd9bvhbnzp2jSCTis2fP/tDxtXj69Ck9PDwol8uZlZXFX375hZaWlszIyPin6vkL/2/xpzJ8JNmhQwdu2rRJb1v//v1pYmLC+/fvv7PclStX6OXlVWf7tGnTOGbMGGo0GmFG8fXXX7NNmzZct24dnZycaGZmxoYNG3L48OE0NzfniBEj6O3tzfPnzwv1vHz5kmlpaQwPDxf04dzc3GhnZ0cnJydOmDCBv/76K6Ojo4VBdtSoUSTJ3Nxc9uzZk7a2tkxJSeGqVavYo0cPWltbU6lU0tPTk7NmzaJareaRI0dI1nwpq9Vq9ujRgzKZjGKxmJGxPVlv0r9m+Fwn7uC5e0/rtM9XX33FiIgIWlpaMjMzk2vWrGFQUBDd3Ny4YMECHjt2jGFhYWzcuDG///57Ojk5UafT8erVqxwyZAgNDQ2p0Wg4efJk7tu3j3K5nAYGBhw/fjy7du3KkJAQqtVqAqCTkxMNDQ0FKZnevXuzWbNmggZfUFAQ582bR2NjY4pEIi5cuJAhISE8duwYAfDq1as8efIktVotb9y4QZJMT0+nr68vX716RW9vbx49epTdu3fnlClTmJ+fz+TkZIpEImq1WgYHB+vJ3ahUKsrlcgKgkZERVSoVjYyM2Lp1a0ESacmSJZw2bRotLS2ZnJxMa2trnj17Vmi/qqoq9ujRg23atBHkq06dOkVra2t+9tln1Gq1PHHiBB88eMB9+/bxq6++YmJiIps3b66nXahQKOjg4MC//e1v3LJlC+fOncvY2FiamZnpSRAZGBhQq9XS3NqR7p9m0mniLpo27l7HMJo27l4z0zOxrLPPbsiavxvFbQyJbE43NzdKJBLKZDLa2dmxuLhYuL8zZ87QxcWFvXv3Zv369YWPUJFIxIiICGq1WmZlZdXpV5WVlVy0aBEtLCzYpEkTGhgYCDM9kiwoKKBYLOb333//znf6TXTu3Jmurq5/6Nha5ObmCrJY586d4/Hjx6nVarlz585/qp6/8P8efzrDN2fOHI4YMUJvW0pKCu3t7bl37953lnv06BG1Wm2d7V988QUnTJjAlJQUtmvXjmSNYKezszOPHDnC+Ph4+vr6UqPRcO3atczLy+PIkSMpEok4aNCgt7pzQkNDaWpqSoVCQXd3d06ZMoUjR46kk5MTpVKp4Oo7fVp/hnXixAk2bNiQjRo14qlTp5iamkpPT0/OmDGDSqWSxsbGdHNzY0xMDI2NjZmens7w8HA2adKECoWCCoWCTtE96Tbxh3/K6DmOyaBdVDc2bdqUDx8+1Lumjz/+mDNnzmTXrl0pEono7e3NzMxMPfHPqqoqLl26lAqFgvb29vTz86OtrS1Hjx7NXbt20dvbm2PHjuWTJ08IgN7e3hw6dKjeTCcqKoqffvqpoGlnYGBAiURCtVotSA45ODgI1wGAM2fOZEREBI8dOybMPCsrK5mamkpfX1++fPmSOp2OXbp0YXx8PD08PKjT6Xj//n2q1Wq2a9eOYrGYo0ePFq5l06ZNwgxKrVbTwMCASqVSTwJKJpNx6NChjIyMpLGxMaOiooR+sG3bNmq1Wh49elS4t4qKCnbo0IFxcXFcunQpjY2N2bNnT/bq1Yvu7u6C4W3WrBmHDBnCxYsXc+/evbx37x4/+ugj1qtXj2PGjBG09by8vDhkyBBu3ryZ+fn5XLhwYR3jZWNjw7Axq+k4/p/rC//QvfyBDZKX1qm39vlt376dqamp1Gg03LJlC8kaSaXhw4fTxsaG5ubmgoSRRqPRcxuePHmSDRo0YPPmzfnjjz9So9Fw0KBB7NOnj3BMbGws7ezs3vk+/xYmJiacOnXqHz4+OzubZmZmVKvVvHnzJrOysqjVat87hvyF/xz86QzfkSNHGBYWprdtz549tLOz01t7+S0qKipoaGhYR6153rx5HD16NMvKyujm5sb9+/eTJL/55hs2adKEhYWFtLW1pZmZGc3NzVlYWMgXL15QoVBw1KhRNDc3Z1JSkrAWRZLLli2jXC5nr169OHLkSHbs2JGmpqbs06ePnnZccHAw58+frzdTra6uZlpaGjUaDWUyGffv38+wsDBOnTqV1dXVXLx4sbBmJRaLBWHXevXq8e7du/zpp5/YbOAUOo7JqFEP/x33Zr1JuxjQKZlKpZJGRkbUaDTcu3cvq6uruWfPHhobG9PU1JRjxoxhVlYW/f392a9fP2H28vjxYy5btoyRkZE0MDCgtbU17ezs9AaQwsJChoeH087OjgYGBnz+/Dl9fX2ZkpLCvXv3cvTo0bS1taVEImHDhg0pk8no6+vLRo0akaxxp0VERFCpVHLs2LGCtpuvry8VCgUNDQ0pEolobm7OwMBAzpgxg1FRUYyOjmZ+fj4LCwupVCo5YMAAkuSTJ08EDcQ3ZxT37t1j06ZN9XTvtFot27RpQ5FIRKVSSQMDAyoUCtavX58ikYhisZgymYwdO3ZkSkoK9+3bxzVr1tDMzIwjR44U1nrd3NwEV2/jxo05fvx4fvPNNzx58iRnzpxJPz8/FhcXs6qqiufOneOCBQsYGxtLqVRKiUTCIUOGMCoqigqFQk/oVKfTMSAg4K0GSmpdj85vaBH+sx9DflHtuGTJEj2xX3Nzc65bt46mpqZUKpVvXQfbuXOnoKdoaGhIhUIhzHAHDRpEGxsbbty4kRUVFQwLC+OSJUtYXFxMW1tb/vzzz3z69CnFYjE3b978zvf5TZw+fZoikUhvJvo+/PLLL1QqlbS3t2deXh737t1LjUbDQ4cO/aHyf+H/Hn86w1dSUkKlUqmnep6bm0tjY2MmJCS8t6ypqSmLior0ti1atIjDhg0jSX733Xf09/dnVVUVKysrBeHZAwcO0MLCgsbGxuzXrx8vX74suE0fPXrEsWPH0tzcnImJibx//z4LCwsJgF26dOHq1atJ1hiIL7/8UnCjmZmZcePGjRwwYADVajWbNGnCZcuW8fHjxywpKaGHh4egQt6gQQOWlpZy69attLS0ZFpaGq2trTlmzBiamZlRLpezdevWNDExYUBAAEeOHMmZy9ez0fg0Oo7dRufx+oOf5+Td9Ji8m4PXn+aFBzVrIkePHqWvr68g2GtmZsb69etTKpXqrem8fPmScXFxdHd3Z/PmzWliYsJu3bpx5cqV1Gq1rKqq4s6dO+no6MjevXsLQUMlJSWCcfriiy8YGRlJkUhEHx8fTp8+nQcOHKCJiQnz8vJobGwsGJiNGzcyNTWVISEhegOwkZERp0+fzn79+gkiqps2bRJmU506daJSqRR+tQaqffv2lEgkNDU1pUaj4Y8//siysjJ+8cUXQiDMxx9/TIVCIZzL3t6e3333HR8+fEhTU1OKRCLK5XJu3ryZ27ZtY3R0NCUSCTUajTAzrF3TrFevHhMSEtilSxfa2toyLCyMAwYMED7AqqqqePbsWYaFhdHKyopmZmZ6M7qePXvSxcWFZM1Hkbm5Odu1a0edTsddu3bR1dVVCOz5reEbPHgw1/10h55T6irQ/57RC+81ljY2NmzSpAnbtWtHuVwuzMANDAzo5+fHlJQUOjo6MjY2ts5aXl5eHqOjo+ng4KAnGuzn5ycIzc6YMYOtWrUS2iI9PZ2hoaHs1KkTrays/uiQwI8++oju7u5/6Ng9e/ZQJpPRy8uLRUVF3LlzJ7VaLY8dO/aHz/cX/u/xpzN8ZE2k28mTJ4X/dTodVSpVnZngb+Hq6lpHaX3p0qUcMmSIUE9kZKRgrLZu3cqgoCDqdDqOGjWK9vb2VKlUnDdvHj/44AO9egoKCoRIwqFDh9LQ0JDBwcFcsWKFcMzq1aspk8mEgUqtVrN169bcsGEDv/vuO3br1o2mpqa0s7Nj48aNOWbMGAYFBbFNmzbCoDh//nxaWFgwKSmJlpaWDA8PFyL+Kioq+NNPP3HWrFls2bIljYyM2CAskoHdx1HTfjSden9Jy7hxXLz3ihC9WYuLFy9y8ODBwqxGJBLRxsZGMPBlZWXcvn074+PjaWxsTA8PD5qbmwvrNykpKRw4cKBQ38uXLzl69GhqtVoOGTKEoaGhgqvOysqK6enp3LNnD7VaLS9dukSyZv12zZo17N5df01KLBYL7s3f/tq2bctWrVoxNDSUJPnDDz/QycmJRUVFvHfvHq2trZmUlMQWLVrQ29tbUJyPiYmhnZ0dRSKRoGiuVCrZrFkzWlr+Y93LwsKCly5d4tatW9m7d2+KRCJhTVUsFjM4OJiJiYlMTEykmZkZFy9ezOrqaubn53P58uU0MTGhjY0NFQoFlUolHRwcaGxsTHt7ewYGBgptOWjQIPr4+HDo0KF6z2XkyJF6Lr99+/YJUcFOTk5C0M1v28Xc3JyrVq2iubk5XT/oS68pP9L5k993bzqP+55f77kg9KeMjAy2bNmSEomEVlZWQkTxxx9/TLVazVGjRglrlf369eO9e/eEa62uruaoUaOE/lS79h0XFyesp73pKamurmZwcDDFYjHXrl377hf570hJSeHBgweFj6Dfw4YNGyiVShkWFsZXr14xIyODlpaW/OWXX3637F/4z8Kf0vANHTqUCxYs0NsWEhJCY2Pj90bIhYSE8Oeff9bbtmLFCsEFRtYEHtjY2PDly5esrq5mYGAgv/vuO5aWltLLy4sKhYIajYb9+/d/6zkeP37MCRMmUCQSUSqV6r2QH330keDuU6lUfPToETdu3Mjo6GhaWFgwOTmZU6dOpa2tLf38/CgSidiuXTsmJSXR3NycarWaUqmU0dHR9PX1ZWZmJq2srOpEDNairKyMR44c4bBhwyiXy4UBWy6Xs2PHjjx37hy3bt3KqKgo2tractq0aczLy+Pr16/ZsWNHITy+1sg1bdqUqampwhf79u3bqdFomJ6ezsjISGZmZrKiooJHjhzhpEmT2LBhQ6pUKpqamlIsFlOj0bCqqoqjRo2ir68vc3NzuX79ejo7O7OgoIDLly8Xgkne/Nna2r7V6BkYGHDcuHH09vZm165dhftOTk5mly5dqNPpePDgQUokEvr7+1MsFtPS0pJr1qzhvXv32KFDB8pkMvbu3Zvu7u56BkQsFuudp3bG4+DgwNDQUBoZGXH16tXUaDRcuXIlSfLy5ct0dnbmZ599Rp1Ox9LSUn7wwQeUSqVs27YtY2NjaWJiIgQt2draChGF3t7ejIuLo1qtZlJSEm/evMnq6mpOnjyZlpaWLCkp4eLFi+no6Ci4aWuvLzIykvb29pRIJMLsSqlUCm05YcIEXnjwjP3TfqqJ9Byr7wFwGJNBx7Hb+MGMrYIH4E1UVFSwX79+VKlUNDQ0ZKtWrZiRkcGcnBwOGzaM5ubm7N+/PxMTE6lWqzlmzBjevXuXY8eOpVar5cSJE+ni4iK0b62XYvny5XXO1bp16z/stnzzHnv37s1ff/31ncempKQIqUMVFRXctGkTrays9AKR/sL/f/CnNHzr1q1jfHy83rZBgwZRoVCwoKDgneXatGnDXbt26W1LS0tj37599bb17NmTU6ZMIUnu3r2b3t7erKqq4oULF2hkZERDQ0NGR0e/9xqDgoKEATMhIYF37tyhg4MDHRwcaGtry+joaO7YsUM4/s6dO0xOTqZYLKaDgwONjIy4d+9e9u7dmzKZjFKplEZGRrSwsKBUKmViYiK7dOnCL7744nfb68KFC6xfvz6PHTvGevXq8eOPP6axsbGQl9a0aVMePHiQ5eXl1Ol0/OWXXzhixAhKpVLBCMjlck6bNo3Pnz/Xq/vy5cu0s7OjoaEh27RpQxMTEwYHB3PSpEk8fPgwy8vLefPmTSHPbdq0aSwtLeXs2bPp5OTEa9eucfLkyXR1dRXcdb+d3e3atUsICnpzu5GREdu0aUONRsPPPvtMuKbS0lL6+flx1apV3L9/v1Df9u3buWPHDspkMsrlcgYHB9PLy0uoTyKR0MDAgM7Ozly2bBmVSiVlMhklEgmjoqK4YMEC9urVi6ampjQ1NaVKpRKOcXR0ZFJSEqdPn05HR0d6enrS3NycEomEzs7ONDU1ZceOHYXgocLCQtavX5/Tpk1jWVkZL1y4wA0bNnDQoEGUSqW0srKiSqUSUkFUKhVDQ0MZEhKiZ5CnT59OQ0ND+vj4sKCggHPmzNFrI5VKJaxd7dmzh24+AWw5bDZbfJpO36FLaBk3jsahHRkcEfXWvpObm8uIiAi2a9eO+/btY3BwMDds2MDIyEja2tpy6tSpPHfuHD/55BOq1Wp27tyZERERFIvFDAwMFNJgXr58yb59+wrGTywW08nJSc8D8+rVKxoYGDA8PJwTJkz43X7t4eGh1xZv+xjV6XQcN24cpVIpe/fuzerqaq5du5Y2Nja8ePHi757jL/xn4k9p+G7cuFEnv2fx4sW0trbm4cOH31muV69eTE9P19u2fv36OvlD9+7do1qt5oMHDwT3Z225+fPnUyKRUCKR1MknfBO1AQ2RkZGcNGmSELIvk8k4cOBAzpkzh0lJScLxpaWlbNCgAadOnUozMzNGR0cLkZoNGzakj48PTUxM6ODgQLVaTXd3dwLgggULWFVV9d72+umnnxgWFsaFCxcKLtOEhAQeOnSII0aMoEajoVQqFQy1hYUF+/fvT29vb3733XcMDAwU8t7MzMw4ceJErl+/nkOGDKGrqyuNjY0pl8vp5+fH69ev1zl/eHg4ZTIZ79+/z9jYWHp5efHIkSNcs2YNra2t2a9fP70BrFGjRnrGT6fT0d3dXZjNAOCMGTPYq1cvIeR/69atJGsCHXr27MnvvvtOCKuvdWXWBqyoVCqam5sLrkKxWMxOnTrRz8+PVlZWrKysZFVVFX19fQVDXOsOq6qqolqt5urVq9m4cWMWFRXxm2++oaOjIxUKBaVSqd76oFqtZlhYGDt06EArKyu2aNGC+/fv5+3bt5mbm0sPDw/OmzdPr732799PrVbL7t27CwZfq9X+I2hFKtWbGffp00fvg6RTp07CfUkkEiGBfurUqfTy8uK8efNoZmZGY2Njenl5CUE633zzTZ3rsLa25qxZs1hdXc3z588zICBA2H/p0iUmJyfT3NycsbGxXLJkCd3d3WlgYMCGDRuyZcuWtLW1ZWpqKisqKkjW5M2+mc9pbm4ueGFqP5zy8vJoYWFRZ1nit2jXrp3wwfLBBx+wvLycZM3H7OnTp1ldXc3evXtTKpVy3Lhx1Ol0XLlyJe3t7Zmdnf3euv/Cfzb+lIZPp9NRrVbrhd4fOHCA1tbWXLZs2TvLjRgxoo6LdPPmzezSpUudYydNmiSEVx85coTOzs4sLy9ndXU1TUxMaGBgwCZNmrzVtVpdXc2ePXsyICCAKpWK+/fv565du4SBKiYmhrt27dJbkE9KSmL79u3p6urKNWvWcP78+bS3t6ejo6MQnNGlSxfm5OTwzp07DAsLE1yfWq2Wqampb72W169fc8yYMTQyMqKVlRX9/f2FAJ979+5xzpw5DAgIoIWFBV1cXKhUKhkYGCh8TcfExPDLL79kTEyMYBxrB9QWLVrw8OHDjImJ4bfffstRo0bRzc1NL9ChqqqKIpFIaEudTsdt27bR3t6eAwYM4MiRI/VmKCKRiA4ODty0aZOw7f79+zx58iTnzp0rJG/rdDp27NhRCPP38fFhmzZtBIPwpmEYN24cIyMjKZFI2K1bNwYHBwszRnt7e165coUymYyGhoa8d+8e7927x6ioKAYEBNDMzIympqYMCQkRnm1MTAy7dOlCuVxOU1NTenp6MiEhgfHx8dRoNLSysuKXX37JcePG0dnZmd9++y3Xr1/PTz75hJaWlrSysqKDgwOlUikdHR0pl8sZERHBWbNmce7cuYyJiRHWBGtz9ExNTens7MzLly9z8ODBgrGSy+UMCQmhSqWio6MjY2JihAhZe3t71qtXT3gWzZs3p1wup5mZGUUiEZs2bcrvv/9eaCuFQsEjR46wurqaM2fOpLW1NQ8cOCCUv3LlCr29vev0sadPnzIuLo4GBgY0NzfnlClTOH36dNrZ2TE8PJxBQUH08PBgeno6HRwc+M0337BBgwbCh0wt8xIAWltbkyRnz57N2NjYOud6E7169SIAtmrVSjCsr169okKhoLGxMSMjIymVSoUPiyVLltDR0fF3Depf+M/Hn9LwkWTbtm25bds24f9Hjx5RqVQyOTn5nWVmzJhRh9IoIyODH330UZ1ji4uLaW1tzTNnzpCsWXuoNaoODg5UKpWUSqXCTKOWcmrLli160Ydv+3Xv3p1qtZoKhYKHDh1iRkYGnZ2dGRYWxokTJ3LWrFl0dnamq6srAwMD6enpyR07dnDUqFHUarVs1KgRlUolb9++zcuXL7NTp040NDSkkZERhw0bxsuXL/PWrVscO3YsNRoNGzZsyNDQUKamprJnz55C+oFareagQYN46NAhYdZ4584djhs3jsbGxpTJZPTx8RFcrbWuwNo1woEDB9LMzIxSqVQYTNauXUuNRiNQtU2aNIkAhK/xWrx48YJ9+vR559rdzZs3eeDAAYrFYrZq35GDF23lB59tpF/yMjp3+4zWzXtTaqymi4sLAdDFxYXBwcGCe7Z2bbI2CX3IkCGCW9PNzY3Tp0+nWCzmli1bmJaWRgBs2LAhN27cSK1Wy9mzZ7OyspIBAQGUSqUUiURs2bKlQEvn7OzMuLg4vUji48eP09TUlMbGxly+fDl1Oh1XrVpFKysrgXigpKSEH3zwgcDwcuPGDaanp9PY2JharZYymYxGRkZ6ifQA6Ofnx7lz57LJ/8fed0dFkW3vfh1puhsaaKBtMpJBQEQERMGAIMoYEBXMOWIcMzMGMI6Y44xiQB11TCCGETGAARPmiCAoQcFAppvU+/3Bpa49oDP3935rvTd3/NbqBXXq1Kmqc6rqO3ufHTp2JADk5+dHHz58YKSZ+vp6yszMpICAALKzsyM7OzvS0dEhDQ0NcnBwoM6dOzNh5aysrEgqlZJSqaQFCxYwa7mNk4HAwEDy8fFp4qP68uVLsrKyUitLSkoiGxsb6tOnD+Xk5NDt27dp9OjRpKOjQ/3796dZs2aRpaUlOTk5kVgsJgMDA7pw4QLV1tbS3Llz1fwjG3+vXr1i3Iu+5lf33XffkZ6eHkN6RA3LIJ9HspibHbIAACAASURBVGmc6MbExJClpeVXtTTf8PfBP5b4oqKiaM6cOcy2SqUibW3tZsOSNWLr1q00fvx4tbKTJ08yjut/xPbt28nPz49UKhXduXOHjIyMqLy8nPh8Pu3du5cEAgGJxWKSy+XEYrEoJyeHXr9+/afEB4DmzZtH1tbWTHizDh06UGhoKC1cuJDMzc1JX1+frKysKDg4WE2NVV1dTX369CFzc3PS1dWlsWPHUlpaGpWXlzPrQ1wulzgcDnXo0IEuXbpEu3btIk9PT7KzsyM+n09hYWF08uRJNTKqrKyks2fP0owZM8jR0ZGEQiFJpVLGAOPnn3+mzMxM2rRpE8lkMmKz2cTlcsnJyYmkUilpa2tTREQE5ebm0o0bN8jY2Jiio6NJLBaTnZ1ds/2bn59PAQEBjBTZOPsXCATUqlUrcuwYRIYhkWQ26ziZfn9MzSDDNvI0mc+Jpw7z40hs7kRVVVWkr6/fpJ8tLCwYycLNzY3Wr19PMpmMpFIpsx7HZrNpypQpjLXlwYMHaf369dSnTx8SiUTE4XCIz+eTk5MT5efnU1FREUkkEnr69Cnp6+uTUqmkEydOMA7QGRkZ5OTkRKNHjyaFQsGoLuPi4oioweioX79+5O/vT7/99hv5+PgwYbsa/QUnTZpEc+fOZUhp7ty5JBQKmXU7gUDAhGsDQBERETR48GAyNzenhw8f0tu3b0lPT4/u3r1L4eHhJBaLmckLj8cjPp9Pbdu2VTMccnR0JENDQ5o5c6YamTTi9evXZGpqyozdwIEDycLCotlIJ8XFxbRp0yZydHQkOzs78vPzIy6XS6ampiSTySggIIDu3r2rJtk3/kaMGEFERAkJCeTg4EC1tbX0vlxJ2y5n0rRDd2nknls07dBd6vH9Wjp3+Zraef/o02hra0tLly4lGxubr0Z2+oa/F/6xxJeUlES+vr5qZZ6eniSVSr94zOHDh6lfv35qZWfPnm3imtCI2tpacnJyYqSXkJAQ+vHHH8nQ0JCIiGxsbNRessZZ/YoVK9Rm0Z+vV7FYLBo0aBDzwWk0pmg0UJDL5YyPWaPT+uf49OkT6enpUU5ODuXn59OKFSvIysqKDA0NSSqVkq2tLbVt25YMDAzUpBWJREIBAQFMdAuVSkUPHz6k1atXU7du3UgsFlOHDh0oOjqabt26RRMmTKD169eTSqWi5ORk6tWrF+nr69OcOXMoKyuLFi5cyJCCnZ0dGRkZMR/XTp060YkTJ6hVq1YEgFGXqVQqKioqotTUVNq+fTvNmDGDgoKCyMzMjDF5b3T8N/YLI5vIU2Q+L/HrfmdzTpLZ98do+uZjX5xk2NnZkb6+Pr19+5YKCgoY9WRJSQnxeDzS1tYmXV1dhtAbfe9+/fVXysnJIUNDQ9LR0SE2m82o1z09PenChQvUpUsXGj16NMnlcrVIPOXl5RQaGkrt2rWj3NxcevLkCVlaWtLChQupurqaYmNjSSKRkEAgYNYaDQwMSEtLi2JjY6lbt27k4+NDv/76K/Pc2NnZkUwmo+LiYqqvr6f8/Hy6evUqGRsbk7a2NqP2NDExIT6fTyKRiNhsNtna2lLnzp2Jw+GQu7s7OTg4UHJyMl2/fp1Wr15N48ePZ9SdjZFoIiIiaPv27XTt2jVm4vX27VuSyWS0fv160tfXp8jISKqsrPzKW9ow5vHx8cwksdGtxMDAoFnfw8afQqEglUpF3y/fSKN33yDbf/meNuePOm7fbbr/ppju3bunJrkOHDiQwsPDycHBgYmx+w3/HfjHEl9JSQmJRCK1memECROIz+c3sTxsxIULF6hTp05qZcnJydS5c+cvnufs2bNkY2ND1dXV9OTJE9LR0SE3NzfGgODzX+OMvqamhvEF43A4arNqLy8vKi8vVyNGANSzZ0/G4o3H4zWJxt+I6OhoZr2s0fdOIpGQv78/9ejRg8RiMbNuJBQKycrKir777jtG2mvRogV5e3uTTCajli1b0sSJE+nEiRNMYOVGeHp6qoXdIiLKysqimTNnkp6eHoWEhNBPP/3EfCwjIiLoyZMntGbNGsZgovHeRCIROTs7k56eHuno6JC3tzcZGxtT69at6fjx45SRkUG1tbWUnZ1NQUFBZBM0qiHyzH/gdG36/VESuwU1GROhUEhlZWX0ww8/UNeuXcnNzY0mTZpEjo6OampRNzc3OnDgAHXq1KlJBKBVq1aRVCplLDOJGmK8zpw5k/r27UuampqUmZnZZKxUKhWtXLmS5HI5paamUlZWFpmbmzPxVxslVE1NTSaCzObNm4nNZlN4eDh9+PCBHB0dmQ+5tbV1E+MsooZQdwAYbUZeXh717t2bUcnPmjWLUVPb2toSi8UisVhMzs7OFBwcTPb29kzA88uXL1NiYiKtXbuWRo0apbZ+6OHhwQQdOHHihFoQiS9BpVJRcHAwLViwgIqKiuinn34iKysrsra2ppYtW36R+IqKimhfWvZf8j+0mH+K7H88SwMjN5NQKKSjR49SfX09zZkzh1xcXL5q6f0Nf0/8Y4mPiMjJyYlZgyNqcEbX19dXc27/HPfv3ydnZ2e1si9lbfgcgYGBtGHDBiIi8vX1JQcHByZe5+cv6+frh8ePHycNDQ3q0aMH9e7dmyHBqqoqunv3brNrG1paWmRqakoRERGkr69PgwcPVrM+q6ysJENDQ1q7di35+vqSkZERLV68mE6fPk3Tp08nuVxOLi4uNGDAAPLw8CBDQ0Nq27YtEzaKzWaTpaUltW7dmsRiMQUHB9OBAweapM2pra1lCKM5lJeX05YtW0gul5NAICAjIyPG0KPRL+1zsm+0rpTL5TRu3DjGkVggEJCXlxcTUV+lUlHMriNfJD2jcT8TODwSOXVq/iM46xjxW1g36dctW7Yw1rgcDoesra2ZNEN2dnaUmJhIMpmMCgoKGPVlY8QZogYpWygUMhaLJSUllJaWRjo6OtSmTRuSSqXNEl8jDh8+TCKRiEQiEbVs2ZKZ9AQGBtLr169p8eLFZG1tTePHjydjY2PauHEjaWtrE4/HYyZQM2bMIB6PxwRS/3wsnJ2dKSAggLhcLq1atYrJbKFQKGjcuHEkEokYI519+/ZRnz59qLi4mI4fP06mpqbk7u5OgwYNIgBkY2PDqFG9vb1p0KBBNHPmTIYAG42sHB0dGf/D/v37U1RUFB0/fpxevnypZmW8c+dOcnNzU1Or19fXU1JSEpmYmDQZKyMjIzp48OC/SO8/izhjPusYrUu8QyqViqZOnUpt2rRhfE6/4b8L/6hEtH+El5cXbt68yWw7OTmBxWLh6dPms7FLpdImyWh5PB5qa2u/ep6YmBgsXboUxcXF8PHxQXZ2NiIjI5GVlYWOHTsy9c6ePQsA+FBRjUI9F0zYmwbZgMWobhMGiVc/9A0bCk1NTaSmpjZ7zqqqKjx48ACbNm1CVlYWHBwc4Ovri0GDBiE1NRWhoaEoKytDfHw8evfujREjRmDfvn2YNm0atLW1ceHCBRw9ehS+vr5o0aIFKisrkZeXx2R4Z7FY6NixI27duoX8/HwMGDAA+/fvh7GxMcLCwpCQkIDq6mo8e/YMpqam0NLSAhGhsLAQKSkp2L59O5MBfdWqVSgsLIRQKIRKpUJdXR0qKiqQl5eH2NhYBAUFgcVi4ePHj1iwYAG0tLTw8eNHvHr1Clu3bkVNTQ2USiVu3boFOzs73L59G71798a2lCyweRrNjsOnpO3QkNt8cZxYXD4GLduLzZs3Qy6XQywWAwCWLVuG3bt3w8LCAhKJBNbW1sjNzUVYWBg+fvwIExMTjB07FqNGjYK9vT0GDx6MhQsXMu3q6upi6NChKCgogKamJqZOnYqlS5eiqqoKe/fuxbBhwxAbG9vkel6/bkhmO27cOEgkElRWVuLNmzeYNGkSZs+ejczMTCgUCgwdOhQ1NTWIi4vD4cOHkZKSgrKyMnA4HBw+fBgAEBcXhx9++AG9evXCx48fATRkDB8+fDg8PDwQExMDNpuN6OhopKSkICoqCk+ePEF8fDyICDU1NfDz88PFixfh7++PpKQkjBs3Dj/++CNu376NAwcOQCgUYurUqaisrER6ejpWrlwJTU1N/PzzzygvL4ezszNUKhXznLRv3x6Ojo5gs9lIT0/H2rVr0blzZ2hpacHDwwOhoaGYNm0aJkyYgI8fPzKZ1tlsNrp164a3b9826bOioiK8qWBh2ZnnUNSqmHKqq8WHMxuQt3Uk3qztj4JdU6DIuqN+MFcDP98qwqCIebh58yYuXLjw1US43/D3BYsan6Z/IHbu3InU1FTExcUBAD58+AATExNEREQgJiamSX2FQgEdHR0olUqGDO7cuYPx48cjPT39q+caP348xGIx6uvrcfv2bbRv3x6rV68GANy4cQM9evTA7JWbka1pi5SM9wCA6rrPX9xqcDhcdGtlBDxJwi8rI5s9z7Jly7BgwYKGY4iQnJyMWbNm4dGjR2Cz2QgMDERBQQEKCwsRFhaGXr164dOnT0hKSkJSUhKqq6sREBCAwMBA+Pv7Q19fHzNnzkRpaSmOHTuGiooKiEQiREZGYtasWWCz2fjw4QMOHz6MvXv34tmzZ9DX14dSqYSFhQWeP38ONpsNBwcH2Nvbw97eHg4ODrC2toaPjw/u3bsHU1NTvHz5Ej/++CN+++03cDgcqFQqtG7dmunX8vJyLF26FGvWrIFYLGY+7BwOB9XV1dDW1kZwaDhuG/VGzWf91ojKpymoykgDT2qKupK30P9uVrP9R3U1+LR7Elo7WGPixInYvXs3kpOTIZfLceHCBfTp0wcZGRkYPnw49uzZg0OHDmHBggVIS0tDcHAwRowYgUGDBsHe3h5JSUlwdXUFALx8+RKurq6wt7fH/fv3ER4eDg6HAy8vL3Tq1An+/v548+YNuFwuHj16hFWrViExMRECgQBFRUUwMzPDvHnzkJKSgqysLBw/fhznz5/HjBkzAABLlixBSUkJoqOjwefzkZiYiNraWowYMQJFRUWIiIjApk2bMHv2bNy5cwfnzp3DihUr8Pvvv8PPzw+xsbGYPHkyoqKiEBcXB1NTU/Tv3x+//PIL9u3bh6SkJCxatAgbN25Ep06dcPXqVRw9ehRt2rRh+q5t27bQ0dFBcnIyHj16hIkTJ6Kmpgbbtm2Du7s7iAhsNhsKhQJv3rxBdnY2Xr16pfY3OzsbdXV1MDQ0xLt37yCRSCAUClFYWAg2mw1nZ2emH6dMmQKgYULWrVs3yGQy9OrVC0cL9XAzX4HPv2yqGiXKbh6D2NkfHIkBFFl38OHkahiN2gyujuyzB0AFzY8vcWvtWGhpaX35hf6GvzX+0cT3+PFjhISEICMjgynT1dWFm5sbLl682OwxIpEIhYWFjDTw4MEDDB06FA8fPvzquQoLC+Ho6Ah3d3eEhoZi/vz5ePToEYyMjAAA+2/kYNmZ51DW1eNrI8JiAQIuB+7s1ziwZAJTzmazYWpqCjMzM8THx+PEiRPYsmULSkpK4O7ujvT0dLx+/Rp8Ph+Ojo7w9PTEw4cP8eDBA7Rv354hu0ap93NMnDgRzs7O2LRpEzZs2IBt27bh1KlTAAALCwuw2Wy8efMGcrkc5ubmyMjIgEKhAIvFQt++fTFy5Eh4e3uDzf63guHixYuYO3cubt++rXau3NxcdOjQAW/evAGfz0d0dDSmTp0KgUDA9KOVlRUqKythamqKuXPnIj4+HnZ2dmjVfzrWJb9UmzAAgKq6Cm/3TIcsfDkqHpz7KvHxOUDplQP4deFoLFmyBDdu3EBtbS1YLBbEYjFqamqgra2Nnj17Yvfu3QCA77//Hk+ePMG6devQsWNHpKamIjU1FYcPH8bFixeZ/uzYsSOuXbsGDoeD6dOnw8PDA3FxcTh16hR8fHzQs2dPXL16FdeuXQMAlJWVwcPDAxs2bIC3tzeAhsnMmjVrEBMTA3d3dzx48ABVVVXw8fHBmTNnYGtriw8fPiA+Ph4+Pj5Yvnw5IiMjkZCQgF69eqG+vh59+/aFQqHA/fv3oaWlhbZt22LDhg2Qy+WYMGECdu/eDW1tbRw6dAhdu3bFpEmTsH37dkRHRyMqKgoBAQGIi4uDrq6uWt/98MMP2Lp1K0aNGoW4uDhERUVh7Nix4HA4/+5fPh8VFRXg8/lffMZLSkqwaNEiJCcnY8SIEQwhvnz5Erm5udDQaJDoy8vL1Y7z9PTEqeQU+Ky62OQZaA4FsRGQ+IRDZO/zh2eAjbR5XSAVN685+Ia/P/7RxFdfXw89PT28evWKUWl4e3sjOzsb7969a/YYMzMzpKamwsLCAgDw9OlT9OvXD8+ePfvT8y1fvhyrV6/GuXPncOTIEVRWVmLr1q3/Ir1naqqZP4Mmjw2TD3fQWlSGtLQ0DB06FEuXLkV+fj5EIhGsrKzA5/Px4sUL+Pr64urVq3B2dsbjx4/B5/NRXl4Od3d3rFmzBh4eHmptExHevXuH58+f49mzZ9i0aRM4HA6ePXsGPp8POzs7Rt137949sNlseHl5YeLEiejduzf8/f0RHR0NExMTHD58GAcPHkRFRQXCwsIQHh4OV1dXTJkyBUZGRox0+jnMzc3x/v17EBFqa2shEokwdepUTJw4EUZGRujevTvOnTsHoIHwNTQ0kJiYiMQPeoi/X9CkvU/nfwZHSwqJVyhKrhz4KvEBQOWTi/iQuFatjM1mQ6VSgcViwcbGBjk5OZDJZNDV1QWLxUJWVhbEYjE0NDTw/v17ODo64unTpzA1NYWBgQGqqqrw8OFD1NfXQyKRoKysDB07dmTG5cWLF1AqlUz/Gxsbw83NDUKhEGw2G2w2GywWCxwOByUlJbhw4QKUSiVcXFzw8uVLVFRUwMzMDL1790ZeXh5+//139OjRA6mpqXj//j2EQiFGjhwJAwMDZGVlYd++feDz+Rg0aBBatWrFSM+3b9/Gvn37YGFhgcjISHA4HERFReH169dgs9kwMzPDypUrwePxwGazmeNYLBbOnDmDTZs2oWvXrpg+fTr09fXB4XDAZrPB5XLB4XDQrl07XL16FRKJpMm+xt/z58/Rq1cvXLt2DVZWVsy9Aw3q2bdv38LPzw9ZWVlqYySVSrH02E2sS874U+KrryxG3tZRMBq1ETypqdo+AZeNGd1sMd7X6qttfMPfF/9o4gMAf39/zJgxAz179gQARERE4Oeff0ZpaSmEQmGT+m3atMGOHTvg7u4OoEGFFRQUhMzMzD89l0KhgFgsxrFjx9ChQwfY29sj7nQKvj+dC0VtvVrddwfmobrgBVjshtkyR0sK43E/q9XR5HFwcIwnNiyaiX379qG+vqENNpsNd3d3SKVSZGdnIz8/H3w+H6tXr0ZgYCCMjY1RWVmJzZs3IyYmBjY2NvDw8EBpaSmeP3+O58+fg8fjMerJmzdvomfPnlizZg0+fvzISLsA8O7dO8yZMweJiYkwMjJCYWEhysrKkJycDF9fXwANH/JHjx7h4MGDOHToEDQ0NPD27VscOnQIQUFBqK2tRUlJCUpKSpCbm4uuXbti2LBhMDc3x+bNm1FRUQGhUIiqqipIpVJUVVWhrKxMrS/09PRg2H8hFLrWauU1ha/wITEG8pEbwOLw/hLxcQuf4fW++airqwPQoEqztLTEq1evwOFw4OPjAz6fjytXrsDPzw9CoRAKhQIpKSlwcHBAXl4exGIx9PT08OTJE9ja2uLZs2ewsrJCTk4OVCoVampqoKenh+LiYrBYLKhUDR9qqVQKY2Njpt9UKhXzV6VSoaSkBB8/foRUKkVdXR0+ffoEFosFQ0NDFBcXg8PhQFdXF9XV1fj06RM4HA7q6uqgqamJ6upqaGhoQKFQMOpkkUgELpcLIkJ1dTWqq6vB5/NRXV0NgUAAFosFhULx777hcpn6jZ8OIkJdXR2zzWKxGOn+88/L58ewWCz8b3962Gw23CM2okho8dV6VF+Hot8Wgasrh7R7RLN1+rY2xrqBrf9Xr+8b/v/BP9q4BWgwcLlx4waz7eLiAi0tLbx48aLZ+lKplDEOAP6accvn4HA4WLZsGfT09DBlyhT8ePAqlHX1zdbVC5gAs++Pwuz7o01IDwCUtfXoE7kVcXFxDOkBYD6iHTp0QFxcHKysrDBv3jzweDxs2bIFISEh8PDwwKJFiyAWi1FSUoLY2Fg8fPgQEyZMQGZmJt6/f4/U1FT88ssvMDY2ZqRCkUikdg0tWrTA3r17ER8fD01NTYhEIvB4PPTv3x/m5ubo168f5s6di9jYWBQUFKBVq1ZQqVSorKxEcHAwOBwONDQ0YGNjg6CgIISEhABoMNR59+4dhg0bBicnJyiVSujp6cHX15e5Pw6HAz6fD7lcjhEjRsDazKRpH715hLrSQuRtHYncTUNQdusEql5cx9vd0744Rt38OkBHRwd8Ph8aGhrg8XjIzs7Gxo0boa2tjefPn2PChAlYtmwZysvLceTIEfz+++9ISUlBXl4e4uPjoVQqsWbNGri4uCAzMxNJSUl49uwZNmzYAKCBQD59+gQigkgkwv79+zFx4kRMnToVDx48wIMHD/Dw4UM8fvwYT548wbVr1+Do6AgTExM8ePAAbm5uKC4uxsSJExEeHg4jIyM8fPgQvXr1grm5OS5dugRtbW3o6uqCw+Fg06ZNsLGxgVKpRGhoKOrq6nDt2jXGWGrOnDkwMjJCZmYmlEol+vbtCx6Ph1atWoHH42HmzJkQCATo378/FAoFlEolSktLERkZCW1tbaxcuRLV1dVwdXVF9+7dUVdXh7q6OtTX1zM/lUoFmUyGt2/fMoT+x9/cuXPRp08ftf319fWora2FUqlERUUFoqOjm6jj2Ww2unTpAsfWbb84rgBApMKHU2sADhd63SZ8sV6Z8q+/09/w9wP3//UF/L+Gt7c31q9fz2x/btnp5ubWpP4fLTv/E+LLy8uDqWmDWuXgwYMYNm4ydq29Atb/cOJLAFhGzuCJdVFd9lFtn1AoxKVLl7Bu3Tp8+vQJAODo6Ah7e3uEhYXBwcEBNjY2zNpZaWkpNm7ciLlz52LPnj0YMGAApFIpSkpK8Pz5c8TFxYHD4SAsLAzFxcUoKSlh/paUlIDP50MikUCpVEKpVEJHRwdmZmZ4/PgxTp8+DXt7e3Tt2hW9evXCsWPH4Ovri8jISDx69AgJCQmIj4+HXC5HdnY2/Pz8cOTIEbX7+fXXXzFu3DicOXOGaYPP54PNZmPIkCG4fv06qltqQMOsA6rr/92h4taBEDn4Mttlt46jrrQQeoGTm+1TVn0tjsZugFAoxMOHD5GXlwcvLy/MnDkTU6ZMwZEjRxAWFoYpU6Zg6dKl0NLSwpIlSxAdHY127dph+fLlGDNmDDZs2MCQB4/Hg56eHn788UesXbsWNTU1zPnGjRuH5ORkDBo0CI6OjujTpw+jYmzElStXMGTIEISEhGDatGnw8WlYk7p+/Tq8vLxARFi/fj38/Pywf/9+XL58Ge3bt8egQYMQEREBFxcXTJo0CW3atIGtrS0ePXqEwsJCeHt7Y+3atejQoQOMjIxw5coVZs155syZiI+PR05ODqRSKaysrNCyZUskJSUhKysLr169wuTJk+Hk5IT09HSYm5sDALp164a9e/d+8Znl8/lq9/85rl69ir179zLrljk5OcwvOzub+f/u3bvqY8ZigcvlonPnznhcUfLFcxMRPp7ZiPrKEhj2XwwW58ufP20B74v7vuHvj3888Xl6euLWrVuor68Hh8OBk5MTKioqvujSoK+v/z+W+N68eQMzMzNERUVhyJAhmBXrDi6Xi+blPaDk8l6UXN4Lnp4xdHyHQmDu0qQOl8uBfY8ReHBoDVPG4XDA5XIZ14mAgADY2tqiuLgYWVlZuHPnjhpxFRcXQ6lUQiKRQCKRICsrCzNmzIBUKoWXlxcUCgUEAgG0tbXRt29f6OjoQFdXl/krkUgYg4OZM2dCR0cHNTU12L59O2bMmIHRo0cjPj4eu3btwqFDh6BUKrFz505YWlrC0tISvXr1wrZt2zBz5kxcvXoV9+7dQ/fu3REWFoa+fftCIpFg0KBBaNeuHb777jskJCSgb9++uHPnDtasWYOzZ8/i8ePHkJUpoWzRDizOvz9abJ4A4AmYbRZPABaXD45Q0myf1xPh050zaO3TDr///jtmzJgBT09PxsrXx8cH79+/x6VLlxAQEIAxY8Zg69at8Pf3h5+fH8aMGYObN28iMjISRARXV1e8f/8ebm5ujAqwVatWyMjIQKdOnZCQkAAul4uMjAy4ublBX18fycnJCAwMRH19PZYtW4atW7ciNjYWv//+O7p06YLAwEAkJCQwBiIsFgszZsyAq6srBg8ejD59+oDP5+PIkSNITk4Gm80Gj8dDZmYmXr58ifXr16Nbt264cOECUlJSIBaLoa2tDT09PRARtm3bhsWLF2POnDlYtWoVeDweioqKEBgYCBaLBX9/fwDApk2bEBwcrNZ/I0eORExMDGpqapo1YGkkPoVCgdevXzOk9uLFC+zcuRNyuRytWrVCeXk5zM3NYWlpCQsLC1hYWKBdu3a4desWIw07Ojoy7dbU1CAyMhLm3UeD16Yvmlsu/3RuC2o/5kIWtvSLLi9AwxqfvfybRed/M/7xxKevrw9DQ0M8f/4cTk5O0NHRgVgsxp07d5qt/3+j6mwkvo4dO6Jt27ZISLmNeug1W1e380jwpKZgcXiofJaKomPRkI/cCJ6uXK1erQooqlGfndbX1+PZs2dQKpUoLCyErq4uVCoVLCwsGLL6nLh0dHSgpaWlpj5SKBTYsWMHVq1ahYqKCjg6OiI7OxthYWFfvce7d+8iMjIS3bp1w+jRozFr1izExsYiJiYGN2/eREJCAoYNG4Zx48Zhw4YNGDlyJEJDQyESifDbb7/ByMgIGRkZSExMxKFDhzBt2jR07doV4eHhCA4Oxv379zFjxgzs3bsXCoUCJiYm2LZts/U1GgAAIABJREFUG5YvX47Y2FisvX0fPAt3sNjNa/F1Og7+4rWTSgVF1m2oFGUoKSnBpEmToFQqYWNjg9TUVHTs2BEODg5ISkqCnZ0drly5An9/f/j7+2Po0KG4f/8+xGIxKioqkJ+fD7lcjvPnzwNoIKeRI0di+/btKC0thZGREUxMTJCcnIyuXbvizJkzsLOzw9ixY7Fjxw44OTlhyJAhYLPZSExMxIABA1BQUIB9+/Zh8ODm76FLly5ITU2Fs7MzpFIpFAoFPnz4AC6XC5VKBalUiqioKMTExKC8vBx2dnZwcXHBs2fPMHr0aIwaNQoAGNWqtbU1YmJiQES4fPky7OzscPToUSgUCty8eRPOzs5NrsHR0RF8Ph8HDhxAhw4d1CS17OxsFBQUwNvbG+Xl5TAzM2NI7f79+/Dw8MDy5cthaWkJQ0NDNSvgRkycOBGdO3fGvHnz/j1uRGCxWODz+XDTqcETFgsN+pB/o660CBX3fwc4PORtGsqU63WfDLFTZ/XnAEBom6Zq82/478E/3rgFAIYOHYpOnTph9OjRABpm9W/evEFubm6Tuhs3bkRGRgY2b94MAKioqIBMJkNlZeWfnmfJkiWoq6tDdHQ0MjMz0WnhIXDNm6pTm0Ph4YXQtPKAdtvvmuzr0FKCFd3NYWtrC1tbWzx+/BguLi4wNTVFYGAgJk9uXq33V6BUKmFsbAyVSgUej4fTp083sQJthEqlgq6urpqVLNDgujBt2jQYGhoyDsurV6/GqVOnsGvXLly7dg3du3fHoUOHcPjwYQwYMIA5tri4GCdOnMDBgwdx+/ZtBAcHIzw8nFmrEgqF2LJlC0aMGIFffvkF06LWQha+HOD+56boqlolCg/MQ827fxsq6evrY86cOdi7dy+qqqrQunVrqFQqxMfHA2hwrwgICACXy4WRkREKCgqQlZWF8vJyhmxqa2uxePFiHDp0CGlpaWCz2QgPD8fJkyfh4eGBZ8+ewcXFBefPn0dZWRmMjIygqamJ6dOnQ1tbGzNnzoStrS0uX74MAwODr97D8OHDcfjwYZiYmEBTUxPz58/H4MGD0apVK1y6dAnfffcd7OzsUFBQgMzMTLRo0QLnz5/Hixcv4OPjAycnJ1y5cgWamprIyMiAh4cHKioqoFKp4Ovri59//hmHDx9GVlYWFi1a1Kwq8ubNm6ivr2ektc+ltiVLlmDLli3w9/dniO3UqVOYOnUq7t+/D21t7Sb3VFdXhz179mDFihV49eoVAMDW1hZcLhdPnz4Fi8VCeHg4YmJiIJfLMW7fHZx/VvhVt6AvgcUCAh1l2D7k62uF3/D3xj/euAVoauDStm1bvHv3rtm1iP8bVWdubi6zxmdtbQ1LkxZ//SKbmcU24vzpBJiZmUGpVOLhw4dQqVSQSCS4desWM4v/n0IgEIDNZiMqKgpmZmYICQlBjx491CLeNCIrKws6OjpNol106dIF9+7dQ79+/bB9+3a8fv0a5eXlCAkJwalTp/DkyROkpaUBABYtWoTVq1cz7iS6uroYNWoUzp8/j+fPn8PLywvLly/H+PHjIRQKoa+vj8mTJ8PCwgITJ07EyF5dEBXiBi7+umsI0ODgTOnH4GElUysvKyuDg4MDHj16hCNHjuDjx484d+4cfH19ERsbC4FAgIsXL6K4uBinTp3C3bt3UVpaivbt22PXrl3gcrkYP348EhISAAD79+8HACxevBh1dXXo1q0bioqKcO3aNXz8+BE//vgjAKBv3744e/Yspk+fjnnz5uHJkydfJb2CggIEBQVh//792LlzJ16+fIlhw4Zh+PDh0NTURHFxMSZPnoy4uDjEx8cjIyMDDx8+hL29PTw9PREQEIDo6GgUFhbi7NmzqKurw8GDB9WCNejq6mLcuHHYsWMH9u3bBz8/PyxduhRXr14Fj8dDQEAAli9fjsGDB0MmkyErKwsXLlzAzp078cMPP2DIkCGMhqGR9D58+IBx48Zhz549aqT36dMnLFy4EA4ODtDQ0EBERATevHkDZ2dnzJw5E58+fYJUKoVAIMDp06dx4MAByOUN2pCellyoaqv/o/FvhIDLwaRO1n9e8Rv+1vhGfGggvsYPLwC4urpCU1OzWReFL6k6/4rg3KjqbERIFy9QXVNyVSkroHiVDqqrAanqUfHkEqpzH0OzpXuTunwOYCdruh6RkpKCoqIimJiYwMPDA9OnT8etW7cYi8j/BFVVVaitrYWHhwcyMzMRHByM0NBQBAUFqU0Y7t69y7h5/BFcLhc9evSARCKBsbExHBwcsHnzZtTV1cHIyAi5ubkYOHAgdu7ciefPn8PBwQG9e/dGfHw8M7Fo0aIFIiIicO3aNdy5cwc2Njaoq6tDVVUVXr9+DW1tbUyePBmigruoTz8KAZcN0J/cr0oFVa0SiusHUPvsoloYLBaLhfr6egwfPhz9+/eHkZERzM3NsXbtWnz//fdITExEixYt0KJFC2RnZwNosC5MSUnBlStXMHLkSMybNw/nz59HXV0dPDw8MH/+fDU1486dO9G2bYN04eHhgby8PERGRjL9cO/ePURHR3/l8lXYtm0bXF1dkZOTg/nz52PIkCEAgFu3bsHf3x/V1dUwMTFBbW0tWrdujb59+8LFxQU9e/bEhw8fkJmZCZFIhIcPH0Imk6F///4QCARYvHgxampq0LJlS4hEIly/fh1RUVG4evUqFi1ahK5du+LSpUvYvXs3Fi1ahGHDhsHX1xfTpk1DYWEh4w7yOT43biEiTJgwAYMHD4avry9evHiBsWPHwsjICFKpFBs3boStrS3OnDmDiRMnoq6uDvn5+WCz2UhLS0NqairKy8sRFBTEtH/79m2EdfNG2eU90OCympz/a9DksRHZwx4uJjr/0XHf8PfDN+JDgwtDTk4OSktLATRYdrLZ7GYNXP5o1dnoXPtXCOWPxDe0gw243KbLrKSqR0nqfuRuHIzcDYNQnn4KBiE/gKdn3KRudXUN0g6sa7IeIhAIEB4eDrlcjoyMDGzatAmenp7gcDjg8XgwMDCAp6cnZs+ejXv37n3xmlUqFRQKBaqqqqCjowMNDQ1MmjQJmZmZ6N27NwYOHIjAwEBcv34d6enpXyQ+AEyM0C1btuDixYs4ceIEWrdujeHDh0OlUmH37t3w8fFBbGwscnNz0adPH6xZswYmJiaYNWuW2nhYWFigZ8+eKCwshEQiQXBwMEpLS+Hs7IxBgwZh6fAA/DbeG4Gt5OBABapTlwBIVd9AimVv0YX3Eu30qkFEjCqNw+Hg/PnzyMjIQNu2bXHhwgXY29vj5MmTaNu2La5evYqzZ89CqVSirq4OEokELVq0gFQqRVBQEGNJO23aNDg4OEAmk+Hw4cNwc3PDihUrADSEl8vPz4erqysUCgUkEgnEYjETm/TIkSNwcWlq0NSIJ0+eoGPHjti/fz+WLl3KGHgAQFRUFF69eoU5c+ZAT08PDx48wMmTJ8Hj8bB//36cPXsWV65cwdmzZxEYGAiBQIAnT55gzJgxMDc3B5vNhkwmg7W1NUQiEQ4ePIhPnz4hLS0NFhYWmDFjBs6cOaMW9agRbm5u4HK5jJT7OT4nvv379yM9PR1PnjyBRCKBvb09zpw5g+DgYMaf1MPDA2PHjsWWLVvg7u6O/Px8rF69GtbWDVJZ4/vz8eNHTJo0Ce3atYNSqUT1k2T82NOxgfz+5N1ksRp8YiN7OGCIl8VX637Dfwe+rfH9C76+vli4cCH8/f1RXl4OqVSKyMhILFq0SK1eTk4O/Pz88Pr1a6ZMQ0MDpaWljGtAc2j01yosLFSLATh27y2cf1oIfMEY46sgFQIcW+BGzGg8evRIbVejRd7nqKmpwZkzZ3D8+HHcuXMHeXl5qKysZEiby+VCV1cXNjY28PX1xeDBg9GyZUtIpVJMmTKFWe/6Y5t79uzBsmXLUFFRgfnz52PWrOadw/38/DB79mzGEpCIkJCQgJCQEMZ9oGXLlk2Oy8jIwJ49e7B3716Ymppi1KhRKC8vx9y5c8FisXD8+HHcunULEyZMgL29PaqqqqChoQELCwsMGTIEVj7BiLmYjSIlCwBLzfBFVVsNLpeLdiYicF5cwPGd61BTU4MePXrg4MGDEAqF6NGjB6MRKC8vZ6R7Q0NDKJVK7Nu3D7169cLTp0+xa9curFu3DhwOB0uXLsWoUaOgqakJb29vuLm5IS0tDR8+fMCdO3cglUrRokULsNlsaGlpobCwEBoaGjh8+DCys7Nx584dRjX6OZRKJaKjo7F9+3aMHj0aDg4OmDVrFjw8PKBSqfD48WO8ffsWhoaGaNmyJR4/fgyFQgFTU1OwWCy0bdsWR48exahRo6ChoYG0tDT8+uuvCAoKwtu3b7F27Vrk5eVh5cqVGDx4ME6ePIkPHz7gp59+wuLFi5Gbm4sWLVpg6dKlePHiBfbt29fkGhsl2j+6pQQGBsLBwQGpqam4d+8eWCwW7OzsEBYWhmnTpkEikSAlJQVbt27F+fPnMWDAAFhbW2PevHkoKipqNmh0aWkp9PX11STM0aNHIzIyEl1CR6Bl8ETkqSRgAVB+FtFFwGWDAHS2M8CkTtbfJL1/EL4R378wZ84caGtr44cffgDQsJbn5eXFxKRsRHl5OeRyOSoqKpgysViMt2/ffjWo7cePH2FjY8NIAo14kFuC0O1XUav6z9QyAEC11fh1tAc8beTo2bMnUlJSUF3dINlwOBz4+vpi2bJlTJzHL0GpVOLkyZOIj49Heno6CgoKUFlZqaa+1dTUZLIwDB48GPb29mptVFdXQ09PD1KpFLa2tli0aJFa5omioiLY2tri3bt3ahOEBw8eoHXr1hgzZgxOnDiB8ePHY/78+WrRYRpRV1eHs2fPYtKkScjLy4O9vT06dOiAc+fOIT8/H97e3lAqlQgODsbKlSuhra0Nh+/GIUe3DcDhfdHSE2iw6GRRHXqZ1CHQSoiBAweCxWLBzc0NN2/eVFNnN4bq4vF4OHXqFDp3VrcKLCoqgoWFBRPKq2vXrggICMCiRYvg4uLCEHNubi5kMhlu3LjBTD6OHTuGkJAQfPjwAVZWVjh69CiKi4sZ45H09HTcv38f9fX10NHRgZWVFaqqqlBTU8MErF6wYAFOnjyJjh07Ij09HV5eXmjVqhXu3LmDXr164ffff8fYsWNx4sQJREdHIykpCQkJCfjuu++YmLJ9+vRBv379YGZmBjs7OyQmJgIArKysIJFIcPfuXZSVlcHKygpXr16FnZ2dWh+MHz8ep0+fRl5eHj59+oT169fjt99+w4sXL8DlciESieDv749Dhw6By+WitLQUcXFx2LZtG1gsFiZOnIihQ4dCIpHA1NQUrq6uTd7FRsTGxmL8+PFMEActLS2sXr0ay5cvx5w5czB58mR8rKjG0bt5eP62HGXKWmgLeLCXayG0jcm3mJz/RPyvJTj6m+PYsWPUs2dPZtvHx4csLCya1FOpVMTj8UihUDBlOjo69PHjx6+2f/fuXXJxcWl2X9z1bLKYfeI/yh1m/+MZ6jhyPu3cuZOIiBQKBbVt25YAkJWVFe3fv59atWpFLBaL9PT0aMqUKUzeur+KiooKWrduHWlqapJIJCINDQ21HIKNiWn9/PxoxowZJJPJqKamhnbu3EmWlpbUpUsXJqv8jh07aMCAAU3O4ezsTEKhkIgaEqAOHTqUjI2NKS4urkn2+Pfv35OtrS3x+XyKjY2ldevWkZOTk1o+tkmTJhER0fXr10nm049Mvz/6H/WrxezjZNZlMC1YsIC0tLTU2ubxeFRaWkozZ85kEvXK5XI6d+5ck/u6cuUKiUQisrKyotWrV1PHjh1JW1ubhEIhiUQiYrFYFBERQTY2NgSAzM3NicfjkVAoJEdHRxIKhcTn88nU1JT69etHkyZNIk9PTzIwMKBNmzZRRUUFETUk99XT06OcnBx6//49WVpa0oEDB4ioIVekgYEB2dnZkZ+fHwUGBpKvry+dOHGCjIyMaOTIkaSpqUlSqZTGjx9PFhYWdPfuXfL29iYPDw/i8/kklUopMDCQua+MjAxis9nMc7d06VIaPHhwk/s/cOAAASCZTEYASCKRUO/evaljx440YsQIat++PdXV1VF6ejqNGTOGdHR0aODAgXT58mVSqVRMOwkJCcRisejt27fNPqOrVq0iPp9Prq6uZGBgQJqamsTlckkul9Mvv/zyhSf7G/7p+EZ8/0J+fj5JpVLmpZs+fTpxuVy1pJiNkMvllJeXx2wbGBjQu3fvvtp+fHw8BQcHf3H/ssMpZDbrGFn82Yf5X9mi96Vl0/Hjx9Uywufk5JBIJCJ9fX2GND59+kQRERGkp6dHLBaLnJ2daf/+/U1I5Ut4+vQp2dnZkb+/PyUlJRFRQ/b62NhY6tu3L7Vs2ZKEQqEaQfD5fJLL5WRvb096enrk5eVFnp6edPDgQbW26+rqCABNmzZNrfz69evk4eFBXl5edPPmTSIiSktLI5FIRIaGhvTy5UumbmJiIgkEArXzz5gxg3YcSyKzWU0T0hpPiCVBS3dia4iILdIhrTY9yWxOglodmwWnSGLp3GxmbwcHB3J0dKS8vDxKSEggQ0NDEolE1KdPnybPwNy5c8nU1JQMDQ1pwYIFNGDAgCYJhDkcDpmYmBCXy6UuXboQAIqIiKA5c+bQhQsXyNnZmfbt20cymYymTZvWJLlvcHAwLV++nGpqaqhz5840Z84cIiI6deoUGRgYUHJyMrm7uxOfz6fZs2dTbW0tKRQK+v7774nL5ZK9vT15eXlRaGgobd68mYyMjOjKlSsMQRsbG5ORkRH9+uuvzDmnTJlCGhoaVF5eTqWlpWRgYEDPnj2jc+fOUc+ePUlbW5u5v+7du1NGRgZzbM+ePUksFtNPP/1Enp6eZGpqSkuXLv0isZmbm1NAQECTcpVKRbNnzyY+n0/dunUjmUxGL168oLi4OBKJRM1mmv+Gb2jEN+L7DKampsxLumfPHhIKhc1mxm7VqhU9ePCA2TYyMqLc3Nyvtr1x40ZGGvkS+o6eRh3m7SWr+Ylk+ocs4nY/nCHbH87Q+H236UFug+SmVCpJT0+P3rx5Q0REUVFRNHz4cLK2tqb79+83af/q1avUuXNn4nK5JBAIKCQkRO2j1Bxu375Nbdq0obZt29KtW7e+WG/+/Pk0Z84c2rZtGwUHB5OFhQVpamo2IQ59fX3y9/en1atX06BBg4jFYjU7uaivr6fdu3eTXC6ndu3aEZvNpg4dOlBlZaVavSlTphAA4nK5pKGhQWKxuCFDenhUs5MIQUt3ErXqSmazjpNJxD7iGZiTrv849cnFvFPUOmILLV68mPT19Rmp2cLCgmQyGeno6NDs2bPp5cuXdPPmTQoJCSEul0s8Ho9cXFzIxcWFJBIJicViEgqF1KJFCxIIBAxBSqVSAkBsNpsEAgG1a9dOrY9YLBa1bNmSXr58SZqammRtbc1MAD5HQkIC2dnZUXV1NU2ePJl69OhBdXV19Ouvv5JMJqO0tDTatGkT8Xg8sra2JiKipKQksrGxob59+1JGRgaNGTOG7O3tqVevXtSuXTvatm0bGRoaEpfLJS0tLRKLxXT//n0yMDCgGzduMGNjaGhIfn5+tH37djIxMSE2m01sNpscHR1pyZIlVFxcTC1btqRBgwYx1/v06VMSCASkoaFB3bt3p4SEhGbHvhHnzp0jFovV5N1SqVQ0cuRI4vF4NHz4cJJKpXTjxg1KT08nmUxGhw4d+mKb3/ANRN+ITw0DBgyguLg4IiK6c+cOaWlp0cmTJ5vU8/PzowsXLjDb5ubm9OrVq6+2PXv2bFqxYsVX6+Tm5pKuri5p6hqSsf9wCoo6SKP23KLph+7R9pRM+lCubHLMmDFjaNWqVVRRUUEGBgb09OlTmjx5Mq1ateqL56mtraWYmBiysLAgAGRiYkLR0dFUXV3dpG5KSgp16NCBrK2tv0qSgYGBzfYVEdHWrVvJwcGBnJ2dicvlqqlLAZBAICBTU1Pq3r07rVu3jiHy2tpa6tWrFwEgTU1NWrlyJSmV6n1w5coVMjQ0pIKCArp16xYZGBiQhrY+Wc5NaFZi5kpNyLD/ImZbu10IiVt3b1p39gmSGBrT3LlzaevWrcTlconD4TBExufzCQDp6elR165daejQoWRhYcGQzPXr10mlUlFmZiYJhUISi8Wkra1NEomEhEIhGRkZkUwma9IXjT9HR0eSSqUUFBREI0eObNKnlZWVZGFhQcnJyfTLL7+Qvb09lZSU0NatW8nY2Jhu3rxJYWFh5OrqSt27dyd7e3saMGAAWVpaUmJiolpbP//8M+nr69OgQYPIwsKC5s6dSywWi3x9fUlLS4tiYmLo5MmTZGRkRPfu3aMFCxaQmZkZo/718vIiLS0tevjwoVq7I0aMIDMzMzpx4gQFBASQUCgkLS0tWrp06Refo89hZWWlptH4/Jng8Xg0b948atGiBSUmJtKNGzfI0NCQjh8//pfa/oZ/Nr4R32dYu3YtI5VVVlYSl8ul5cuXN6nXr18/+u2335hta2trevHixVfbHjhwILP28iWUl5eTrq4uAaARI0aQXC5vIuH8EZcvXyYXFxdav349hYSEEFGDJNC1a9evHteInJwcCg8PJ5FIRGw2m9q3b0/JycnM/jNnzlBgYCBJpVIqKipqtg2VSkX6+vqUn5/f7P4BAwbQjh07iKjhwxUXF0fGxsYEgAYMGEDdunUjExMT0tDQaJYE3N3daeHChdStWzeytramkydPkkqlovLycrKysqIjR47Q2rVrSV9fn3bt2kXLT9wiy7nxzRKfXuBkEjl1JtPvj5Lx5D3E0zcjg74LmtaddZy0PUOIw+EQj8cjCwsLMjc3Jzc3NwoMDCQdHR0aNmwYDRs2jHR1dWnixImUnZ1NR48eJV1dXeLz+TRy5Ehq164dtW7dmiQSCUMUZ8+epeTk5Gbv9XOpb+rUqXTz5k3S0dFpouKMjIykgQMHUmpqKhkaGtLz589p+fLl1LJlSzp37hw5ODjQqFGjqKysjNzd3YnNZlNkZOQXn6dr166RsbEx9evXj8RiMfF4POLz+TRq1CgyMTFhyK1xva5Pnz7UqVMnEovFVF1dTStWrKCwsDCmvYKCAho+fDgBIC8vL1q8eDHJZDIaMWIEbdq06U+fy0uXLhGLxaLs7GymTKlUkq+vL/F4PNq8eTNZWlrSjh076MqVK2RgYECnTp3603a/4RuIvhGfGq5fv05t2rRhtg0MDKhPnz5N6o0bN462bdvGbDs4ONDjx4+/2ra3tzdduXLli/tramqoY8eOxGazCQCFh4dTaGgorVy58qvt1tfXk6mpKclkMrp9+zYREZWWlpJYLGYMIP4qjh8/Tu7u7sRisUgikdCYMWOYtTwul0s1NTXNHvfmzRuSyWRqRgmNUCgUJJFIqLCwUK3cwsKChEIh2draUvv27encuXOkUqmovr6eDh48yHx4DQ0NGenqc1IQCAQkl8vJzc2NOnToQN7e3oxaetqhu19cIzUas434MisCq6GfRa26ktncxGbrjth+ieRyOQUGBpKTkxOZmpqSmZkZBQQEUE5ODi1cuJBkMhn5+flRaGgo6erq0ujRo+nRo0cUFBREAEgoFJKpqSmxWCzy9PSkixcvkp6eHjPOX/qx2WyaOHEi6evrk1QqpWHDhlFpaSkREb148YJR77Vo0YLOnj1Ls2fPJicnJ9qyZQvp6+tTbGwsXb9+nVxdXcnIyIiMjY3/dPzz8/PJ29ub9PT0mH5ulEg5HA516tSJQkNDqXfv3lRfX0+1tbWkra1N/fr1o/LycjI0NKRdu3ZRaGgo6ejo0NixY4nNZtOZM2fI1taWjhw5QjNmzKA1a9b86bXY29uTj48Ps11eXk6urq6koaFBR48epTZt2tDixYvpwoULpK+vz6w/f8M3/BV8c2D/DG5ubnj+/DmqqqoANPgiPX78uEm9/0lqoj86r/8REyZMQFpaGmPWfvr0aSxZsgRr1qxhHOubQ2O0f4FAwEQA0dbWRps2bZCamvrVa/ojGjMelJWVYfz48Th58iRGjx6N5ORkJjt2c0hPT0ebNm2a5EgDgOTkZLi6usLQ0JApq6ioQE5ODhYtWoT/w957R0Vxvn//7y303nsRAQtdEAU1KiIWLKjYFcHeRYkdjX5ikFhjjb13RaNib2A3NhBj7AUExQJKL7v7fv7gMF83FE3y+T6/53fOvs7Zk+PMPTP37JJ5z3XdV3nw4AHGjBmD8ePHIzAwUKjk0bx5c3z+/BnZ2dkoLS2FTCbDH3/8gblz56J58+YQiUR48+YN7t69i8uXL+PatWvw9PRE3bp1ceHy9SrzACp6sWXvmw3teoGwj0mA7YRdUJQU4FPS5mrHn714BTNmzMCAAQPQoEEDfPr0CeXl5bh06RLc3d0hl8tx5swZDBkyBC9evIChoSFevnwJX19fXLp0Cf3790dRUREyMjLQrFkz5OTkID09XehN91e0tLQAAPXr14dUKoWhoSEyMzMxatQoHDlyBPb29ujXrx/69u2LSZMmYeTIkYiJicHBgwdx8OBBGBkZYcmSJdi/fz+uXbsm9ELs06fPVysLlZWV4fDhwygrKxNSbkjCx8cHVlZWmD59Oh49eoSwsDDk5uZixowZkEql2L17Nw4ePCh0o4iOjkarVq3w6tUrrFu3Dra2tpg0aRL8/f0RHh5ea1uiSq5du4ZHjx5h06ZNACrKl3l7e+Px48c4ffo01q1bB19fXzRp0gS9e/fG/v370bZt21rPqULFl6iE7ws0NTXh7u6O27dvA6goIZWenl7lofF363WWl5fj/fv3Qq+z6mjTpo1Q/FkikaCgoAB//vmn0Pm8JuRyOR48eIDi4mKlh2lISAhOnTpV+w3XgK6uLn7++WdkZ2cLOXWlpaXQ0tJCaGgo7t27pzS+tlJlBw8eRLdu3ZS9evgdAAAgAElEQVS2DRo0CGKxGFOmTIFEIkG/fv2QmpqK8vJyrF+/HlZWVvj++++FVkdAxXfSsGFDzJ49G5s3bwZJWFlZoWvXrkK1FG9vbxQUFODNq+fVzkVRnA953nvoNeoEkVQNEi196HoGo/hZ9Z04NEQKjBs3DpGRkThw4ADy8/PRvHlz5Obmws/PDzt27EDbtm2xdOlS9OrVC+PHj8fNmzdBEmKxGDt37oSrqyvi4+ORmpqKV69eISoqqsYXmXnz5uHatWu4dDMFwePiselPOUbuSkGeWzfo+XfHtn2HhAorP/74I8rKynDmzBncvXsXL168wNWrVzFw4ED07t0bWlpa+PPPP9G3b1/o6OhU+/f54cMHzJgxA66urtDU1MSkSZOEllaenp7Q1NREaWkpPD09sWPHDoSHh2PSpEkYOnQoDhw4gDlz5uDgwYOQSCRYs2YNtm7dCi0tLbRq1Uqou+nk5IQnT55gxYoVAGrvx1fJ8OHD0bhxY7i6uuLNmzdwc3PDu3fvcPPmTWzYsAHq6uro2LEjIiIicPjwYbRq1arW86lQ8VdUwvcXvqzb6evrC7FYjMzMTKUxf7c1UVZWFszNzastT1ZJv379sGjRImhoaGDFihUYP348pk6diunTp2PVqlV4//59tccdPHhQqBd56dIlYXu7du1w+vTpb7rn2jAxMUFwcDDc3d3xyy+/4MmTJ/D29oaVlRVmzJiBoqIi3LlzB40aNapyrEwmw9GjR6sI39GjR9GyZUvh39nZ2ahfv77QtHbx4sWYPHkymjZtiuPHjyu9eFy6dAkeHh6oX78+Hj9+jN9++w1nz55FYWEhCgsLsX//fvwnZiQk1RSplmgbQGpggfy7x0GFHIqSAhSknYOaeZ0qY9VEgLQwGzY2NkI5OJFIhN9++w1+fn6wt7eHmZkZbG1tMWvWLBw5cgSTJk2Cvr4+RCKR0IwXAObPn4+goCA0aNCgWsurso/eqt2J2PhIjGY/n8dTrfrQrP8dzj96j8Opb6DWqCuiz+fjdZ2O6DNmKpydnVFYWIgLFy7g9u3bIAmFQoElS5bg+PHjWL58OQwMKnoO6urqClVN7t+/j8jISFhaWsLMzAxr1qyBh4cHkpOTUVxcjJiYGGhoaEBLSws//vgjPn36hDdv3sDAwACnTp1CcHAwRo8eLXQZEYvFePz4McRiMY4cOYKYmBj85z//AVDRWeP+/fsgKXwXXxO+yhJmmzZtwrNnz9CwYUPIZDKkpaVhx44dePz4Mfr27SskyAcGBtZ4LhUqakIlfH/hy04N7u7ukEgkVWp2mpqa/i1X59fcnJUcOHAAYrEYw4cPx9KlS1GvXj0cO3YMffv2RXx8fJXxJDF//nyh9czOnTuFfT4+Pnj37l21rZX+DpVuX0NDQ4waNQqPHz8WOgGsWrUKenp6OHXqVJWKNEBFR217e3uhOzcAbNu2DeXl5di1axeAimLaderUQXl5OZ4+fYqOHTuid+/eSEtLw/fff48pU6bA398fhw4dwowZM9CpUydYWlrixo0bQnUXb29vJCUlYebMmYiIiMDWOaOqLZAMAGbdZ6L4+W28XtYPmWuHQySRwrjN0CrjymXlcNcugL29PSwtLaGpqQk1NTVcvHgRW7ZsQWBgILy8vPD8+XN0794dt2/fhpOTE16/fg19fX1oaWnBz88PLVq0gK2tLa5evYrU1FSla4jFYixfvhxjx45F+7HzoAgajzMP36FUpkCpTFm45ZBAIZLgSZEWrmr5Q79RqFDbE4AgqHl5eVi4cKEgLgqFAq9evUJeXh709PTg4eGB8+fPo0ePHnj+/DlycnKQkJAgVNk5e/Ys5HI57t+/j+HDh+PWrVvQ09NDXl4esrKysGfPHmhrayMnJwdxcXE4cuQISGLt2rVYt24dgoKCkJycjPv372PMmDGCm7XyZfJrwjd06FB4e3tDLpfDy8sL+vr6ePDgAY4ePYqDBw8iKioKMTExOHXqVI3tsVSo+BqqkmV/4eXLlwgICEBWVhZKS0sFt19MTIww5vr165gwYYLQmqdNmzaYPn260Jn6r+zcuROJiYnYvXt3rdd2dnaGnZ0dLly4AAB48OABWrZsiaSkJHz33XdITU2Fre3/NMg8deoUYmJicO/ePWRmZsLb2xtZWVmCi7Bv374IDg4W+gz+E6ZNm4asrCzk5uYKZau+ZNeuXRg0aBDkcjm0tbURFhaGuLg42NvbY/z48TA3NxfKwAEVHRYq1+fi4+MRGxuL4OBgHDlypNqO3QqFAitWrMD06dMhkUhAEtevX4e7u3u1871w4QLatWsHw85ToO3SBBD9/Xc7KhQofnIdH36br2ShicVi1KtXD/7+/mjfvj2MjIwwYsQIqKur48WLF1AoFAgMDEROTg5evHgh9DF88+YN7Ozsqi3o7OTkhCnrE/FL0ksUV9c2vAbUxYDZ60t4fHwjPn78CF1dXZSXl6OkpARaWlqQSCSCQMlkMohEIsybNw/jxo2rtbSei4sL1NTUYGRkhOTkZBw9ehSrVq3C1atXIRaLIZVK4eDgABMTE6SlpSEiIgInT57E1atX0aZNG3z48AFjx47FgQMH8PnzZ9y5cwcuLi4ICQlB06ZNceXKFeTl5QkCZ2PzP4XXK/tIbtiwAaNHj0bdunVx7do1nDlzBuPHj0d0dDR++eUXnDp1qsbfX4WKb0Fl8f0FBwcHkERGRgY0NTVhYmKi1HoH+PuuzoyMjK9afJ8/f8bLly/Rt29fYVvDhg3Rs2dPrF+/HkOHDsW8efOUjomLi8O0adMgFothZ2cHT09PHD9+XNgfEhLyr92dRUVFUCgUgqvqr+jr66N169YoKirC5MmTkZSUBAcHBzg5OQnFmyvJyspCdnY25s+fj9DQUMycORNz5szByZMnqxW9Skvixx9/RHx8PKysrGBgYIBBgwbh8OHDVdyGhw4dQkhICBo0aICfBwVB/LWWRDWgLhWh9O4RGBgY4NixYzhx4gQ6duwIsViMly9fYtu2bejbty/at2+PV69e4cmTJyAJPT09DBo0CFeuXMG7d++wceNGjBkzBn5+ftWKHgC07hGJJedfVBG99MXhSp9XP3dBzuk1wv4yBZDj0Aqnbz1EYWEhvL29BSu3uLgY5eXl0NTUhJGREezs7CAWixEVFVWr6BUVFeHly5fQ09ODmpoaHB0dsXjxYkRFRSE3NxcrVqyASCTCq1ev8OHDB9SpUwfbt2+Hm5sb+vTpg8TERGRmZuLVq1e4efMmBg8ejHbt2uHTp0/YvHkzRowYgV27duH48eMICwvDnj17AABTp07Fhg0bEBUVBXt7e4wcORI+Pj64ffs2UlNTK/osRkVh+fLlOHfunEr0VPxrVML3F0QikZK7s7rIzn/i6qxsQFsTZ8+ehUgkEjoXVDJnzhzs2LED3bt3x4EDB/Ds2TMAwNWrV5Geno4+ffoIY/v3769UzT8kJERwXf1TCgsLIZfLYWRkVO3+ysAWTU1N/PDDD3j9+jUePHgAe3t7fP78GY0aNUJwcDBu3LiB/v37QyqV4ocffsD58+dx+vRpJWvwS7Kzs9G5c2ds2LABly9fxufPn2Fvb49Xr14hNjYWc+bMQaNGjXDo0CHk5uZi6NCh6NWrF/r06YOUlBT0aRsAo5cXIFJ8W5PgSrTUxPihszv+vHIKtra2CAsLw9WrV5GYmIj79+/DysoK1tbW8PX1Rd26dQEAZmZm0NbWxufPnzFs2DAYGRnBwMAAnTt3xrx583Dnzh0lYa+MfhWLxTj6vAylsqq/j33MAeFjO247RFJ1aNdvrjSmRCbHD3uvwNzcHJcuXRKET0NDAwkJCXj16hXevn2LmJgYKBQKNGzYEB06dMCePXtQXFysdC6SWLNmDUji1q1bMDQ0xPHjx3H58mX0798fGhoaiIqKwunTp6GlpYXMzEzk5eXB1NQUSUlJ+PTpE+Lj4/HTTz9h5cqV0NLSwpQpU3Dp0iUUFhYK9y2TyVBWVgZ1dXWhSfKuXbswZswY3Lp1C+np6QgKCsKlS5fw7NkzhIeHIzw8HDt27EBSUlKV4ugqVPwTVMJXDV8Kn5+fn1ILIgAwMDBAYWGh8KD5b6zx7dq1C6amplUiP83NzTF58mTEx8djwoQJmDNnDoCKgIkpU6YoBcyEh4fj7Nmz+PTpEwDAxsYGVlZWQpTqP6GyCW1NFl9lKsOXNGjQAIGBgZg8eTI2bdqEt2/fIiAgAElJSZDJZFAoFHj+/DnatGlT7TmPHj0Kb29veHl54dq1a8jPz8eKFSuwZcsWSKVSdOvWDXfu3MEPP/yASZMmwdzcXFj/2b59O2QyGXr16gVXcTbmdvWCppoYNXWvr+SvPdmsra2RkpKCsWPHIj4+Hk2bNsXdu3dRUFAAkrh79y4+ffqEtLQ0vHv3Dnl5eVAoFIiJiYGlpSV8fX1RWFiIgoICoXtCJSShra2Nn5etrmgu/BV3bNGjq5BoG0DDzk1pOwn8kStC1KjxmDNnDiIjI+Hl5QWpVCpE3orFYrRo0QIikQiZmZkYMGAANm3aBBsbGwwfPhwnTpzA0qVL0aBBA8THxwvts/bt21dtL8DGjRsjNTUV9erVw/v371FYWAhtbW08f/4cR44cwcqVKwFAEDsAQhqMSCSCuro6xGIxBg8eLLxMicVipea0FhYWePv2LTp06ICgoCCcOnUKycnJwouGChX/FpXwVcOXwufv7w+ZTKYUVSkWi2FoaCgEdEil0hqDKYBvE76kpCSEhIRUu2/ChAlISUmBn58fTp8+jYSEBNy6dQtRUVFK4wwNDREcHIwDBw4I29q1a/eP0xqAigdYbcJXUyrDoUOH0KNHD0REROD+/fv47rvvAFR8V69fv0a7du2qrHkWFhZi5MiRGD9+PPbt24effvoJMpkMAwcOxIoVK5TWN1+8eIE1a9ZAW1sbXl5eUCgUuH79Ovbt24eBAwcCqAikiQisg33DA9DezRLqEhHEVLauNKViaEjFaNfQAnuHN1VqRCqRSLBkyRIcPXoUd+/eRb9+/WBvb4+srCy4uLhAT09PyZoWiUQYPXo09PX1kZqaigMHDqCsrAylpRU9/0QikfDfsrIyzNt55qv5dQBQkHYOOu5B1eZJqkmlcOs0GD/88AM2b96MlJQU5OfnY9q0acIYQ0NDQWz79++P06dPY8eOHbh79y46deqE2bNno1mzZrC2toa1tTVatGhRreu5EnNzcyQnJ6Nv377Izc1FYWEhRCIRXrx4UW0wVWUEr7a2NszMzEAS06dPF/ZXLhtIJBI0a9YMs2fPRocOHdCgQQPcuXMHycnJSgFSKlT8W1TCVw1+fn5ITU1FaWkp3N3dIZVKa43s/LdrfC9fvkReXh769+9f7X5NTU3Mnz8fsbGxmDJlCqKjoxEdHV1t49sBAwYoRXf+23W+oqIipdD8L3n37h3y8/NRp45yOsCff/6J/Px8+Pn5oby8HO3atUNycjKMjY2FBHATExMMHDgQ2traCA8PR0JCAnx8fFBcXIyUlBQhynDy5Mnw9fVF7969AVQkWsfFxcHf3x+tW7dGr169hDXZn376CWPGjEFiYiL69OkjWBqetoZYM8AP16a1QQ8XdZQ9vgzpu4cQp99CR3vi6tQgrBngV20j0qdPn2LmzJlo2rQpJBIJbt26hW7duuHBgweIi4tDcHAwEhISUF5ejgULFsDf3x9DhgzBggULMGHCBDx58gRyuRyNGjXCpEmTcPHiRchkMpSXlyNi/AyIpDULDADIPr9DacZ96HhUbx2XyBRIOHsN586dEyx9kUikJJIGBgYgiaKiImzevBn+/v4YM2YMevTogaysLJw/fx6amppITU1FTk4O9PX1kZ+fX+u81NTUsHLlSqxYsQJFRUXIzs6ucayTkxPq1KkDHR0dLFq0CGFhYbC2tgZJDB8+XLAOp0+fjlOnTmHIkCHQ0tJCRkYGkpOTlV54VKj4b6ASvmrQ1dWFq6srUlJS4OrqirKysipJ218GuNQmfHl5eSgvL69xjQwAfvvtNwAQrKLq6N27N9TV1VFaWoqsrCz4+/tXO65jx464d++e8ObdokULpKSk1Fr9pTYKCwtRXFxc7fwr8/f+aokcOnQI3bp1w5s3b1CnTh0kJycDgNCNu3nz5rhw4QJKSkrwww8/4Ny5cwgPD0dOTg5cXV2FCiYnTpxAYmIiVq1aBaAih8/HxwdXrlzBzZs3YWdnh02bNiExMRG6urpISkqCk5MTtmzZgmXLlsHT0xN79+4VrLLTRw9i6/QI7B7fHk82TMKKfn5IXBiNQX16VBt8smPHDgQEBMDKygpXrlyBp6cnpk6diqNHj8LPzw/BwcE4efIkxo4dCzs7O5w5cwa///47pkyZggkTJmDWrFlo3bo1nj9/jhs3bmDRokUICAgQ8gILyr6+9lpw/zw0bBtCzdCyxjHvPhVg1qxZsLOzg6urK/r164clS5bg4sWLKCgoEETJ1tYWCQkJ+OGHH/D06VNMmzYNFhYWaNy4McaNGwcNDQ1oaGjg7du3sLOzw4ABA3DmzJla14gHDRqEESNG1LhfU1MTlpaW2Lz7ACxbD8R1UT0Ydp2OCXvuotnQOdiy+wAkEgkWLlyIuXPnIioqCm/evEFpaSmSk5NhaVnzfatQ8U9RCV8NVLo71dXVYWpqiqtXryrt/1bhy8jIgJ2dXbVuqkr27NmDhg0bVmvBVSISibB48WLBypg/f3614zQ0NNCjRw/BjaitrY2AgAAhReLvUlRUhKKiomotvtrcnHZ2dqhbty40NDTg4uICLS0tBAUFKY1LT0/HkSNH4Ovri8uXL6Nt27aIi4uDtrY2mjZtigEDBmDLli2Qy+UYMmQI+vbti7lz5yIxMRGvX79GdHQ0jh07BisrK/z44484c+YMTpw4gfDwcNy4cQMLFy7E0qVL4eHhgYEDB2Ly5Mk4d+4cWrZsCZFIhNDQUNy/fx+tWrUS1iTz8vJQUFCAyMhIzJ07FyYmJjhx4gTi4+Nx+/ZtxMfH49KlS3jx4gXq1KmDefPmQSaTwcDAANra2jA1NRXub+jQoYiPj0dwcHCVHD4A0NesuaBBJYX3z0PXPajWMZkvnuDGjRuQy+VCPuTBgweFDuaVa3XDhw9HbGwsgoKCqpSfS05Ohkwmg0Qiwfnz5/HkyRP4+/tj2rRpcHR0xPTp0/Hw4cMq15bJZEJVlr/i6ekJHbuGSHdoj+GJ2Sh2DsJvKVk4//AdDqdm4bWRF+zGbUOLGdsQ3HsIJk6ciCtXrkBHRwcXLlyAmZnZV78fFSr+CSrhq4Ev1/lcXV1rjeysTfi+tr4nl8tx9+5dhIeHf3VOjo6OKCsrg6enJ54/f46kpKRqx/01mf3flC8rKipCYWFhtcJXXWBLeno6/vjjD0ybNg2hoaH4888/8ccffyAyMlIYQxJbtmxBkyZNEB4ejtOnT6NZs2bYvXs3CgsLsXv3bjx8+BA5OTno1KmT8OLw4MEDhIeH48mTJ+jZsyd27twJd3d3LFu2DDt27MDp06dhbGwMoOJFoUOHDrhy5QoaNmyIhIQEaGpqIi0tTcmCUVdXx/fff4/79+8jJycHdevWhbOzM169eoWMjAwUFBTg0aNHmDx5snBM06ZNsWbNGshkMhw+fBjdu3dHamoqLCwsEBAQgKdPnwpjBwwYgGXLliEgIADOzs7o0KEDRo0ahcjISFw/ebDaCjOVlLz+E/KCj1WiOb9EUypG7NjBuHTpEmbPng1nZ2c8ffoUV65cQXp6OhQKhWBB79u3D3369IGxsTF8fHwwbNgwrF27Frdv38bhw4dhYGCAkJAQiEQimJmZYfz48bh9+zZOnDgBmUyGoKAgNGnSBKtXrxbWt1euXAmZTAZTU1PBkgUqLL3oVQkw7T0PF59/qjYpX6ymATlFeCkzQO+1V7Hv7hvY2NjgwoULwu+oQsX/Birhq4Evha9x48Z4+fKl0v5vtfi+Jny3bt2CQqFAr169vjqnpUuXon///ti0aROio6OFwsB/pUWLFsjNzUVaWhqAf1e+rLCwEPn5+TW6Or+0+MrKyhAcHIySkhIsWbIECQkJmDx5MkgKVsHHjx/Rs2dPLFmyBOfPn8fEiROVHphAhdiam5ujWbNm0NXVhaamJjZt2oQmTZpg6dKl6NixI3766Se0bdsWmzZtwpIlS3DmzJkqbrGysjJERETg7du3yMjIwOrVq7Fq1Sq4ublh586dSgJoYWEBT09PlJeXo6CgAElJSWjbti3S09OVognfvHmDnj17IjY2FseOHUN8fDw2bdoEX19f/Oc//8HYsWPRrFkznDlzRjimZ8+eCAkJwbNnz3Dy5EmhruWjk1trLPwNAIX3z0HbNRBiDe0axxBAv0AnFBUV4ebNm7h9+zb69u2Le/fu4cOHDzhz5gzGjRsn/JaVhRnu3buHvXv3Yvbs2WjXrh1OnDiB/Px8vHnzBps3b0ZaWpoQsOXu7o6FCxciPT0dc+bMwaVLl+Dk5ITw8HDMmjULQMULRGUqy8SJExGfcAULTj9BiUyBr8XvkECpHNBtEYHhC7cLpdZUqPjfQiV8NeDi4oLPnz8LofjFxcVK62R/x9VZm/Dt3LkT2tracHV1rXU+OTk52LhxI+bOnYshQ4bgzp07+Pz5s1LCeiVisRj9+vUTrD53d3cUFxcLOYB/h6KiIuTn51ex+HJycvDx40c4OzsDqLhPR0dHPHv2DPHx8YiOjgYAbNiwAZ6enpBIJDh9+jS8vLzg4OCA33//HR4eHlWu9/DhQ4waNQrv379Hz549kZmZiZycHNy8eRO2traIiYnBixcvcOjQISxevBixsbE4c+ZMlai/vLw8hIaGoqioCGfOnIGJiQlCQkJw+fJlrFy5Er/++isaNmyI7du34+3bt+jSpQvWr18vuKSnT5+Ou3fvYuDAgXj9+jUUCgXWrFkDT09P1KtXD/fu3UObNm0wZcoU3Lp1C+/evYOTkxMcHByEyNKlS5eivLwcCxcuFEp2fUl5fg5aupqhJi+4SfuxMO0cU/1OAFAooF+YgWa+XoiJiUHbtm3x6tUrrFq1Ch4eHkKd1bi4OEgkEhw4cEBYIz5w4AAiIyPh7OwsvHiUl5cjOTkZ48aNQ0BAALS1teHp6Ylx48Zhx44dePbsmRCN+/LlS5SUlKCgoABAxQtBkyZNYGlpiUETZ2PN9XfIvn4Yb7ZE49XCMHxIXFrtLXy6vBuv4juh+GUKyhUiLD73Avdef6r5nlWo+C+gEr4aEIvFaNKkiVAeSyqV4s8//xT2/x1XZ23J68eOHUOzZs1qXQMEKlxKXbt2hb29PWbMmIFjx45hyJAhmDlzZrUtbvr3749du3ZBoVBAJBL9Y3dnZS5aZbX9Su7cuQNvb2+IxWIcP34czs7O0NTUhI6OjmBhJCUloaioCBs2bEB0dDSGDBmCrVu3YvHixdWuZ546dQo+Pj6oW7cu0tLSMGHCBCFP0cfHB0ZGRujZsyeWLVuGO3fu4Pvvv0dZWRm2bt0q1BQFgLdv36Jly5ZwdnbGgQMHBFcfUOECDQ4OxqVLl7B69WosWrQIdnZ2ePDgAR48eAAvLy98+PABcXFxePjwIerUqQMPDw/UqVMHmzdvxoULFzBv3jylc3p5eeHVq1do1aoVunTpgt27d2Pp0qWYNWsWNDQ0MHv2bDRt2hRqamrCMVKpFDdv3sTY1i7QlNZs9dUG5WV4c3arkMYwcuTIGiuzSCQSfP78GSKRCJaWlujWrRuWL1+OK1euYMOGDRCLxXBwcMDGjRsrciBdXaGjo4O0tDSsXLkSkZGR8PDwgIaGBpydnTFmzBilvyepVIqMjAy0bNkSq5KeokQmh1TXBAaBvaHrWX3LoPLcNyh6dBkS3f9xa5bI5Fid9LTa8SpU/LdQCV8tVLo7nZ2dIZPJkJKSIuz7b7g68/Pz8erVKwwYMKDWeRQUFGDlypWYOnUqgIq8rNmzZ+PYsWNQV1dXyturxMPDA0ZGRkLHhn+S1lBeXg6S0NXVreKOrHRzzpgxA507d0b37t0xY8YMtGvXThCFYcOGQVdXF1FRUcjKykJqamq1SevZ2dno378/+vTpA2dnZ6SkpFQJYZ8xYwaysrKwdetWeHh4oLy8HEeOHEHnzp2xYsUK6Onpwd/fH2vXrkVgYCB69OiB1atX1+hKlMvlSE5Oxps3b2BoaIjnz5/D1NQUkZGRgthW5tyJRCKYmJjg3bt3ePToUbXuZW1tbWzbtg0BAQFYu3Yt+vXrB1tbW/j5+cHU1BSXL1+Gp6cnxGIx1NXVoaWlhadPn8LLzhAzO9aHltrf+19RUV6Ccc1tUPT6Tzg6On71xUksFiMvL6/afYcPH4ampiZCQ0MRGRmJTZs24c6dO8jNzRXaXi1atAhdu3ZFnTp1kJWVhV27dinlrpaXl8PGxgZRo8Yj6fF7kIB2vUBouwZArKVf7XVzTv8Ko1aRgPh/gnxI4MKj9/hYUPq3vg8VKv4OKuGrhYCAAFy/fh1SqRRmZma4cuWKsO+/IXyVQhQaGlrrPNavX4/vvvtOqVzT8OHD8fr1a3Tt2hWzZs2qNoH+yxJmbdu2RVJS0lcb5n5JYWEhtLS0qg00uHnzJk6cOIEFCxZg5cqV2L17Nw4fPiy0ICosLMTTp0+hUCgwdepU7N27t8p5FAoF1q5dCw8PD0ilUkgkEiQmJlYRq/Xr1yMhIQG//fYb0tLS0LNnT+zZswedO3fG5s2bkZeXh8TERBQVFWHkyJHIysrC48ePq7STqiQ9PR2tW7dGQkICcnNzYWBggIyMDOzbtw9bt25FvXr1MHXqVHh4eODBgwdIS0vDnTt3sHHjRsyZMwdt2rQR0lsUCgXWrVuH+vXrw9zcHI8ePUJkZCTMzc3x7NkzPHz4ECYmJkLeW6tWrdCjRw+cO3dO6Gs3oKkjZnZsAJhUgBAAACAASURBVC01SY1uz0qoUEBdDBRf2YGXZ3egV69e2Ly5+ka6XyKVSgW35F9JTk6GtrZ2tUXWxWIxGjRogOjoaOzfvx+PHz/Gzp074eTkpBTBCgCZmZmYs/UkFPKaizlUUvjwMkQSNWjVrdphQQTgwJ3XXz2HChX/FJXw1YK/vz9u374NmUwGFxcXIVgE+DZXp0KhQGZmZo0JuNu3b4etrW2ti/mlpaVYvHixUqWLymsuWrQIO3bsgJWVFbZt21bl2L59++LgwYMoLS2FmZkZ6tatW6Xgdm0UFRVBU1Ozyvrey5cvcejQIWRkZODGjRsYNWoU8vPzkZycjNDQUGRkZMDJyQkA8Mcff2DgwIFVLJK0tDQ0b94cW7ZswbFjx3Dr1i0sXbq0ylrdqVOnMGvWLBw/fhxv374V6nf+1XIkiezsbCQkJGDatGk4d+6ckFKxbNkywR186NAh+Pn54e3bt/jzzz8xduxYPH36FLa2tmjVqhUOHDiAevXqYdmyZcjPz0fHjh2F7vFBQUFCBG6rVq3g4OAATU1NjB07FnXq1MGtW7fw/Plz1KtXDyRhaWmJwsJC+Pj4YM2aNejcubOw9tq4cWOcPn0a48aNw86dOzGgqSP2Dm+Kdg0toCEVQypStirVJSKoS0Qoe34T6pdWY2x7b6Gw88aNG6t1d3+JVCqtNim9vLxcKKDwLQ1ds7OzMXr0aGzbtg0lJSWoW7cupk2bJqRTRE6YARlrf6woSovwKXkrjIOHV7u/RKbAwze1J9CrUPFvUAlfLRgaGsLOzg7379+Hn5+fUmTnt1h82dnZMDQ0rDE/7+LFi+jQoUOtc9ixYwfc3NyqzZcLDQ2FtbU1/Pz8MHfuXJSWKruH/tqx4e+WLyssLIS6urqS8B0+fBguLi5QKBRIT08X5nXixAk0a9YMJ06cgK+vLz5+/IjmzZvD0dGxyjmnTJmCoKAgoZPBrl274ObmVsXle+/ePQwcOBAHDhyASCRC+/btsWTJEqWODwCwefNmDB48GEePHkX37t0xZ84cZGZm4v79+/Dw8MDUqVOhoaEBOzs7DB06FEVFRfjw4QOuXbuGpUsrgi5IYteuXXB3d4ezszPevXuH/fv3Y/fu3XB1dcX69evx8eNHTJs2DXPmzEFubi7y8vKgqamJxYsXY/fu3Thz5gzq1q2Le/fuITk5GRkZGdiyZQt27dqFSZMmYe/evYiPj8fEiRMhk8ng5eWFc+fOYcqUKdi4cSOMUQCLJ0dRsDMaui+S4GNYDj8rDZQ/uYJBPia4Nq0NJjbWRUbqZbi6ukIkEuHYsWMwNDTEuXPnhO+DJObOnav0olaTxZeSkgKSaNCgQa1FFirPO2zYMERFRaFZs2bIycnB06dPMX/+fPj7+0MsFiP/G5LyP13eBR23IEgNLWock1fy94qLq1Dxt6CKWomKiuKvv/7KhIQEisViFhYWkiTLy8spkUgol8u5bNkyjh07tsqx169fp5+fX7XnTU9Pp0Qi4bVr12q8tkwmo4uLCy9cuFDjmLt379LCwoLt2rXj8uXLq+zfsGEDu3fvTpK8cOECGzduXNvtKpGSkkJ7e3uGhYWRJL///nuKxWKGhIQwICBAaWz37t3p7+/PevXqMS4ujgD4+vVrpTFHjx6lg4MD+/Xrx7dv35Ikz549SxsbG3748EFpbGZmJu3t7bl7925mZGTQ0dGRa9euVRqjUCg4b948Ojo68uHDhzXex/3792lra0s1NTUCoJqaGsePH8/Pnz+TJJ89e8aQkBB6enry+vXrVY6fO3cudXV1CYBaWlocMmQIs7OzSZI3btygs7MzJRIJW7VqxT/++KPK8S9fvqSDgwPV1dW5fv16hoSEsE2bNvzw4QPlcjk3bdpELS0tamlpccyYMUxLS1M6fsWKFfT19WVpaSlLSkpoY2NDS0tLjh49mnp6ely5ciV79uwpjC8vLxfm2qFDB967d49WVlb8/vvvq8xtxowZVFNT44wZM2r8/irZsGEDvb29WVpaWmWfTCbj3bt36T5sIR2mJSp99AN7U8e9jfBvNfM6FGvpU6xjSLGOISESU6ypS8NWkcKY6D13vzofFSr+KSrh+wpr167loEGD+OTJE6qpqfHOnTvCPkNDQ378+JGrV6/miBEjqhy7b98+QXT+ysKFC6murk6ZTFbjtffu3cumTZtSoVDUOseoqChGRkbSysqKBQUFSvtyc3Opr6/P3NxclpaWUk9Pj+/fv6/1fJVcuXKFTk5OjIiIYGBgICUSCdetW8fFixcrCf3p06cpEokYGRnJwsJCWllZ0dzcXNj/+vVr9ujRg87Ozjx9+rSwPScnh7a2tjx16pTSdfPz8+nj48OffvqJ2dnZrF+/PhcuXKg0RiaTcfTo0fTy8mJWVla181coFFy/fj2NjIxoYmJCdXV1rlmzhqNGjaKRkRFFIhGtrKyoq6vL+Ph4lpWVCcc+fvyY3bt3p5aWFiUSCb/77juuWLGCISEhtLe35y+//MK4uDhaWFiwV69eXLZsGZ2cnBgWFsZnz55VmUt5eTkjIiIoFovZu3dvjho1iiYmJrSzs6OXl5cg4IsWLar2Pjp37szJkyeTJI8cOUJdXV3GxcVRKpXy559/poGBAd+9e0eS/PTpE0UiEQFQJBJRLBZTKpWyadOmHDFiBCdNmsTVq1fz3Llz9PLyoq6ubq0vVyT5/PlzmpqaCqJcWFjICxcuMCYmhu7u7lRTU6NIJKJ+k+50nPIbHaYl0n7KYdp/f5D6TcOp49aa9t8fpP2Uw7SdsIu2Y7cLH4meKU3DptFu0n46TEtkvdjjXJP8tNb5qFDxb1AJ31dITU2lq6srZTIZJRIJN2zYIOyrW7cuHz9+zPXr13Pw4MFVjl28eDGjo6OrPW/jxo1rtb4UCgW9vb155MiRr84xMzOTxsbGDA0N5fz586vs7969O9evX0+S7NSpE/fs2fPVc5LkmTNn6ODgQE1NTerr6zMlJYUk2a9fP27atImlpaWcOnUqjYyM2LBhQ5Lku3fvCIAbN26kTCbjsmXLaGJiwlmzZrGoqEjp/H369OG4ceOUtpWXlzM0NJRDhgxhTk4Ovb29GRsbqzSmuLiY3bt3Z1BQED99+lTt3D99+sTevXvT0tKSEomE7u7uSoL/+++/09nZmYaGhpRIJNTS0mK3bt04fvx42tjYEAAdHBy4YMEClpeXC8cVFBRwzJgxVFdXp7a2NmNjY1lSUiLMKy4ujiYmJpw+fTrz8/OV5qRQKBgfH0+xWEyRSMRGjRrR0NCQCQkJJCu8AC4uLvzxxx+r3M/79+9pY2PD06dPU6FQMDAwkDo6OuzVqxdNTU05cOBARkZGsmfPntTT0yMqctuppqZGLS0t6uvrs23btvz111/5888/c9iwYWzRooUwbu7cudUKNlnxktGkSRNGRkZy9OjRdHFxoVQqpaamJrW0tNisWTM2bdqUYrGYC5b/StfY43SYlkiDZn2F81d+DJr1rWIRSvTNad5nnvBv19jj/JBfUu1cVKj4b6ASvq8gk8mop6fHDx8+0MrKipGRkcI+f39/Xrt2jVu2bOHAgQOrHDthwgQuXry4yna5XE51dfUqVsyXHD9+nO7u7pTL5d80zzlz5rBjx440NTVlbm6u0r6DBw+yVatWJMnly5czKirqm845ZcoUAqC5ubnSQ7x+/fo8ePAgfXx82LlzZ/br10+4z+DgYEqlUt66dYu+vr5s2bIlHzx4UOXcO3fuZP369QXXMVkhDGPGjGFwcDBzc3MZGBjI8ePHK1m8OTk5bNGiBfv06SMIzl+5fv06HR0daWFhQbFYzFmzZgn78vLyOGHCBFpYWHD79u1UKBRMTEykvb298HDW1tbm5MmTlVx6hYWFXLRoES0tLdmzZ0+mpaXx+vXr7NChA21tbbly5UoWFxeTrLBwBw4cSBsbG27bto15eXlcv349GzVqxDp16jA2NpZOTk5UU1PjrFmzaGtry7lz51IulzMrK4sNGzbkzJkzq1j6Z8+epbW1Nd+9e8c//viDmpqaHDJkCMViMU1NTampqck1a9YwOzu7QmQMDLho0SIWFRXRzc1NyR1KVgitSCSim5sbx4wZQzMzMw4bNoxZWVl8/PgxN23axIiICBoYGFRYc/r6VFdXp7+/P+Pi4nj37l3KZDJ2796dEomE+/btI0kO23aTjtMTqwjct3wcpydyxPabtf9hqlDxL1EJ3zcQFBTE48ePs0WLFmzUqJGwvWPHjjx69Ch37NjBPn36VDmuW7du3L9/f5XtN27coFgsrrIG9iUtWrTgjh07vnmOBQUFtLGxYWhoaBULqaSkhMbGxkxPT+ejR49oY2NTq/tUoVBwwoQJwsNu2bJlwr7Pnz9TTU2NJiYmXLt2LcvLy2lmZsbnz5+TJMViMevUqUNzc3Nu3ry52uukp6fTzMyMt2/fVtq+ZMkSurm5MTs7m23btmVkZKSS8Kenp9PNzY0TJ06s9oVALpczPj6ehoaG1NDQoJmZmdJ62ZEjR2hvb89BgwYxNTWVERER1NPTo1gspp+fHw8fPsznz5+zd+/e1NbWpkQiYWBgIEeNGkVLS0uGh4fz3r17Va5748YNhoaG0sbGhitWrBAEcNeuXbSwsKBEImGLFi144sQJYd5yuZyjRo2iWCxm+/bt2aRJE3bv3p35+fl89+4dvby8OGnSpCrf39SpUxkaGkqFQsHIyEiKxWJqamrSxMSEDRo04MWLF0lWiOSXFravry87deqkdK6VK1dSLBZz/vz5/P333zlv3jw6OztTJBJRS0uL5ubmVFNTo0Qi4bhx43jx4kWllwG5XM6WLVtSTU2Nx44d4++//87ly5czsHNf1pt1/B8JX/1ZJ5iaofzipkLFfxuV8H0DM2bM4OzZsxkdHU0jIyNh+8CBA7llyxbu3buX4eHhVY7z9fXljRs3qmwfOXIkTUxMarzepUuXWKdOHSUX27ewefNmNmrUiMbGxkLwRSXDhg3jzz//TIVCQQcHh2qDMEiyqKiI/v7+lEqljIqKYt26dblt2zaS5Js3b9ikSRPq6Ojw0aNHJMnk5GR6e3tToVBw0KBBBMABAwbUuI4ol8vZunVr/vTTT0rbDx48SGtraz59+pRhYWEMDw9Xuv/79+/Tzs6u2jWwyrkFBwfTzMyMIpGIvXv3FkQmKyuL4eHhdHZ25qhRo+jk5EQAtLKyYmxsrJLVWUlhYSEHDhxIqVRKANTT0+PIkSNrXR/9/fff2bFjRxobG9PFxYUWFhacMWMGFy1aRCsrKw4aNKjKeuSJEyeopaVFCwsL9ujRgx4eHnz27Bk/fvzIxo0bc/To0UoiX1ZWRn9/fy5evJidO3emWCxmixYtKBKJOHz48Go9DyQZGBjINm3akKx4eTl16hSdnJwoEomoqalJa2trOjg4UEtLi46OjtTV1WVERATd3Ny4adOmKucrKyujl5cX1dXVaWVlRalUSh0dHSGoZsvlZ6z/N8Wv/qzj3H7tRY3frwoV/y1UwvcNHDlyhCEhITx06BDFYrHw1hsdHc3Fixfz4MGD7Nq1a5XjzM3N+ebNmyrbHR0d2a1btxqv17FjR/76669/e55yuZw+Pj5s3759lbXFpKQkenh4kCSHDx/OJUuWVDn+0aNHNDY2pqGhIf/44w8uW7aMjo6OPHLkCA8dOiREjw4fPlw4ZsKECZw4cSJDQ0MpFotpYWFR6xwXL17MwMBAJVG7ceMGTU1NeePGDQ4cOJDt27dXsiwuXrxIc3PzGi3gU6dO0czMjDo6OtTU1OThw4eF7+PXX3+loaEhHRwcKJFIqKmpya5du/L+/fvVnquoqIhLly6llZUVu3fvzpSUFH7+/JmTJk0SRLVBgwbcuHGjkiBlZGRw1qxZtLKyYqNGjejr60tra2v+8ssvLCoq4ufPnzl16lSamJgwPj5eyU378eNHuru7UyqVslevXrSwsOC5c+f46dMnBgYGcsiQIUpBUE+fPqWWlhabN2/OBQsWUF1dnT4+Pqxbty4NDAyYk5OjdE+vX7+mm5sbrays6OPjQ21tbbq6ulIikRAA7e3tOWzYMO7Zs0d4YcrIyKCxsTF9fHyqWJ0FBQV0cnKirq4u7927J1iJAKihoSEI5fZrL1h/1omvuj0dp1dYeirRU/F/C5XwfQPZ2dk0MDDgs2fPKJVKBWtp3rx5nD59Oo8ePcqOHTsqHVNUVER1dfUqLrnCwkKKxWLh4fxXUlJSaGVlJbjL/i7nz5+nnZ2d4NqsRC6X087Ojvfu3eOBAwfYvn17peP27NlDqVTKRo0aCRZQXFwcra2t2alTJzo5OfHKlSuMiIjgunXrSJKlpaU0NDSkgYEBo6OjCYDHjh2rcW5paWk0NTVVCqJ48eIFrays+Ntvv3H06NFs0aKFkgWWkJBAMzMzpWjQSkpLSzl58mTq6+tTJBKxcePGQorClStXhMAWAHR3d+e2bdtqXDMtKiriL7/8QisrK3br1o1371YfTn/z5k2GhIRQTU2NGhoabNKkCVu1akVjY2OOHTtWSVDv3LnDsLAwWllZccmSJSwsLOSTJ0/YpUsX1q1bl4cPHxZERaFQCOkijRs3prm5OZcvX868vDy2bt2a/fv3F14Wzp49SyMjI7q4uPDz58+0trYWxCc4OJgzZ87kmjVrOGDAADo6OtLY2JgGBgbU1tamjY0NTU1N2aNHDwJgYGBgtfd5+fJlmpiY0MTEROmePnz4QAsLC5qamvLNmzcsLCxkjx49BOGzsLBQio5NzcjliO036Rp7nPVilS3AerHH6Rp7nCO231S5N1X8X0UlfN+Ik5MT09LSKJFIuHXrVpLkr7/+yuHDh/PkyZNs27at0vjHjx/Tycmpynn27dtHiURSo7D16dOHCxYs+Fdz7dKlC1u3bs1hw4YpbZ86dSqnTp3K3Nxc6urqsri4mAqFgqNHj6ZIJOKoUaOU3u4jIyMpkUgYFhbGvLw8kqS7uztv3brFK1eu0NnZmdra2nzy5An9/PyoqalZ45xKSkro6enJjRs3Cttyc3PZoEEDLlu2jNOmTaOvr68gXCS5atUqWltbV1kLJCty7xo1aiSs0S1atIhyuZxr166lqakpAVBHR4fjxo2rEuzzJUVFRVy2bBmtra0ZFhamlK5SEx8+fODPP/8spEhUPvBjY2Or/V3v3r3Lbt260dLSkosXL2ZhYSFPnjzJBg0aMCQkRMntnJycTB0dHRoZGdHZ2ZmDBw9mbm4u27Vrx/DwcJaWljIgIID79+/ngAEDOGTIEC5ZsoRisZhaWloUi8VUV1dnmzZtGBISwgYNGlBXV5eWlpa0tLRkamoq5XI5Dx06RABcs2ZNlfnm5eXRycmJv/32G3/55RfBm/Hq1SsaGBjQzs6Onz9/5sOHD+nu7s5+/fpxy5YtBCC8FFX5zvJLuCb5KaP33OXgLb8zes9drkl+qoreVPH/CSrh+0b69+/PjRs30srKikOGDCFZIWI9evTguXPnhKjJSs6ePVtlG1mRTuDi4lLtNZ48eUITExNBZP4pDx8+pLGxMY2Njfn48WNhe1paGu3s7CiXyxkQEMDExEQ2atSIUqmUu3btEsaVl5dzzpw5QlJ1RkYGyQprtTKB28rKimFhYfz+++8pk8koEok4dOjQGuc0ZcoUhoWFCcJaWlrKoKAgjh8/nnFxcWzYsKGwfqZQKDhz5ky6uLhUG2K/e/du6uvrUyqV0tbWlseOHWNoaKiQoG5mZvbVNJDi4mIuX76c1tbW7Nq161cFT6FQ8Nq1a4yIiKChoSEHDhzIa9euUaFQMDMzk4MGDRJE2N/fv1rLNyUlhT169KClpSUXLlzI3Nxc/vLLLzQ1NeWECRMEF2V+fj4bN25MiURCDw8PBgQE8MWLF+zSpQsDAgJoamrKyZMns0mTJhSJRHRycqKxsbGwHgmA3t7enDNnDi9fvsyysjJGREQo/d3179+fYrGYL168qDLP4cOHC5G/hYWFNDc35+HDh6mlpcWGDRuyuLiYu3btoqmpKdeuXSv8pmfOnFGy9lSo+H8VlfB9IytWrBBynyrz786fP8+WLVvy4sWLbNasmdL4zZs3MyIiosp5jIyMOHHixGqvMWzYsCoRmf+UcePGsUmTJuzXr5/Sdk9PTyYlJXHMmDHU0NCgsbGxEKhCVohvkyZN2LZtWw4YMIBqamrMz8+nQqHgnDlzKJVKOWrUKObm5rJhw4a8du0aY2JiCKDGh15SUhKtrKyEBOvKQJguXbpw+fLldHJyYmZmJsmKoInBgwezcePGwvhKCgoKGBkZSR0dHYpEInp6etLCwoIAqK+vT0NDQx48eLDW76W4uJgrVqygjY0Nu3TpUq01+ddrrlu3TlhDW7hwYa0BLseOHaO/vz/FYjH19PQYERFRJXo3NTWV4eHhtLCw4IIFC/jixQuOGDGC5ubm/PXXX4X1vNmzZwupCtra2qxTp44QxTls2DCOHDlSED9nZ2eKxWLq6+vTwcGBQ4YM4bZt27hq1SqGhYXRxsZGyD2sTGhXU1OrUoUlMTGRjo6OSpZ3r169KJFIGBAQwIKCAo4cOZLOzs41uoNVqPh/HZXwfSM3b96kh4cHo6OjaWpqSrLiAebu7s5r167R399fafzcuXM5c+ZMpW2ZmZkUiUTVBla8fv2aRkZG31xV5Wu8f/+exsbGNDU1ZWpqqrD9559/ZsuWLYWk7UrXnEKh4IYNG2hqasply5ZRLpcLVsGjR48YHBwsiAVZYVVaWVlRLpdTR0eHbm5u1c7j06dPdHBwYGJiorDtP//5D319fblu3Tra2toKqRAFBQXs2LEjO3ToUCX5OzU1lY6OjpRKpRSLxUKk5XfffUdzc3OOGzdO6WH9V4qLi7ly5Ura2Niwc+fOvHXrVq3f34MHDzhu3DgaGxuza9euPHny5DfnVJIVLtTKYBcArFu3LpcvX650jrS0NPbq1Yvm5uaMj4/nxYsX2ahRI9rY2LBVq1a0trYWLLnKNUUjIyOqqalRU1OTUVFR3Lt3L2NjY9miRQtGRERUSRg3MjJSsgSr+0yZMoVv3rzh+/fvaW1tzaSkJGGOiYmJFIlEtLCw4JMnT+jj48Pw8PAaCweoUPH/B1TC942UlpZSR0eHO3fupFgspkwm4+vXr2llZcVbt27Rx8dHafyQIUOq1JaMi4ujtrZ2tbltkyZN4oQJE/6rc160aBHd3NwEsVIoFOzbt6KaxqhRo2hoaMisrCy+f/+eYWFh9PLyUhLlDh06UF1dnSYmJly0aBEjIyO5evVqkuT8+fM5evRoXr58mQBqFJKIiAilcm47duygg4MDN2zYQEtLS2F96927d/T392dkZKSS5VhpaVaKHQAGBARw+/btbNeuHT08PKqtr1lJSUkJV61aRVtbW3bq1KlWwSstLeXevXvZqlUrWlpaMjY2VilA6J9y//59dunShRoaGlRTU2Pbtm158+ZNFhQU8Pz58xw7diwtLS0pEoloZmbGli1b0sjIiN7e3uzduzcdHBwEN65YLGbnzp05ePBgBgQE8NOnT5TL5QwKChIqznz5cXFx4cSJE4UgHy0trSpjnJycqKOjwyZNmjAmJkaY99atWykWi9m1a1fa2dnRzMyMy5cv/2oJPRUq/l9HJXx/g2bNmnHPnj0Ui8V8+vQpi4uLqaamxpSUFLq7uyuNbdu2LU+cOKG0zdfXl82bN69y3g8fPtDIyOi/8pD9kpKSEjo6OtLMzIwXLlygp6cn1dTU6ObmxoSEBPbo0YMxMTG0trbm5MmTlULsL1y4QC0tLWpoaPDVq1ckSW9vb0Fk/P39eebMGdarV496enrVXn///v10cXER6ocmJyfTzMyMa9euVUpgf/78OV1cXJSqlZSWljI2NpYaGhrCA7pr164sLCzkggULaGJiwvnz59foXi0pKeHq1atpZ2fH0NBQ3rxZczWQ9PR0xsbG0tLSkq1ateK+ffv+V9aqsrKyOGbMGBobGwv3ZG1tzfHjx3PPnj1cuHAh69evT6lUSnV1ddatW5fa2tocMWIECwoKuGDBAiFoJygoiEOHDqWfnx/fvn1LS0vLaq25Fi1aMDc3VwjCmTp1qtL+Y8eOCfl3IpGIdnZ2zMzM5JIlSygSiRgTE8P+/fv/n/buPC7Kqv0f+Gdm2HeGYZU1kEUUBAUxCFAoDUPMJR8DRco0tyeXNJfswTQ0lyxxRURTCS1/mva4JUgoCO6AiBiiMCoqsu8zzMz1+4Mv9+MEKmibcd6v17xeMnPue+65QS7OOde5DqmqqtL58+d/93vCMH8FFvi6YO7cubRs2TJSUVGhxMREIiLS1tamCxcukJOTk1JbZ2dnpWw9hUJBampqtHHjxnbnjY6O7rDW5+/hhx9+4NL6jY2NqaioiOLj4yksLIwCAwNJS0uLTp06xbUvKyujCRMmkJWVFdnZ2XGfq6mpiTQ1NamxsZFb41VfX08AlEqCtbl37x6ZmJhwgbKgoIBMTExo3bp1JBKJ6MyZM0TUmvJvYWFBGzZsIKLWpCBfX1+lHl7bL+Pz589T3759KTg4mG7e7LiIcXNzM23evJmsrKzozTff7LCAAFHr8o5jx47R8OHDSSgU0syZM5+4qP95KBQKunHjBm3fvp2ioqKoZ8+eZGBgQCEhIRQTE0MHDhygt956izQ0NLienIuLC33++ef03Xff0bhx40gkEtHcuXNp1KhRZGVlRUlJSRQYGEg6OjqkpqZGlpaWNH78+KcOY7YtWxk5ciQBoLq6Ou611atXU2VlJdebbHsYGBgQj8ejhQsXkre3N/n5+VG/fv1+t3vDMH81Fvi64IcffqC33nqLzM3NueE7a2trSk1NVVq6oFAoSEtLSyk789y5c8Tj8dql1tfV1ZFIJHrqtjovYvv27Vyx4rYeaFpaGvH5fBoyZAiJRCKSy+Ukl8spGYowDgAAIABJREFUPj6eTExMaPbs2VRbW0s9e/bk5i7b5jiJWhN9JkyYQBEREcTj8drNfSkUCnrjjTfoP//5DxG1BlN7e3tasmQJGRsb0/Hjx4moNQvQ2NiYtm3bRlFRUdx6vLYyXzwej+bMmUN1dXU0a9YsMjU1pV27dnU41CaRSGjLli1kbW391ID36NEjWrVqFdnb25OHhwdt27at3Y4Wz0MikVBWVhatWbOGRowYQcbGxmRjY0Ph4eG0adMmys7OpsuXL9PatWspJCSEdHV1ydPTk+bNm0dffvklt/uFlpYWjRkzhm7dukUFBQUUERFBIpGI3n//fXJzcyNbW1saPXo0vfHGG9zauccfv32urT5nZmYm2dvbE1FrgpO/vz8R/e/nUk1NTemPjVdeeYVMTExo7dq19OWXX3a47RbDvKxY4OuCu3fvkkgkotdee418fHyIiMjT05MOHz5MVlZWXLvy8nIyMDBQOnbSpElkZmbW7pxr167tsNzZi2rLnOTxeBQeHk6Ghobk5eVFK1asIGNjY/Ly8qJt27aRo6Mj7d+/n8tWfTyt38LCgoYMGUJErdsztRXoHjx4MB08eJDU1NTa7ctH1BoYvb29SSqVUmNjIw0cOJAmT55MZmZm3E4Eu3fvJl1dXbK0tOSC3bRp06h3794kEAhIX1+fzp8/Tz/99BNXX7OjxB+JREJbt24la2trGjp0aIfzfQqFgs6ePUvjx48nAwMDioyMpKysrBeaq6qurqbjx4/Tp59+SoGBgaStrU3u7u40ffp0SkpKIrFYTEVFRRQXF0djx44lY2NjcnBwoA8//JB++OGHdvsPtn2WmJgYsrKy4iqqrFixgq5du0YTJkzgfvZ4PB699957SoW12x42NjbE4/HIyMiIyx5+VNdMG0/9SuPWn6Conefpo72XafMvrWvoNm7cSGpqavTxxx9z84CPJ70QEQUEBHRYc5ZhXlYs8HWRpaUlRUZGcvvNvf7665SYmKgU1C5fvkxubm5Kx9nY2LQrZN22qeizUuq7qra2llxdXUlVVZWrEBMaGsrN7xUXF9OBAwfI39+f+vfvT1paWrRhw4Z2ewMKhULumidPnkzr16+n8vJy0tPTo++++44AcBmZbfLz88nIyIhu3LhBcrmcRo8eTaGhodSjRw/auXMnnT9/nnr27Mn1QocNG0Y5OTn0448/cokXISEhJBaLacyYMeTg4EDJycntPmNbwLOxsaEhQ4Z0uKFvXV0dbd26lfr27UsODg60Zs2aDgNOZ9y5c4eSkpJo+vTp5O7uTtra2hQYGEiLFy+mY8eOUXV1NT18+JCSkpJo0qRJZGdnR6amphQeHk4JCQncPGln3bx5k8aMGaO0H2BiYiJFRkaSiopKh0Gv7fHgwQOSSqWULa6iD3a1Vk1xfELVlMm7L9Dlkgou+5TP55OZmRklJCRQQ0MDnT9/nqysrNj6POYfhQW+Lho9ejTNmjWLBAIBKRQK+te//kWbN29WKjp96NAhpUr4TU1NxOfz2/0Cj4uL43pUv5crV66Qrq4umZqaUnFxMRG1ZlIKhUJSU1MjFxcXksvldOjQIW5XgieVrdLS0qLp06cTEVH//v0pPT2dduzYQSNHjuRKXz1OIpGQp6cnV2d0/vz55OXlRdbW1hQQEMAldaipqdGqVatILpdTU1MTRUZGkkAgIFVVVUpMTKQtW7aQSCSiRYsWtdvDTyqVUlxcHNnY2NAbb7xBZ8+ebXfd165doxkzZpBQKKQRI0bQzz//3KWlCHK5nHJzc2nz5s0UHh5ONjY2JBKJaMSIEbRmzRrKysoiiURCdXV1dOTIEZo9eza5ubmRvr4+hYaG0jfffEN5eXm/W/bj3r17yd3dnXg8HhkaGtLgwYOfGPTakqy6UifTYeFPZOY3hvT19SkmJoa7V1KplHx9fbn5V4b5p2CBr4vWrFlDUVFRxOPxSCwW04wZM2jFihWkp6fHtYmNjaWpU6dyXycmJpKKiopSj0omk5GDg4PSmqkXtWXLFhIIBBQYGEhSqZQqKytp3Lhx5OLiQpcvX6ZPPvmEhEIh+fj4kJ2dHQ0dOpQ+//xz0tHRabdujohIRUWFoqOjSSKRkKamJtXX19Pw4cNp8+bNBKBdIe3FixdzW+Zs3ryZjI2NuWxCAwMD6tmzJ/n4+FBFRQURtSa89OjRgyv8nJ6ezm1q+tvtf6RSKW3bto1sbW3p9ddfp4yMDKXXJRIJ7d27l/z9/cnc3Jw+++wzruLMszQ1NdHp06cpJiaGQkJCuGuNioqi+Ph4KigoIIVCQRKJhE6fPk2fffYZ+fr6cr2+5cuXU2ZmZpd30+iqmpoamj17NhkZGXUY9KysrKi+vp4mzIkmDXMHgkCFtHsHcUGux4et8708VQ3uof9aONks+C/ZzT9In+06qfR+8+bNo6FDh3bpjwaGeRmogOkSHx8fJCUlQSAQIDMzE0ZGRqipqUFLSwvXRiwWw9ramvt6165dcHJygkAg4J7bv38/TExM4O/v/8LXREQYP348vvvuOyxatAjLly9HamoqJk6ciOHDh+PSpUtQU1NDSkoKKisrkZ+fjzt37uDKlSuYOXMm+vfvj7S0NAwbNow7p0KhgEwmg0gkQn5+PmxtbUFESE1NRUNDA1RUVPDhhx9y7c+ePYv4+Hh8//33ePXVV5GVlQUAsLa2RlxcHFavXg09PT0kJiZCQ0MDW7ZswcyZMyGXy7Fo0SLw+XyMGDECS5cuxZQpU7h71dLSgl27duGLL76Avb099uzZA19fX6V7vXXrViQkJMDFxQUzZ85EWFgYVFVVn3i/KioqkJGRgYyMDKSnpyM7Oxuurq7w8/PD+++/j4SEBJiamkKhUCA3Nxf//e9/kZycjIyMDDg6OiIoKAj/+c9/4OvrCy0trRf+/nWWnp4evvrqK0yaNAmurq5Kr/H5fCxYsAA3K1uQIpZBd+BYqNy+DGqRtjuP1ex94PEFSs8p+Kr4vlCGUXer0dtCD5988gkOHz6MjIwM8Pn8P/RzMcyfjQW+LvL09MT169chEomQlpYGZ2dn5Ofntwt8ffv25b4+d+4cpk2bxn1NRFixYgWWL18OHo/3QtdTW1sLb29v3L59G0ePHsWgQYMwf/58JCYmIj4+Hm+++Says7MxZcoUqKmpYcmSJYiNjcX333+P9957D9XV1Rg0aBBOnDihFPiampogEAggFApx6dIl9OvXD8ePH8fAgQORkpKCIUOGcG0fPXqEYcOGgcfjISAgAHw+HxYWFggNDcVnn32GYcOGYeDAgYiNjUVDQwNCQkKQlpYGQ0NDrFmzBitXroSrqyuys7PRo0cPAK0Bb/fu3Vi+fDleeeUV7Nq1C35+fgBag/KJEyewefNmZGRkYPz48UhNTYWzs3O7+0NEuH37NtLT07nHvXv34OPjAz8/PyxbtgwDBgyAtrY2iAi3bt3CoUOHkJycjNTUVAiFQgQFBeGDDz5AYmIihELhC32/fg+XLl2CiooK9PT0IJPJIJFIoKuri+3btyNb1xuqPX2gQoDkwU3IW8o7fd5mmRyrj+Si5sgaVFdX4+zZszAyMvoDPwnD/DVY4OsiTU1NuLq6QiKRICcnB35+fqisrIRMJgMRgcfj4c6dO1yPr7S0FDU1NZg8eTJ3jmPHjkGhUCgFmudx8eJFDBo0CLq6urh16xaqq6sxYMAA2NnZITs7G5qampg7dy52796NFStWICoqCgqFArt378bChQsRERGBd999F/fv38e5c+eUzt3Q0AA+nw8DAwOkp6fD09MTBw4cgKGhIeRyORITE3H48GEsW7YMFy9ehKqqKsLCwpCRkQETExP06dMHs2bN4npRixYtwoULFxAUFIT6+noMHz4cRkZG+OyzzxAbG4sRI0YAAGQyGRfwbG1t8e233+K1114DAJSXlyMhIQFbt26FoaEhpk6diqSkJGhra3PXLZPJkJOTw/Xm0tPTwePx4OfnBz8/P0ydOhV9+vSBikrrj/7Dhw9x+PBhpKSkIDk5GVKpFEFBQQgJCcHatWthZWX1Qt+jP8L48eMREREBHo8HIsKOHTvw6aefwt61L1ILHoLo6cff2xQF8HjQsPWA4aAoCLT0AQBEwOmbFXjXcwCiF34MdXX1P+HTMMxf4C8cZn1pzZw5k3x9fcnMzIxOnDhBwcHBxOfzuTkeS0tLLrEkOjpaaf6PiMjPz09pN4TnsWHDBuLz+RQcHEwSiYS++eYbEolEFB8fTwqFgn788UeysrKi8ePHt9uN/ejRo6StrU1r166lq1evkqWlJRkbG3PXTNS6T56amhplZmaSj48PnTx5kgwMDEhPT480NTVJW1ub+Hw+OTo6kqmpKZWWlpKHhwf17t2bwsLCKD09nUxNTbkNW+fNm0c8Ho9UVVXp448/JjMzM5oxYwZXX7OlpYV27NhB9vb2NGjQIEpLSyOi1qUIGRkZFBERQQYGBjRx4kSlCiJ1dXWUnJxM0dHRFBwcTLq6uuTq6kpTpkyhXbt2UVFRkVKSSW1tLf300080a9Ys6t27NxkYGFBYWBitX7+e8vPzX4pyXLW1te3m3erq6mjUp1vI5uMD3Jye3qtjleb4rOb8QGaR68h6/iGynLmbtJxeJQ07D6VkF8fFR2hLWsfFARjmn4L1+J6Dj48PLly4gPLychgZGaGiogKqqqpoaWkBEeHhw4ewsLAAABw8eBBeXl7csWfOnEFpaSnGjBnzXO9NRBg7diz279+P6OhoTJo0CaGhoaipqUFmZibU1dXx9ttv4/r169i5cycGDx7c7hxDhw5Fnz59EB0djcmTJ0MoFEJXVxdRUVHQ1NREVlYWmpubIZVKERgYCIlEgkmTJqG+vh4ymQxCoRD//ve/MXHiRPj4+GDfvn3c69bW1oiMjMTbb7+NHTt2wMvLC87OzigsLISzszMsLS1x/PhxHDx4ED4+PpDJZPj222+xbNkyWFlZYfv27QgICEB9fT22bt2KTZs2oampCVOnTsU333wDqVSK9PR0JCYmIiMjA/n5+fDw8ICfnx8++ugjvPrqq0rDkRKJBKdPn0ZKSgpSUlKQm5sLb29vBAUFIT4+Hv369eN6fy+LwMBAFBcXIyIiApGRkfDw8ICOjg4se3vjYnbpE4/jq2lC3bwnAECgbQjh61Nxd8N4KCSN4Ku3zlVK5ISC+3V/yudgmL/Ky/U//m/Cx8cHc+fOhVwuB9A6BNcW+MrKymBqagpVVVUQEfLz8xEXF8cdu2LFCsyfP/+5ftlWVVXB29sbd+7cwc8//4za2lp4eHhg2rRp+OSTT7Bp0ybExMRg5syZ2Ldv3xOHqng8HuLi4tC/f394e3vj+vXrSq8JBALIZDIArYEDAEpKSrg2cXFxGDlyJEJDQxEVFYV9+/YhLy8P5ubmGDVqFKZOnYqffvoJpaWl6NGjB2QyGYYNG4asrCxERkZi7ty54PF42LVrF5YtWwYLCwvEx8cjMDAQeXl5mD59OpKSkhAQEICPPvoIMpkMZ8+ehbe3NyorK+Hr6ws/Pz98/fXX6NevHzQ0NLhrUygUuHLlCpKTk5GSkoKzZ8/CyckJwcHBWLp0KXx9faGpqdnle/93IJPJcOfOHUilUlRWViI2NhaxsbHg8XgwNzeH24xNAATPPA+nbXr5N2Ojtc0t7dsyzD8IC3zPwc7ODnK5HAKBANevX0dFRQXU1dXR0tKiNL+XmZkJmUyGsWPHAgCys7ORk5ODAwcOdPk9s7KyEBQUBKFQiLy8PMTExOD06dM4dOgQ+Hw+Bg4cCKFQiLNnz8LR0fGZ57t16xYUCoVS0AMAdXV19OjRA0VFRU88dvTo0bCwsIBIJIK/vz+2b98OExMTBAcHY/Xq1UhOTsaSJUvw448/wsDAABYWFpBIJDh37hxsbGyQlJSEZcuWwczMDHFxcfD19cWBAwfg5+eHGzduoG/fvvDy8uIyLtvm5+bNmwcXFxelLEMiws2bN7lAl5qaCpFIhODgYEyZMgVJSUkwNDTs8v3+KzQ2NqK4uBh5eXnIzs5GQUEBbt++jQcPHqC6uhrNzc0AwH1+IgKfz4e5uTkSEhJwpEKE/Nz7IIUcaHuQAiSTAnwBpA9ugq+uDRWhBRTN9ag8GQd16z7ga2grXYeexpMzYhnmn4AFvufA4/Hg4+ODM2fO4Ny5c5DJZNDR0UFLSwvEYjGXEBEXFwdLS0uuh7FixQrMnj1bqYfSGV9//TXmzp2LoUOHYsGCBRgyZAgGDx6MtLQ0xMTE4MCBA1i9ejXCw8M7lSX68OFDLpnkt5qbm1FVVfXMc5SWlqK0tBQ3b96Eqakp+vfvjyNHjmDPnj3w9/dHVVUVnJ2dUVlZiQULFmDcuHHYu3cvQkJCYGpqiq1bt8LIyAhffPEFQkNDoaqqiubmZjg7O8PFxQV+fn5ISEjgsjwf9+DBA5w6dYoLdjKZDEFBQQgNDcW6detgaWn57Jv6JyMiVFRUQCwWo6CgADk5Obh+/TpKSkq4wNaWGSwQCKCvrw8TExPY2NjA398f7u7u6NevHxwdHbF9+3bu52j9+vWYOHEieDwebqUV4Xj+QzxMTURNRhL33g3XUqHvOw6qRpaoStsFRWM1+Gpa0LDtC+Ph85WuU0OFD2dz3T/13jDMn40Fvufk4+ODS5cuIScnByKRCAqFggt8bT2+lJQUBAcHAwAKCwtx6tQpxMfHd/o9iAijRo3CoUOHsHTpUkilUowZMwabN2+GVCqFt7c3hg0bhmvXrnUpzd7U1BR79uzBxIkTuSHNNjo6OqioqICbmxuuXr3a7lg1NTVIpf9bG9bY2AgtLS3cuXMHI0aMgJ+fHwQCAUxMTODt7Y1Vq1YhOTkZrq6u0NPTw8iRI5Gbm4uwsDDU1dXB0tISkZGRCAsLg4+PD/T09Nq9Z21tLdLS0rhAd+/ePQQGBiI4OBjz58+Hk5PTCy8LeVEymQylpaUQi8UoKipCbm4uCgoKuMBWU1MD+r8hRSJSCmwBAQFwd3dH3759YW9vDwMDg6e+l6+vL9566y3ExsYqBfnR/SyxLvlXGLwWDoPXwjs8VrtXwFPPTQBGe/79/nBgmN8TC3zPqW1dWlFREZfg0hb4evXqhebmZty7d49bxrBq1SpMmzYNurqd+2u6oqICXl5euH//Pr799lusX78eIpEIhw4dQnR0NO7evYvvv/9eaTF3Z9TW1mLp0qXYvXs3ZDIZF8jU1dXB5/Mxbtw4AK1LLjZt2gSpVIoTJ07g6tWrGDlyZIfDtNeuXYNUKkV0dDQMDQ1haGiI2NhY5Obmws3NDQqFAkBrLzE/Px9CoRCzZs3C3Llzoa+v3+58EokEmZmZ3BKDvLw8DBgwAMHBwdixYwc8PT2VigH8GRobGyEWiyEWi3H79m3k5+crBba6ujpu3rZtBMDMzAw2NjYYNGgQ3Nzc4OrqCjs7O5iamr7QonAPDw8cPHiw3fMiHXUEOBrj5PVnL2noCI8HDHIyhpEOW8bA/LPxiJ7nvwhTV1cHkUgEIoKvry8KCwuRkpKCjz/+GB988AEqKysxZcoULgC6ubmhsLCwUwuCz5w5gyFDhsDExAQzZ87EypUrsWTJEtTV1eGrr77C/PnzMWfOnKdWJ/mtffv2YcWKFcjNzYW+vj7eeecdLFu2DMbGxpgxYwakUim2bduG8noJ9l+6i4IHtahtlkFPQwWSh7dQfeUEVkYvhq2t7RPfQ0NDA15eXqiursa1a9egpqYGd3d3AEB+fj5Gjx6NadOmoX///krHyeVyZGdnc4EuMzMTvXr1QlBQEIKDg/Hqq692eXi4K4gIlZWVEIvFKCkpQXFxMW7cuIEbN25ALBbjwYMHaG5u5pKFJBIJNDQ0YGpqCltbWzg5OcHNzQ2Ojo6ws7ODpaVll743v6ecO9X417YsNLXIu3yspqoA+yb7wM3y6T1OhnnZscD3AlxdXZGfn4/Q0FBcunQJR48exYQJE7Bz507MmzcPFRUVuHLlCubMmQMiwrp16555zlWrVmHhwoV44403oKKigtLSUsyaNQsrV66Era0tNmzYADs7u05dX2FhIRYsWIBjx45BKpXC19cXS5cuRWBgYLu2OXeqsfGXm0j79REAQCJTcK9pqPBBAAKdjNGL7mLWhLc7fD8tLS1oaGjAyMgI/v7+OHfuHKRSKaZOnYrIyEguyYSIuD8U2hJSTE1NuUAXEBDwzOG+rpDL5dwwZElJCUpKSnDz5k0UFhaiuLgYZWVlICJoaGiAiNDc3Aw+nw8zMzPY2trC2dkZvXr1gr29Pezs7GBra/unlirrqj1Zxfji6HU0tSie3fj/aKrysTjEBRE+tn/chTHM3wQLfM9BKpVi9uzZiI+PV5rvaqOhoQGJRIJhw4Zh+/btcHZ2Rm5u7lOTLhQKBYYPH45jx44hKioKR48exTvvvIPq6mqcPHkS33zzDUaNGvXMuazm5masXLkS8fHxuHfvHmxsbDB9+nTMnj37iUsoWn9RFqBZJn/GEBmBT3JIz+3FvV/2dthi2LBhyMjIQFBQEKZOnYrBgweDx+Ph/v37XKBLSUkBESEoKIh7tK17fB5NTU3cMGRbYLt9+zYKCwshFotRXl4ODQ0NqKurc4FNKpUq9dicnZ1hZ2fHPQwNDf/yecMX0dnvKY8HaKgIsDjEmQU9pttgge85HD58GGFhYZ1q21a/Mjk5+YnzUmVlZfDy8sKjR48wdOhQXL58Ge+++y4SEhIwZswYLF++vMO5sMcdO3YMS5cuxYULF6CpqYmwsDDExMTAxsbmqcc9T++ATzLUpO5A9cWfQK07fHCvRUREYOXKldDR0cEvv/zCBbr79+9j0KBBXK+uZ8+enQosRISqqiqloNb2KCoqQklJCerr66Grq8sFtsbGRjQ0NMDIyAh2dnZwcnKCg4ODUmAzMzP7xxdfzr1bjU2/3ETqjUfgAWjuoBc/yMkY0wId2PAm062wwPcciAghISE4fvx4p9pramrC2NgYeXl57ZJbUlNTERISAiMjI2hqasLFxQVVVVVoaGjA1q1blaq+/Nbdu3exePFiHDx4EA0NDfD09MSSJUswfPjwTl3Xk+aDyn9ag+biHChamiHQNoSezyjoug9RasOTS1F/6AuU/3pJ6XljY2O88soruHbtGgYOHMj16Dw8PDoM/HK5HPfv328X2MRiMW7dugWxWMxlQT4e2GpqaqCjowNbW1s4OjrilVdeUQps1tbWf9k8299NRb0E+y/fRcH9OtQ2t0BPQxXO5roY7WnJElmYbokFvufU2NgIBwcH3L9/n3uurQdD/1esuu3fWlpamDRpEr7++mulJQ5ffPEFlixZAldXVzx48ACvvfYaTp8+jU8//RQzZszocGhSJpMhNjYWGzZswK1bt2Bubo73338fCxcu7PS8U2lpKTIyMvDV+Trc5xsDv+n5SB+VQNXQAjwVVbRU3MGD7xbCZEw01M0c/vdZAfTUakTmqvdQX1/PPc/n85GcnIyBAwdCQ0MDzc3N7YYh2wJbcXEx7t27Bx0dHejr60NNTY0LbG1rCe3s7NCzZ0+loNY2z/Z4cWqGYZjOYssZnpOWlhYyMzOVshydnJxQVlaGyspKWFtbo6SkBBoaGvj2228xevRo7NmzB+PHj0dUVBRKS0tx8uRJ2NnZQUVFBdra2uDxeMjOzu5wLjAjIwNLlizBmTNnoKKigiFDhuDw4cPt9mX7LYVCgYKCAqVteWpqajAgIBhlThEA2g/3qRk/PjzKAw88yKruKwU+AnC7WQtaQlOlwKdQKLBx40YsWLAAJSUlqKqqgpGREfT09KCurg6FQoHGxkZUVlaisbERNjY2XNLIbx9CofClnmdjGObvifX4XtB/k9PwY84DqBrboEkGKCQNOL53Oya/7oavVy7HhQsX4OLiAgAwMTHBo0etWZMCgQDa2tpwcHBAeXk5Nm7ciLfeekvp3JWVlViyZAn27t2LqqoquLq6Yv78+QgPD3/i/JREIsHFixe5bXkyMjJgYGDAlf3y8/ODk5MT4s7cxrrkX5WyNx9XcWITGq6mgGQSqJnawzR8JfhqyjUuNVT4eJicgOqs/UrPOzs7o7q6GhUVFTA1NeWGIX87HGlubv6Pn2djGObvhwW+5/S09H9VfuuQX4CjMaYHOsDdykBpiLONrq4upkyZgujoaG7YTqFQYOfOnVizZg0KCgogFAoRHh6OpUuXdpjiX1VVhbNnz3K9uStXrsDZ2ZkLcr6+vjA3N2933Kx9V/DjUyr5AwAp5JDcK0Cz+Cr0fUaDJ2g/QNBSmAHN7O9RW1uLyspKyOVy7Nq1CwMHDoS1tTXU1NSefTMZhmH+RCzwPYfnSRX/d4hnuxqYIpGI6wHm5uZi0aJFOHnyJIgIAQEBWL58OQYMGMC1JyKUlJRwPbn09HQUFxdjwIABXKAbMGBAh9Vhqqur8euvv+LGjRv49ddfcUnbC/k1nat+UnF8A1RF1tDr3z5pJsjZBNsjWxNwysrK8PPPP+Odd95hAY9hmL8tNsfXRV1J/ycCmlrkWH70OuR2A4Gqo0qvl5eX4/3338eRI0fw8OFDODg4YO3atZg2bRr4fD5X0eTx+Tm5XM4FuUmTJsHd3Z1LgpFIJCgqKlIKcDdu3MD169fR2NgIExMT6Orqgs/no8ldHbD06NyHViggq7rf4UuPV/I3MTFBRERE587JMAzzF2E9vi54Uvp/S/kdVPy8GdKHNyHQ1IfhoChoOb2q1IanaIH8xBpYaimQlZXFrX0TCASYMGECYmJioKenh3PnznG9uczMTFhYWCjNz9na2qK0tFQpsF29ehU3btxAWVkZ9PX1oaWlBR6Px6X9i0SiduvY8skCB2+2QCpX/vbLG6rRXJIDTQdv8FTU0FycjUcHYyAaPh9aPQcotdVQ4WP2646Y4m//B9xthmGYPwYLfF0weffFdgWASSFH6bbtoyFcAAADvElEQVSp0PV4E7r9h6NZnIdH/+9zmEeth6rwf1vq8AAYS+7hwrop7c47Z84cpKenIy8vD+7u7vDz84O7uzuMjIxQVlaG3Nxc5OTkoLCwEKWlpVBVVeXKazU0NEBdXR02NjZwcnKCvb29UhKJtbV1hxvSltdL4PvlqXbJLfLGGjw6uALSstsAKaCibwLdfqHQ7Tu03TnUVfg4+8lgthaMYZiXChvq7KTyegnSfn3Ubk6vpeIO5PWV0PUaAR6PB01bd6j36IWGvFMw8B/PtSMAj1RNYWJtjzKx8iavYrGYW5dWUlKCDRs2oKWlBWpqapDJZCAimJmZwc7ODm+++SacnJyUem+d3fHhcU+q5C/Q0odZ+MpnHs8q+TMM87Jiga+T9l+624XWBOmjknbPqqqqoKWHJ/CbwLd//34YGBjA3NwcvXr1wtixY9GnTx+u52ZsbPyHrGebHuiAM4Xlz1XJX0NFgGmBDs9uyDAM8zfDAl8nFTyo7XDNm6rQEgItfdSe+3/Q8xqBZnEumsV50LDp066tVA4I7fsABcmoqamBQCCATCZDfHw83nvvvT/jYyhxtzLA4hDn56zk78zqOzIM81Jiq4c7qbZZ1uHzPIEKjEd9iqaii7gbOx615w9C28UPAl1Rh+0DgoeisrISZWVl2LJlC4KDg9GrV68/8tKfKsLHFotDXKCpKsCzOpU8XuuebWz7GoZhXmYsuaWTOrPgu82D3R9Du3cQdD3ebPfa2317YN3Yvr/35b0wVsmfYZjugg11dpKzmR7UVR50ONwpLbsNVWEPEClQd/koZPVV0OkT3K6dhgofzuZdT0T5M7hZGmBLRH9WyZ9hmH881uPrpCel/wNA1akE1OecACnkULdyhfD1KVA1bL+xKkv/ZxiG+euxwNcFHa3j6yweDxjSyxRbIvr//hfGMAzDdBpLbumC6YEO0FDpXH3L32Lp/wzDMH8PLPB1QVv6v6Zq124bS/9nGIb5+2DJLV3Ulsbf1d0ZWPo/wzDM3wOb43tOLP2fYRjm5cQC3wti6f8MwzAvFxb4GIZhmG6FJbcwDMMw3QoLfAzDMEy3wgIfwzAM062wwMcwDMN0KyzwMQzDMN0KC3wMwzBMt8ICH8MwDNOtsMDHMAzDdCss8DEMwzDdCgt8DMMwTLfCAh/DMAzTrbDAxzAMw3QrLPAxDMMw3QoLfAzDMEy3wgIfwzAM062wwMcwDMN0KyzwMQzDMN0KC3wMwzBMt8ICH8MwDNOtsMDHMAzDdCss8DEMwzDdyv8H95O8/n01b68AAAAASUVORK5CYII=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAb4AAAEuCAYAAADx63eqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOydd3zN1//Hn3fmZkfIQEgIXzMxI0iMILSq/dWqvcVWsWdVqgS1V1tUKVqzpWbVzBCrVowgIRojyN7JHef3R76u3m8SqxT1eT4e98H9nPM5n3M+N/fzuu/3Oef9lgkhBBISEhISEu8I8tfdAQkJCQkJiX8SSfgkJCQkJN4pJOGTkJCQkHinkIRPQkJCQuKdQhI+CQkJCYl3Ckn4JCQkJCTeKSThk5CQkJB4p5CET0JCQkLinUISPgkJCQmJdwpJ+CQkJCQk3ikk4ZOQkJCQeKeQhE9CQkJC4p1CEj4JCQkJiXcKSfgkJCQkJN4pJOGTkJCQkHinkIRPQkJCQuKdQhI+CQkJCYl3Ckn4JCQkJCTeKSThk5CQkJB4p5CET0JCQkLinUISPgkJCQmJdwpJ+CQkJCQk3imUr7sDEhKvioSMXLb+cZuo+DTScnTYaJRUdrahYx0XiluZve7uSUhIvCZkQgjxujshIfEyOR+XwrIj0Ry99hCAXJ3BWKZRyhFA00oODGlSgRpl7F5TLyUkJF4XkvBJ/KtYfzyWGXuiyNHpedJftkwGGqWCya0r072+2z/WP4lXg2TdSzwPkvBJ/GvIF70rZGsNT6/8X8xVcia3riKJ31uKZN1LvAiS8En8Kzgfl8InX4dwZ/dScmLPYcjJQGnnTLEmvTB3rwuAQZtD8qHVZEWFIQw61A7lcO4+G3OVgk0D6uPpIj0Y3yYk617iRZEWt0j8K1h2JJqcPC1K6xI4d52FwtaB7JjTPNwxm1J9l6K0cyJp31KEQU+pgK+Ra6zIe3ATgBydnuVHovmme93XPAqJZ+V5rHshIFurZ8aeKwCS+ElIwifx9pOQkcvRaw+RqTTYNepmPG5RoR5KWydy46MR+jyyrp/AZeha5GYWAJg5VwDyH4yHrz4kMSNXmg96Czgfl8L0Xy8Uad3nJfxJ4q756JLvAaB2rkAx/4FQoiwz9kTh6WInWffvONI+Pom3nq1/3C70uD4zGW3SHdQOZcm9ew2lrSMpoRuIW9SVu98NJTMq3FhXBmw9U3g7Em8W/2vdlxm5CbvGPXi4Yza6lPsorexx+HgiLoEbcRnxI+YVvUnYMQd4bN1LvNtIwifx1hMVn2ayqAFA6HUk/DoXK4/mqIqXQZ+eiPbhLeRmFrgMW4u9/yASdy9AmxAHQI7OQNS99NfRfYnn4H+te6WdEzKZ3MS6l2us/ntcBoBMJjdaf3+17iXeXSRXp8RbT1qOzuS9EAYSds0DhRJ7/0EAyJRqkCux9emMTK5AU9YDTVkPsm+eQVWizH/b0f7jfZd4Pp7Fun/Enws6IfKyQQhs/+ICf2TdD2zs/qq7K/GGIgmfxFuPjebxn7EQgsQ9i9FnpuDYcRoyRX6ZytGt4In/tQget6N6ld2UeAk8i3X/iLIjN2HIyyHz4kEUNo7G45J1LyG5OiXeeio722CmzP9TTvptGdrEOBw7TEWuerxQRVOmOkobB1IjNiMMenJuXybnz0jMy9fOL1fKqVzS+rX0X+LZeRbr/q/I1Rqsar1P4q756DNT/tKOZN2/y0gWn8RbT4c6Liw4cA1d6gMyzu0DhYrbS3oYy+3fG4pVNT8c2k8hce9i0o5vRWnjSIkPRhotBAF0qO3ymkYg8TQMBgOXL18mL+OxeBVl3RdACIQuF316IgrL/NWcknX/biMJn8RbTwkrM5r8x4HfrxhwnbCryHpqB1dK9pxX4LhMBn6VHKStDG8QQgiuXLnC4cOHOXLkCEePHsXGxoY63SdgpixNrs5gtO6dOn9pYt1n3zyLwtwGlaMbQptLSsg65Bor41yuZN1LSJFbJP4VnI9LofPK42Rr9c99rhS55fUjhODq1ascOXLEKHaWlpY0bdoUPz8/mjZtSpkyZUjIyMVn9iEyE+O583VfUKiQyRXGduzfG4pMoSIlZD369ARkSjVmpf6DXZNeqB3LAWCmlHNsfDPph847jCR8Ev8aXiRWp1JmYNpHHlI0j38YIQTXr183ETq1Wm0UuaZNm7Jx40Z+//13srKyyMjI4O7du/j7+2P1/igOXn34xDBlRSGTQauqTlKUnnccydUp8a/AYDCQHfk72cdCMG/YjRytnic9F4XBgNDncf/gd0zfFkPpb76hadOmxr1fEi8XIQQxMTEmQieXy/Hz88Pf35+ZM2fi5uZmcv/j4+MJCQlBp8tf0CKTyahXrx6LFo7BrPV48l5A+DRKBUOaVnhZw5J4S5EsPom3GiEEu3btYuTIkdy8eRMzMzNCLt7i/yYtw8ytNkIIhPzx7zu1QoZMJiP35hnuHVxDXnx+FA+NRoOLiwvBwcF06NDhdQ3nX4MQgps3b5oInV6vx8/Pz2jVubu7F/lDw2AwsHr1agICAgBQKpXY2NiQlJSEXC5n5uYQVp5ORIei0PMLQ8rEIfEISfgk3mr8/Pw4fvw4OTk5ANSrV4+UlBSuXbvGR590xbyqHyUr12XPgcN4VHJn/5a1rJzYlxMhB1mwYIFJWzKZDE9PT86ePStZfi/ArVu3jCJ3+PBhcnNzTYSuYsWKz3RfDx06xLhx45DJZFhYWBASElKgjpmZGVY138e6SS+Qq55o3UvZGST+F0n4JN5q1q9fT0BAgFH4bGxsSE9PRyaTUb58edasWYOPjw/+/v7UqVOHOXPmoNFo+PTTT5k9e7ZJW3K5nJSUFKytpRV/z0JcXJyJ0GVlZRnn5/z8/KhUqdJz/YCIjIxk/PjxXL16lZkzZ9KxY0cuXbqEp6dnofXVajUOlery/ugF/H75HmqVijz948fZo3x8fpUcGNK0grR4ScKIJHwSbzVZWVl4enqSkZHB/fv3jcfNzPJX7KWmpmJmZka7du1ISkri6NGjABQrVozk5GRjfZlMhpmZGc2bN2fXrqK3RLzL3Llzx0To0tLSTISuSpUqL2Qpx8XFMXXqVPbs2cPkyZMZNGgQarWaAwcO0LlzZ3Jzc8nIyChwXtmyZZkwYQLdunWjdPlKzNp8hOiH2aTlaLHRqKhc0poOtaUM7BKFICQk3mIGDBggunfvLjIzM0WLFi2EmZmZAIRMJhPlypUz1uvZs6coVqyYIH+vupDL5QIQGo3G+P/evXsLuVwupk+f/hpH9OZw9+5d8eOPP4qAgABRsWJFYW9vL9q2bSsWL14sIiMjhV6v/1vtJycni/Hjxwt7e3sxadIkkZKSIoQQwmAwiODgYGFvby9sbGyEm5ub8PHxMX52j14ODg4iNzdX7Nu3TzRu3PhlDFniHUFa1Snx1rJt2zYOHjzImTNnsLCw4Pfff8fe3p733nuPixcvUq1aNWNdc3NzkpOTsbCwIC8vjylTplCnTh1at26NnZ0dFhYWrF27li+//NJY9v7777/G0f3zxMfHc/ToUaNV9+DBAxo3boyfnx9Dhw7Fw8MDufzvRznMzc1l+fLlBAcH89FHH3HhwgVKly4N5FvovXv35vz58wCUKFGCDh06MHXqVBwcHMjOzja2M2TIENRqNaGhoTRq1Ohv90viHeJ1K6+ExItw69Yt4ejoKE6cOGE8dvDgQSGTyURqaqpo2rSp2L17t7Fs/PjxYtKkScJgMIhy5cqJy5cvG8tWrlwpZDKZUCqVwsXFRXTv3l2o1WoRGxv7j47pn+bBgwdi8+bNYvDgwaJKlSrC1tZWfPjhh2LevHnizJkzQqfTvdTr6fV6sWHDBuHm5ibatGkjLl68aFJ+8eJF8Z///EfUrFlTuLm5iXLlyolp06YJg8EgatWqJTQajVCpVKJevXpCoVCIpKQkIYQQjRs3Fvv27XupfZX4dyNZfBJvHTqdjm7dujFq1Cjq1atnPD5lyhRq166NRqPh1KlTNGzY0FhmbW1NVlYWMpkMHx8fwsPDqVKlCgD9+/cnKCgIOzs7Ll68SLly5bC0tKRSpUqkpaWhVqv/8TG+ChISEjh69Khxji4uLo5GjRrRtGlT+vXrR82aNVEonn17wPNw8OBBxo0bh0KhYM2aNTRp0sSkfNOmTQwbNgxXV1fkcjlCCAYPHsy4ceMYOXIk58+fR6FQMHToUCIiIli/fj3FihUjNzeXP/74gwYNGrySfkv8S3ndyish8bxMmzZNtGjRwmSOKTMzU8jlcrFz505x/Phx4enpaXLOokWLxPDhw4UQQnzzzTeiV69eJuWPrEVXV1cBCKVSKWQymahXr94rH8+rIjExUfz888/i008/FR4eHsLa2lq89957Yvbs2eLEiRNCq9W+8j6cO3dOtGrVSri7u4vNmzcLg8FgUp6XlydGjhwpXF1dRbVq1cRHH30kypQpI5YsWSKEEGLnzp1CJpMJW1tbUaZMGfHzzz+L6tWrGz/7sLAwUbt27Vc+Dol/F5LwSbxVhISECGdnZ3H37l2T4+PGjRM2NjZCCCHmzp0rhg4dalL+3Xffid69ewshhIiMjBQVKlQo0HaZMmVMFk+o1WqhVCrFoEGDXtFoXi5JSUlix44dIjAwUNSoUUNYWVmJli1biuDgYBERESHy8vL+sb7cunVL9OzZUzg5OYklS5aI3NzcAnXu3bsnGjduLBo3bizKlCkjhgwZIkqVKiVWrlxpLFer1cLd3V1oNBpx/PhxUbNmTfHLL78Y2wgODhYjRoz4x8Yl8e9AcnVKvDUkJyfTvXt3Vq1aRcmSJU3KVq9eTZcuXQAIDQ2lc+fOJuXW1takp+cnH61atSqJiYncv38fJycnkzb8/f1RKpXodDp0Oh2rV6+mT58+1K9fn169er3iET4fqamphIaGGhejXLt2jfr169O0aVOWL19O3bp1n+imTcjIZesft4mKTyMtR4eNRkllZxs61nnxLQDJyckEBwfz3XffMWTIEK5du4aNjU2BeseOHaNTp040a9aMPXv28Omnn7J8+XK++uorunfvjsFgwNvbGwcHB+7evcuAAQOIi4tDoVDwf//3f8Z2QkND6du37wv1VeLdRRI+ibcCIQQBAQG0bduWDz74wKQsPDycxMREZs6ciRCCsLAwli5dalLH2trauBdMLpfToEEDwsPDadeunbFOixYtaN26NREREaSnp6PT6ShdujRjx44lYPgoYtTlSZNbvTSReF7S09MJDQ01ztFduXIFb29vmjZtyqJFi/Dy8jLuX3wS5+NSWHYkmqPXHgKYZDTXKONZcOAaTSs5MKRJBWqUebZN3zk5OSxbtozZs2fz8ccfExkZSalSpQrUE0KwbNkypk+fTpcuXfjpp5+YPn06n3/+OcuWLTOGi/vkk0948OAB5ubm2NvbM2PGDOrVq8f8+fONewX1ej3Hjh1j9erVz9RHCYlHSMIn8VawcuVKoqOj2bBhQ4GyiRMn4uHhgb29PVFRUVhbW+PiYppU1srKymjxAcYFLn8VPoANGzbg4ODA1KlTmTZtGmt3Hsa8bkdKD27I2j8eIlOlGeu+qEg8KxkZGYSFhRmF7tKlS3h5edG0aVPmzZtHvXr10Gg0z9VmfgaLKHJ0+kKzG+T8VwT3X75PyLWEp4b5MhgM/Pjjj0yZMoUaNWpw5MgRqlatWmjdrKwsBg4cSGRkJO3atWPnzp0sWLCAwMBAVq9eTZs2bQBYsWIFP//8Mz4+Ppw9e5Zff/2V7du3Y29vT6tWrYztXbx4EUdHRxOrXULiWZCET+KN5/Lly0yePJnQ0NACFk1OTg7h4eFs3rwZyHd9+fr6Fmjjr65OAF9fX8aOHVugnp2dHQMGDGD27Nl0n/Yth1OLobh8HyFXIpObfl2eVySeRmZmJseOHePw4cMcPnyYCxcuUKdOHfz8/Jg1axb169fH3Nz8hdt/nrRNQkC2Vs+MPVcACh3X77//zrhx4zAzM2PdunVP3EsXHR1N+/btqV69OhUqVOD8+fPMmTOHwYMHs2HDBvz9/QG4dOkSQ4YM4eOPP+bgwYP07NkTb29vevfuzapVq0wiw0j79yReFEn4JN5ocnJy6Ny5M7NmzaJy5coFymfOnIm5uTnt27cHICws7JmEz8vLi4sXL5KVlYWFhYVJ3UWLFrHx9B3CMh2RqxRPDIAMTxeJjRs3olKpjH18RFZWFhEREcY5unPnzlGzZk38/Pz48ssvadCgQYG+vSjn41KYsSeK+8d3kBl5kLyHsVhWaUKJNiMByLh0mKR9y0wGJXS5OPdeyIw9Mjxd7IyxLs+ePcv48eOJjY0lODiYdu3aPTFU2a5du+jXrx+jR49m+/btlC1blnHjxjFgwAC2bt1K48aNAcjLy6NRo0bUqlWLgwcPYmlpyZw5c1i7di1ubm40bdrUpN3Q0FBat279Uu6PxLuFJHwSbzRjx46lcuXKRS5gWLFiBR07djS+DwsLY/z48QXq/XWOD/IjuXh4eHDq1KkCe8ou3cugWLN+6HgcpUTotCTuX05O7DkMORko7Zwp1qQX5u6PE5pmaw3M2BNlFAkhBJMnT+arr76iWrVqfPDBByZCd+bMGTw9PWnatCmff/45DRs2xNLS8oXv1ZNYdiSaHJ0epVVxbBt2IvvmGYQ2z1huVc0Pq2p+xvcZFw6Qemwjaid3cnR6lh+JZmIjB6ZMmcKBAwf47LPPCAgIQKVSFXlNvV5PUFAQ33//PYsWLWLKlCl06tSJ2rVrM3DgQHbu3Im3t7exvp9f/vWtrKwA+OGHH1CpVHzxxRds2rTJpG0hBKGhoQQHB7+U+yPxbiEJn8Qby86dO9m5cyfnzp0r1KI4deoUDx48MGZZuHv3LikpKYVahv87xwf57s6wsLACwrfsSDR6mZy/mnrCoEdpXQLnrrNQ2DqQHXOahztmU6rvUpR2j+eYHonEoo4edO7cmb1796LT6bhw4QLFixenevXq+Pn5MXnyZHx8fIwP+VdJQkYuR6/lZyy3qJS/qT83Phq9NqHIczIuHsSyejNkMhlCwP6Ld9k6vgND+/fi2rVrT81gkZSURLdu3cjOzmbx4sUMGjSI4OBgzM3NGTZsGPv27aNWrVrG+p999hknTpxgwoQJrFixgg4dOtCiRQuWLFmCp6dngQ3qN27cQCaTUa5cub9xZyTeVSThk3gjuXPnDgEBAWzbtg07u8IXjUyYMIEqVarg6OgI5Ft7Pj4+hcaT1Gg06HQ6tFqt0Urx8fFh5cqVJvX+KhJ/Ra7WYNeom/G9RYV6KG2dyI2PNhE+IeDw1Yd4ejXkWuQZ43GlUsns2bMZNmzY892Il8DWP24/V31d6gNy4y5RvPWIvxwVjP/2F8a2qVXkeY84e/Ys7du3p127dlSvXp2BAwfy008/cevWLcaMGcOBAwdM4qgeOnSIGTNmMG3aNObNm4eFhQXz588nKyuL4OBgdu/eXeAaj+b3pLyJEi/C3484KyHxktHr9fTo0YOhQ4fi4+NTaB2tVsvRo0eZNGmS8VhYWFiRix1kMlmBeT4fHx8iIiIwGB4v9nhWkdBnJqNNuoPaoWzBawH/NzKYGTNm4OnpiUwmQ6vVsnfv3mdq+2ViMBi4fDfVZMvC08i4eBAzl6qo7JwftyNTcjfz6SKzdu1aWrVqxaxZs7C0tCQoKIgjR44QFRXFtGnTOHz4sInoJSUl8cEHH9C2bVt+/fVX1Go1K1euxNbWlmXLluHj42NiGT4iJCREWtgi8cJIFp/EG8ecOXPQ6/UmolZYHTMzM7p1e2yFhYWFsWzZsiLPeTTPZ29vT0ZGBjt27MDOzo5Lly7h4eEBQFR82lNFQuh1JPw6FyuP5qiKlylQnqMzcO1BNodmzSInJwfxX/Px/v37DBw40Lg5XqfTodfrC/3/874vqkwIgdMn09CUr1ugn0WRefEQtg0+KXA8LUdb5Dm5ubkEBgZy+PBh9u/fz9y5c7l+/TrHjx9n/fr1LFu2jKNHj5q4Jh9tUndycsLDw4PTp0/TsmVL2rRpQ1paGl999RVHjhwp9HqhoaEEBgY+85gkJP6KJHwSbxTHjx9n4cKFnD59+okBk5cvX87HH39sfJ+Wlsa1a9eoU6dOkef8dZ7vzz//ZNCgQQC89957jB8/nvbt25OWo3ti/4QwkLBrHiiU2PsPKrJenlCiVqtN0ugkJSVRu3ZtlEolCoUCpVJpfBX1XqFQoFKpTMqf9VylUolcLidw01m2n7v7xHE9Iuf2ZfQZSVhUKmhp22gKX8hy+/ZtOnToQOnSpdm3bx89e/bEwcGBQ4cOMX/+fNavX09ISEiBvZV9+vQhLi6O7du306VLF9RqNYsXLwbyV9a2atWq0D2B8fHxJCQkUL169Wcak4TE/yIJn8QbQ2pqKl27duWbb76hTJmCltQjIiMjuXfvnnFRC0BERMRTQ3RZWVkRExNDUlISly9fRuTHquXu3buMGDGCMWPG0GbmVqBwwRVCkLhnMfrMFBw7TkOmKPrrc+7kMRITE03mG93d3Rk4cOAT7sCrobKzDWbKeHJ1BoRBD49ewoDQ5YFcgUyeP+bMyINY/KchcjPTbRQapZzKJQsuaDl06BDdunVj5MiRtG3blpYtW/Lxxx8THBzMZ599xq+//srRo0dxdnY2OW/9+vWsW7eObdu2MWLECCwsLFi0aBHFixcnKSmJRYsWcfz48ULHExoaWuRcroTEsyAJn8QbgfhvGppWrVrRtm3bJ9YdN24cFStWNLEgHu3fy8vLIzY2lpiYmAKvqKgoevXqRZUqVShfvjxyuRy9Xg+AQqHA0tKS+1FnUDvXI09fcPde0m/L0CbG4dT5S+SqokODmSnlNG9Qgy0HTLdQHDhwAAsLC5ycnKhUqRJeXl40b94cX19flMpX91XsUMeFBQeuAZAavpHU8J+MZZmXDmPr0wW7Rt0Qujwyo8JwaDuxQBsC6FD78f0WQjB37lyjRWdmZkajRo0ICgpiwIABjBo1ypgCqUSJEiZtxcTE0KdPHwIDAzly5AgKhYL69esbw5XNmzePtm3bUqFChULHI21cl/i7yIQoLHCRhMQ/y9q1a/nqq684derUE6OT6HQ6NBoNkydPxsPDwyhqW7ZsQa1Wk5KSQunSpXF3dzd5lSpVipEjR1KuXDmSk5OJiIggNTW1QPtKq2KUGboWg8zUmtClPuDO131BoTJaRwD27w012f8GoFbIiJjQHAuFgWHDhrFx40Z0Oh3h4eFERkYSGhrKhQsXiI2NJSUlBb1ej4WFBc7OzlSqVIl69erRokULGjRo8FLy412+fJm28/aQ61iZ/KU3z4dMBq2qOvFN9/x5wrS0NKObcuvWrYSHhzNixAjWrVuHv78/Q4YM4fz58+zdu7fAilydTkepUqUoU6YMs2fPplu3bhgMBiIjI3F2dubBgwdUqVKFs2fPUrZswYVDALVq1WLZsmUm+RYlJJ4HSfgkXjvXrl3Dx8eHw4cPU716dYQQxMfHF2q1Xbx4kczMTKpXr24UNVdXV8aNG0dERATVq1dHpVLx8OFDwsPDCQsLIzw8nAsXLmBubo6XlxcDBw7Ew8MDLy8vkpOTTfrStm1bSnw8kd+jHhQay/JpCIMBxb1IotdMMLrifv75Z+bPn09oaGihy+///PNP9u3bZxTGW7dukZKSgsFgwNLSklKlSlGpUiW8vb3x9/fHy8vrmdx8CQkJjBw5kk2bNlHiP3Uw/3Ai+iLcuE/CXKVg04D6eLrYceXKFdq1a0eTJk1YuHAh8+bNY8WKFezatYsqVarQr18/YmNj2bVrV6F7/Vq0aMHJkyeJiorC29sblUpFUFAQPXr0AGD06NHk5eWxZMmSQvuSmppK6dKlSUpK+tckCJb455GET+K1oNVqiY2N5erVqwwZMoSKFStibW1NTEwMN27cwMLCooDV5u7uTqdOnWjQoAFbt241thUREUG/fv0YN24cYWFhhIWFce/ePRo0aICvry++vr7Uq1ePUaNGIYTgwoULnDx50mQbA8CIESNYuHAh5+NS6LzyONla/XOPS6OUc+eHsbTyqmzSxxfh5s2b7N27l/DwcC5evEhcXBypqakYDAasrKwoVaoUVatWxdvbm5YtW1KzZk3kcjl5eXksXLiQoKAgDAYD7du3z89gXqkJae7+GOTP7lY1V8mZ3LoK3eu7sWXLFoYMGcKcOXPo1q0bAwcO5MKFC+zcuRMHBwe6d+9OcnIy27dvLzTU2qxZs5g8eTKnTp1i/vz5XL9+neLFi7N7925kMhl37tzBw8ODS5cuFUg79Yi9e/cyZ84cDh8+/ML3VUJCEj6JV0Z6enqhVltMTAx3796lVKlSGAwGZDIZgwcPpkKFCri7u1O+fPlCc7hduXKFqlWrcu3aNVJTU40i99tvvyGE4MMPP8TX1xcfHx88PDyMbsLz588zf/58NmzYYJzTU6vVdO3alR9//JG8vDxsbGxISUkxWmTPE9DZiC4P/ektjPigNuPHj2fWrFmFBsL+u1y/fp19+/Zx7NgxLl26ZBREIQTm5uZotVqEEDg7O1O8eHGys7MJDg7m66+/5kSiGoeWAxFy5RNjkMoAjUrB5NaV6VzXhYkTJ7J161a2bdtGuXLlaN++PdbW1vz4448olUo++eQTDAYDW7ZsKTRjREREBL6+vsybN8+Y6ikzM5MzZ84YFzINHToUCwsLvvrqqyL7NWnSJJRKJV988cXfvIsS7zKS8Em8MEII7t+/X6S4ZWRkUL58+UItN1dXVw4dOkRAQADnzp2jePHiRV4nPT2d48ePM3ToUOLi4lAqlbi5uRmtuTVr1tC/f386depkPOfevXusXr2a5cuXc//+fQwGA0IIbGxsWLx4sTGp7LZt21i9ejVHjhzh/v37xhBi586dY9qGg0RpqpKj0/OkuTFhMGCmkpN2ZA33w/OtvEfJbL/88ksmT578Eu72kzl//jy9e/cmKioKvV6PUqk02UP4CJlMRo8RUzh4T4FFhXrodVr0ssfuT41SjlavxzLlBusn9cRZnUenTp0wMzNjw4YNpKam8sEHH/Dee+8xd+5ccnNzadeuHfbwNr8AACAASURBVNbW1mzYsKFQ92NaWhqlSpWiSZMmrFq1iho1auDg4MCIESMYMGAAALGxsdSpU4eoqCgcHByKHGejRo2YOnWqMZuDhMSLIAmfxBPRarX8+eefhQrbjRs30Gg0hQqbu7s7JUuWLDKk1P3796lVqxY//vhjgaj79+7dM1pzYWFhXL16lZo1axIREcGAAQOYOXMmxYoVA/I3QTs6OnL+/HmKFSvGL7/8wuLFizl79iw6nQ6ZTIZMJqNly5bUqlWLjIwMFi1aVKA/vr6+BAUF4ebmxsSJE9myZQs2NjZU9mlFmkt9DE5VkPE4FRGAEgM6vR6L1Jskhf7E/zWqxYoVKwq0ffv2bUqXLv3iH8ITiI+PZ8qUKWzevBmDwUClSpW4efMmgYGB+Pn50bx5cwwGg9HSdXBwIDk5GZ1Oh8LCFivPFmic3bEq5kAF19Ik37zI8jE9qetRmdatWxMZGUmvXr2YNm0ap06dom3btkyePJlhw4aRkZHBhx9+iIuLC99//32RK1M9PDxITEwkLi6ODz/8EK1Wi8Fg4MCBA8a/j379+lGqVCmmT59e5FhzcnIoUaIE8fHx/0iMU4l/MULinSc9PV2cO3dObNu2TXz11Vdi0KBBwt/fX5QvX16o1Wrh6uoqmjVrJgICAkRwcLDYvHmz+OOPP0RKSsoLXe9+apao22OiaDrxe9Hn+5Oi97eHRZ85G0Tn3gGifPnywt7eXnz44Ydi9uzZIjw8XOTk5IjFixcLtVot9Hq9SVuRkZGiZMmSolOnTkKj0QgzMzOhVCoFIIoXLy6CgoJEXl6eEEKIVatWiT59+hTap7FjxwpPT0+h0WiEXC4XgHB0dBSAGDhwoHiYli1qdR0rvD5dKhzafyYq9wkWru/1E3JzGxEQECA0Go1o06aNMDMzE+Sv/heAcHFxEc7OzkKr1b7QvSqK7OxsMXPmTGFrayucnZ2Fi4uLsLW1FUOHDhXx8fHGOq1atTL2RalUit27dwtnZ2eRnp4uhg4dKry9vQUg1Gq1MDc3N+k7IOzt7cWCBQvE8uXLRYkSJcTOnTuFEEKkpKSIBg0aiICAgAKfyV8ZNGiQUKlU4tatW+Lrr78W1atXF8WLFxcxMTHGOlevXhUlSpQQycnJTxxzSEiIqFu37ku4exLvOpLF9w4ghODBgwdFuiTT0tKKdEm6ubm9tNVz5+NSWHLoGoeuxGPQ60H5uF25QYdMocDbxZKxbWpQq6y9ybnly5fH09OT7du3A3D16lXWrl3LkiVLyMnJyW9DLker1VK3bl3mzJlTwJLcvHkzW7ZsYcuWLQX6tn37dvr06UNOTo6xvfzMBILly5cjhGDo0KGUK1eOmzdvMnv2bCZOnIjBYEAul9OmTRt27dqFXC5Hp8uP/lKsWDGEEOh0OmrUqEFYWNjfvodCCDZv3szYsWNRq9XEx8ejUqlo3rw5wcHBVKxY0Vg3LS2NsmXLkpqaikwmw9bWlubNm9OwYUNGjRrFBx98gEqlYseOHSiVSgIDA5k7d26R15bL5RQrVozSpUtz+/ZtatasyZo1a4oMNrBt2zY6duzI5s2bqVGjBg0aNMDNzY0ePXowYsTjANhdu3alevXqTwxRB/m5FxMSEpg/f/5z3jUJCVMk4fuXoNPpnuiSVKvVT3RJvqooGCkpKRw7dozVodf5Q++KQaZA9oRryWSgUSpMspnHxMRQoUIFIiIi+OOPP1i5ciXR0dEIIcjLy0Ov12Nubk6XLl2YM2cO9vb2hba9d+9eFi1axL59+wqUJSYmUr58edRqNQkJj9P1qFQqJkyYwNy5c8nOzkYul2MwGChWrBg1atQwxpK0sLDAysqKlJQU7O3tGTx4MN9++61xa0Vubi7Dhw9nwYIFL3wvT506RWBgIPfu3SMpKQmZTEalSpVYuHAh9evXN6mr0+moVq0a165do1KlSnz55ZeEhYWxadMmYmJiMDMzw97enry8PHJyclCr1djY2JiMPf/zkKFUKtm1axcWFhZs376db7/9FoVCgVarJSsrC4VCgb29Pa6urtSoUYNGjRrh6emJt7c3ffv2ZenSpTRq1IjSpUtz7949QkJCjAuPIiMj8ff3Jzo6+qnuy/fff58BAwY8NcCBhMRTeV2mpsTzk5GRIS5cuCB++eUXMXfuXDF48GDRsmVL4e7uLtRqtShTpoxo2rSp6Nevn5g5c6bYtGmTOH369FNdSC+TW7duiQ0bNojBgwcLDw8PYWVlJep0ChTF/QcItXMFgUIpLKs3F64Tdhlf9u8PF0q7kkKm0ghNudqi9NC1ovJne8S6iJsiJydHeHt7C3Nzc2Fubi4cHByEubm5sLW1NbrvZs6c+Ux9CwkJET4+PkWWFytWTLRs2VIsXbpUKBQKAQiFQiEcHR2FTCYzcQGam5uL9u3bG9+rVCqhVCqFUqkUo0ePFkIIsWDBAlG5cmVRpUoVoVarhUwmEz/99NNz39O4uDjRvXt34eDgICpWrCgsLCxE2bJlxY4dO4TBYChQ32AwiPfff18AwtLSUsTGxgohhOjQoYOYO3euEEKIc+fOCUtLywLjAoyu3kf34MGDB0IIIW7fvi0qVaokpk2bZryuVqsVhw4dEpMmTRItW7YUbm5uQqPRGNtydHQULi4uwtHRUVhZWYnw8HCTvrZt21bMmzfvqfdAp9MJW1tbY18kJP4Ob43wPUzPEV8fiRYjNp4RfdacFCM2nhFfH4kWCek5r7trLw2DwSAePHggIiIixPr160VQUJDo2bOn8PHxEc7OzkKj0YgqVaqINm3aiBEjRojFixeLXbt2iStXroicnH/+Puh0OnH+/HmxbNky0aVLF1GmTBnh6Ogo2rVrJ+bPny9OnjwpTt98KCp/tlc4tJ0kHNpNFla13jcRPqcuM4XcwlaU7LdMlB37i7Cq9b4wK1NduE7YJcqP3y6KudcwCkvJkiWFWq0WSqVSfPDBByIkJEQUL1680Id/YZw9e1Z4enoWWrZ582ZhbW0tvvrqK5GWliYUCoWYMGGCqFWrlpDJZAXm7tRqtVCr1cb3pUuXFsnJyWLBggVCoVAY57DGjBkjGjZsKOrUqSMUCoVQKBTi4sWLz9TfjIwM8fnnn4tixYqJ+vXrC7VaLaytrcXy5cufOGc4fvx4ozjv2rVLCCHEhQsXhJOTk8jIyBBCCLFkyRLh5+cnRo4caby/tra2IiAgQNjY2Ihy5cqJIUOGCCsrKzF27FgRGxsrypcvL2bPnv3Ufrdp00aYm5uL7du3i969ewulUmn83B79WHF2dhYeHh7CwsJCrF279qk/zs6cOSMqV678TPdNQuJpvPGuzvNxKSw7Es3Raw8BTFLGaJRyBNC0kgNDmlSgRpnCE5a+Seh0OuLi4op0SSqVykLdkfYlyxJ2V8/V++mk5eiw0Sip7GxDxzouFLcqOm7kyyQ7O5uTJ08aV1tGRETg5ORk3Fbg6+tLhQoVTFZyDlh3mt+v3DdGQUkOWYc+LYESbUbmvz/0HQZdHsVbDs6/P+mJ3FnWi1IDV6Iq5ozu5mnubAoC8lckDhs2zLiXa9OmTfz000/Geb+nERMTg7+/Pzdu3DA5fuPGDerXr8/QoUOJiopCqVSyd+9eo9svLy+P4cOHc/HiRW7dusWdO3eYNGkS1apVo0GDBlSvXp2srCyys7PRaDRUq1YNrVbL1atXEULQvXt3srOzSUlJ4ciRI1hYWJhsnfhfDAYDGzZsYNKkSZQrV47IyEgyMzMZPnw4X3zxBZaWlkWOccOGDfTs2RONRkNgYCAzZswAoGPHjtSvX5/Ro0cD0KlTJ5o0acLu3bvZs2cPkZGRVK9enVOnTuHt7c3nn3/O1KlTGT16NCtWrKBEiRKMGTPmqYl0lyxZQmBgICEhIdSpU4c6derQsGFDzp49y/Hjx9HpdBw6dIjDhw+zevVqDAYD2dnZ5ObmolKpKFGiBO7u7tSqVYsmTZrg7+9v3IJy8eLFQlfNSkg8L290kOr8TcRR5Oj0hYaPerS0fP/l+4RcSzCZF3qdZGVlcePGjULF7c8//8TR0dFE1D755BPj/x8t03+EUfgPRAH/K/zxLDhw7ZUJf0JCgjHsV1hYGBcuXMDDwwNfX18GDBjA2rVrjdnPCz2/iGzmBTCpkP9/7cNbqIqVRF6mBnZOLvyycV2BxSqhoaH4+vo+83j+NxEt5Itap06dmDx5Mh988AFNmzbl/v37xvQ4kL/ZPTExkeHDh7Njxw62bNmCj48PrVu3BvJTJPXu3Ztp06Yxa9Ys9u7dS/ny5Zk9ezYTJkzg+++/p3Xr1lStWhULCwv27NlD1apViY2NLTC3GhYWxsiRI9HpdFhaWhIeHk6rVq1Ys2bNE+81wLFjx+jVqxcqlYq6desSFJT/g+FRfNA1a9bk32EhOHz4MMePH6dNmzYAVK1ale3btxMQEEDNmjWpWbMmMpmM7t27s2DBAtq3b/9U0Tt37hyBgYF88cUX+Pj4MGrUKMqXL8/27ds5ePCgMVVS69atsbW1ZcuWLVy9ehUzMzMyMjI4ePAgR44c4cyZM/z88898++235OXloVarkcvluLq6MnLkSPz8/GjRokWh0WEkJJ6FN9bie5HIGX8Nr/QqEUKQmJhY5CrJ5ORk3NzcjFFI/ipy5cqVKzSyRWE8TfgfUdiCkBcZ040bN0z2z929e7dA2K/nedh8czSGBQeumYj1/1p82bHnSNgxB6cuM1AWK0XywZVknPuNEh+NwbJqEwzaXPp5OfF5p4L54WrWrMk333xTYGFHUWRlZRkjmTxi9OjRREdHG61GCwsL1Gp1gQDWHh4erFu3junTp7Nz507WrVtnsmHewsICIYSx7alTpzJz5kyuX79OuXLlSEtLo3HjxnTq1IkTJ06wY8cOfH19CQ0NBfLDk40fP56IiAjKlStHeHg47u7ubNq0qdAM5P9LdHQ0np6e5Obm4uDgwLlz54ypgDp27Ii3tzdjxowB8rMfjBs3jvXr1+Pp6YmHhwfz5s1j7ty57Nixg19//RWDwUCHDh14//33KV26NA8ePODPP/984r0tWbIkderUMVp03bp1w8PDg/r16xtF+BHNmjWje/fu9O3b94njSktL4/fff6dHjx5Uq1aNO3fukJCQgFarxczMDEdHRypUqECdOnXw8/OjWbNmz/z9ep0kZOSy9Y/bRMWnvTYPzrvMG2nxnY9LYfqvF7izeyk5secw5GSgtHOmWJNemLvnR4jPvBJKStgG9OmJKK1LYNekJ/ynATP2ROHpYoeny9+zfvR6Pbdv3y5S3ORyuYmgNWrUiN69e+Pu7k7p0qX/9irJ5xF+ISBbq2fGnisAJuJ3+vRpPvvsM3bu3GmywVin03Hu3DkToVMoFDRq1AhfX1+GDh1qEvbrRXiWbObmbjWx8+3Kw19mYsjNxsbrI2Rm5iis8yO5yFVmpFDQtZeamkp0dDS1a9d+5v48Cuel0+mMKxW3bt3K2bNnkclk5ObmkpubS/v27U3O0+v1REdHU7FiRfLy8pDL5SbphgC++eYbevXqxaFDh2jWrBlBQUF8+eWXVKxYkQULFhAQEMCePXto2LAhQUFB6HQ6du/eTefOnSlXrhwrVqygfv36JCYmkpqayvfff0/Pnj2faVyJiYk0bNiQ7OxsihUrxqZNm4yid/HiRaO1l5eXx8iRI9m2bRv+/v506dKFvXv3ArB69WqOHTuGq6sr9+7dY8aMGaxcuZLly5fj7e1N2bJljamfCqNJkyaYmZmxf/9+UlNT6d27N927d2fv3r0FItccOnSIuLi4ZxqfjY0Nnp6eFC9enJMnTxrd6CkpKfz2228cPXqUc+fOsX79ehYuXGjM3uHo6EjFihWpW7cuzZs3p0mTJm9EUOsnT928Wg+OxGPeSOFbdiSanDwtSusSOHedhcLWgeyY0zzcMZtSfZeCQkHCznk4tp+CpnwdsmNOk7B9FqUHf0eOlR3Lj0QbU6g8iezsbG7evFmosN26dcs43/Do1b59+8dzbkUsmX8ZPIvwPyIl7CdSwzbg2PlLcKtpIvwbN26kX79+6HQ6jh8/Tk5OjlHkTpw4gaurK76+vnz88cfMnTsXV1fXIiOtvAg3b8c/Uz3rOm2wrpPvctMm3SH12CZUDm7G8rQcbYFzIiIi8PLyeq6HmUwmM2Zhz8zMpH///mzbts34WY4aNQq1Wl0gq8CtW7dwcHDA0tISrVaLQqEoIHw9e/akX79+tG/fnuTkZGQyGWq1mtzcXEaNGsWkSZPo27cv8+bNo1+/fowePZrIyEg2bdqEm5sbZmZm/PbbbwQEBLBkyZJnzs+Xk5ODn58fDx8+pGzZsgwePJgmTZoYy7/44gvGjBlDSkoKHTp0wMnJiZYtW1KvXj3S09OZMGECMpmMsLAwbG1tgfw5xpMnT7Jjxw4+/PBDAGrXrk1gYCCnT58u0IexY8dy7tw5Ll++jFKp5NNPP6Vp06asXbuWXbt2mXxGQgimTJlCUFDQM4/xUf69v/5t2tnZ0alTJxOrG/Ld848E8fz583z//ffMmzcPnU6Hubk5Tk5O/Oc//zHmQmzUqNErzYX4V97WqZt/I2+c8D2aF5KpNNg16mY8blGhHkpbJ3Ljo1HalECusTSKgEUFL2QqM3Qp91BY2nH46kMSM3Kxt1STlJRUYAHJo/8nJCTg6upqIm4tW7Y0uiSflBfuVfI04VfaOQGgTb5H1tUwFFaPRThHp2fZ4WjMTv1gnCORyWQ0a9aMevXq4evrS2BgIA0bNnxl4p2VlcX69es5HhqNeZX8h3BRmb8x6NEm30VVwhV92kMS9y7Buu5HKDSPF37YaFQFrvG883uPsLa2Jjk5mV69ehEYGIiPT74LVafTsWrVKvr168exY8dMzrl69SqVKlUC8ucElUplAeED6NGjB99//z1Dhgzh2rVr5ObmGtvOyMjgxx9/NOaimzp1KipV/rhiY2OxsLBg3bp1dOzY8ZkfxAaDgc6dO3Pp0iXc3d2pUqUK48aNM5ZfvHiRkJAQ+vTpg5eXF8OGDWPChAlUqVKF7t2706hRIzQaDTY2NkbRO3jwIAEBARQvXpyqVasa21qyZAk+Pj7cvn3bJAHwvn37mDdvHmvWrKFixYr8/PPPHDt2DA8PD3r37o2Xl5dJn/fu3UtaWloBwXoSz5N4tkSJEnTr1o1u3bqZHI+Pj2ffvn3GXIjffvsts2bNKjIXYv369V+qIL4sD47Ey+GNE76tf9wu9Lg+Mxlt0h3UDmVRFiuFqngZsq6fwNy9LtnRJ5EpVagcygH5DyffnmO5d+gHABNha9iwIT169DC6JF9Gos+XyTMJ/3+FL2n/1xRr2pvE37421hMCDly+R+yqtfDfCCJCCPz8/Pjtt99eWb8NBgMhISH88MMP/PLLL6hUKsq1HkCKUk6uzlBk5m8br/8j4de56FLuIVObY+XRArtG3R83rMvj7JHd/G7/kGbNmhk/r7CwsBcK/mxlZcWcOXOwsLAwEYlx48ahUqmYP38+JUqUIDU11SgGV69epXLlykD+35ZCoSArK8uk3bi4OOPCmVWrVrF582bCw8Pzh6DTUalSJbZt28a4ceNIS0ujWrVqXLp0CVtbW3Q6HZmZmYwZM4YRI0YwbNgwxowZ89T51EmTJrFnzx6cnZ3R6XSsXbvWxMUeFBSEl5cXffr04YcffqBly5Y8ePCAu3fv0rdvX0aMGEF8fDy3b+d/5/bs2UPv3r3ZunUrCxcu5NSpU7i7uwPQoEEDypQpw9ChQ9mxYwcADx484OOPP6Zr16707NmT+Ph4hgwZQmBgIKtXr2bDhg0m/X1k7X3xxRfP9b0LDQ01rkZ9UZydnenduze9e/c2OX779m327dtHWFgYkZGRLF26lOnTpxtzIZYsWZLKlStTr149/P39qVevXqHTGNHR0QQGBrJ8+fICCXSf5sHRpdznzjf9kKkez03a1G8PPl1e2tSNhClvnPAVNi8k9DoSfp2LlUdzVMXzwyNZVm9Gwq9fIXR5yBQqSnw8Abk6/w9HyJXUbfERC1d+Tk5ODj/++CO7du1i7dq1r82Ke1aeRfgBMqPCkClUmLt7AV+b1FUplQT98BslUy+xb98+QkJCnrgw4e9w9epV1q1bx7p167CxsaFXr16UL1+eHTt2MHdoB3puvQVyJXaNupkI+V8p1W9pke2rzcx4r5QtEydO5N69e3Tr1o3OnTvzxx9/PPOilr8ihGDbtm1cvHjR+ADT6XR8/fXXjB07Fo1GQ926dTl+/DitWrUCICoqiurVqwP5wqdSqYzCJ4Rg7ty5zJ492xjSLDY2lpiYGAIDA2nevDkymYwWLVpQt25dvL29efjwIQ8ePMDf35+YmBj2799PtWrVuHv3LgMGDODy5ctUqlSJuXPnFmkZrVq1ioULF6JWq8nLy2P79u0mFvyJEyfYuXMnVatWNbq1ARYuXEhubi4LFy6kQ4cO9O7dG0tLS3755RcGDRrEzp078fb2Jjw8nFOnTtG5c2djm0FBQfTv398Y6cXb2xsXFxd++OEHhBD079+fbt26sXjxYjZv3lzgu/bLL78gk8meK/LKvXv3SE5ONrE+XyYuLi7079+f/v37mxyPjY01yYUYHh7OtGnTTHIhVqlSxZgL8ezZs+zfv5/q1auzZs0a2rVrZ2zrqVM3/6XMyE3I5KY/CHJ0+meeupF4dl5NnKq/QVqOzuS9EAYSds0DhRJ7/0FA/krAlMPf49Q1mLLjtuPULZikvYvJu/94f9bN2/E0bNgQV1dXxo8fT0hIiDEG45vMswi/ITeLlKNrsW8xoNA2cnQGEvUa+vXrx5YtW4iJiSk0PuWLkpiYyPLly6lfvz5NmjQhKyuLHTt2cOHCBZo3b87s2bOJj4+ncb1acO8ysidmfisaYTBgmXqTof17cfr0aX7//XcUCgXvvfceBoOB7777jvj4Z5tHhPyMEDdv3mTs2LE4OTkZj0+dOhWZTMa0adMA8PHxMVprYOrq1Gq1qFQqMjMz0el09O3bl23btnHixAmCgoIYPnw4crmczz77jKlTpxIVFUXXrl1xdHQkIyODU6dOUbt2bc6fP8/+/fvp0qULXbt25ejRo8jlclasWIGDgwObNm1i8uTJTJkypUBqof379/Ppp5+i0+lwcXExWnZ/7W/Lli3x9PQ0LlgBWLp0KYsWLaJfv3506NAByP8stVotQ4YMYd++fXh7ewPg5eXFqVOnTK77SCQnTpxI165diY+P5/jx48jlclatWsXdu3d58OABHTp0KOCG1uv1TJ06lS+//PK55pFDQ0Px8fF5ZSH1isLNzY3Bgwezfv16zp07R1JSEnq9nuvXrzNz5kxq167NjRs3mDNnDl5eXgQEBKDVaklPT6djx454eXkRHR3Nw/QcEw+O0s4JmUxu4sF5EkJgnLqReHm8cRafjeZxl4QQJO5ZjD4zBceO05Ap8svy7t/ArEw1zErmB+Q1K/kf1KUqkR17DrVTeQCiLpwl8do1k7Y7d+5MxYoVcXV1pWzZssZ/nZ2d//EvVlE8i/CnhP2IZbVmRpdnYdxLTGH+/Pl88803REdHo1KpjHNOL0JeXh67d+9m3bp1HDx4kNatW/P555/j7++PUqkkMTGRnj17smHDBmQyGU2aNOHQoUNkaRxeOJs5+jyu71iG249T2bhxI/7+/gQHB2NnZ8eJEye4cOECX3zxBQ0aNKBnz5783//9X5EWvcFgoHv37ri5uZkEcjYYDCxcuNAoWJCfouivyVD/19WpUqnIzs6mR48epKSkcPDgQeOm8uHDhzNmzBh0Oh2lSpXC1dUVMzMztFotMpkMNzc3QkNDjQ//6dOnc+fOHaZPn87q1avp06cPy5YtIz09nYiICD766CPu37/PihUrkMlkREZG0qFDB7Kzs2nevDkODg4MHjzY2Neff/6Z/v37G/fqaTQa9Ho9o0eP5rfffqN8+fIm819Xr17l7t27nDlzhmrVqhmP161bl7Nnz6LX603ckkOGDGH+/PlotVp+//13SpQoQUxMDJMmTeKLL75gzpw5REZGFrj/mzZtwtbWlvfee+/ZP3+eb37vn6BChQoMHz6c4cOHmxyvUaMGFy5cAPKfW6dPn6ZWrVr0mrUeKLgA6389OAB3lvcBmQyNWy2K+fVBYZHvapcBW8/cZmBj91c2rneNN074KjvbYKaMJ1dnIOm3ZWgT43Dq/CVy1eO9LWYlK5J2fCt592+gdipPXnwMuXGXsK6dv6FYJRPkPYwt0Pb+/fs5ePAg5ubmmJubo1AoyMnJITMzExcXF1xdXQuI4qPXP+UifRbhz7l1Hn16IulndwNgyEojYfssbOp3wLZ+/i/5A3t2smn34yj2eXl5/PnnnwXmH56EEIKTJ0/yww8/sGnTJqpVq0bPnj35/vvvTRZDjB8/njNnzmBmZoaHhwd//PGHycKAwQ2cmXfoBjLls+9PMlPISAvbhCEhFjM7Oz766CM++eQTli5dSnh4OD169KBjx44sXbqUHTt2sGbNGgYPHky7du3o0aMHjRs3NvkxM2vWLPLy8qhTp47JJvZH8zmPIpxA/nzWqVOn0Gq1ZGdnk5aWZsynl5eXh5mZGZcvX8ZgMHD8+HHMzB6P6+rVq1hbW5ORkUFKSgrm5ubk5OTQuXNnWrVqRbt27di7d69x87tMJmPFihV89NFHhIaGMmTIEL7++mvWrVtHeno6Bw4coH79+nz33Xe0bt2ali1bGvPgXb9+3eg+1Ol0TJkyhY0bN1KnTh1atmyJpaUlmZmZdO3alfT0dH777TeqVq1qtA6XLVtGbGwsTZo0MRE9yF81WbJkSa5cuWJ08wJ06dKFWbNm0apVK5o3b45er6dXr16MGjWK4OBgVq9eXSAijVar5fPPPzeK9/MQGhrKN99881znvA6uXbuGmZkZ7du3p3///vj6+qJSw1nfpwAAIABJREFUqQjcdJbc23dN6hbw4ORl49xrAWqn8hiy00ja/zUJO+fi1Ck/N2GOzkDUvfTCLivxgrxxG9gTMnLxmX2IzMR47nzdFxQqE7+3/XtDsarmR9ofO0k/9Sv6rBQU5jZY1/4AG+98v7qZUs7Umlr6du1IXl6e8dxH4qZQKEhJSfl/9t47LKprbRu/pzHDDAwwMwy9iHQVDKAoCooIr2KJXRGNJbYkmGhQYyFqoiYaS44tJrGXaDRqYhQ7wU7sKKjYUFFURDpIn/v3Bx87TiCac77zvr985819XXOJe6299tp7r73u9ZT1PHj8+DHy8/MB1E1AlpaW0Gq10Gg0UCqVKC8vR05ODrKzs6FWqxuQ4svkqNPp/i1bAV7e9J13cAWqnt2rI36T34i3trwYqP1NgnqycSKsIkbB1C2wrl5NFfJPbEHJud0N2heLxbC2toa7u7tgsI+IiDByOX/w4AG2bNmCTZs2wWAw4K233sKQIUPQpMlvzkNz587FqlWrkJeXh1atWiE6OhqbN2/GpUuXoFarhbbKy8vRvn17NO81DueqnV67GZ8GA8SsxZw+LRFqJ0JoaCgKCgrg5+eH1NRUqFQqVFRUICMjA/b29kbnPnnyBFu3bsWmTZtQWFiIIUOGYOjQocjLy0Pfvn1x8eJFzJ07Fy1atMC7774Lg8EACwsLjBw5skFyWj8/P6xbtw4kMWbMGFy+fBkA4OLiAqVSibt37yI1NVWwPeXm5mLWrFnYvn071Go17t+/D4lEAqVSiaNHj6J169YAgF69eiE5ORnPnj0zIszS0lKEh4cjOjoahw8fRlpaGioqKhAREYGlS5eiffv2gnTVpk0bZGRk4NixY2jWrBlyc3MxaNAgiMVizJo1C3379kVmZiaKiorQo0cP+Pn54ZtvvsHx48cxZ84cnDhxAosXL8bKlStRU1ODqKgorFmzpsG7iI2NRefOnTFixAjhvdvZ2QEAFAoFsrOzMX/+fBw+fBgeHh4wGAxYvXp1g3bWrl2LrVu3Iikp6Y9ffCMoLCyEk5MT8vLy/hJ78F4FqVQqJPs1MzODr68vxowZg19qvHD6/m/BEEgDnv+8EIbKF9D3/VhYzL6M2tICPFoxFE4Td0Asr3NwivDWY+2wVg3q/o1/DX85iU9nJkcHT2scuWGAy9R9f1hPHdgD6sAeDY7TYIAi/x66dIzBhQsXEB4ejry8PEyZMgUjRozA8ePHceLECdy9excymQx9+/aFj48PTExMcPfuXVy9ehW3bt1CYWEhxGIxSMLa2hrOzs5o0qSJkMLn9u3bSE5ORlZWFh48eICKioo/JEUXFxc4ODj8qY+3X6Ajvjx6CzVFz1CaehCQyPBo+VChvJ74jSASQ6wwE8iRAMrSjhpVqb92VVUVcnJy8OzZM5w9exZLly6FwWCAUqmEubk5amtr8eLFC7z55pvYuHEjgoODBULPyMjAxIkTcfToUcjlciENUElJCYKCgrBv3z4j0iOJ0aNHw8vLCxsSRiEtuwgrfrmNQ2mPIDcxQdVLpkwJDIBIhOLbKfh8SEfBhfvcuXMIDw/H7du3ERoaipSUFJSWlmLWrFlYsmSJ0Z47Ozs7xMfHIz4+HleuXMHmzXVhzgoKCjBixAjI5XKjsGWLFi1CVVWVkVqzHu3atcOpU6eg0+kE+x5QJ70UFxdDr9fD19cXlZWVWL58OT7//HM4ODjAYDDAzc0N9+/fR6tWrXD27FlBOgaArVu3Qq/XY+jQodixY4dw3MzMDImJiUKuvE8++QQ2NjY4duwY3n77bVhYWODu3buwt7dHTk4OlixZgmbNmuHcuXPo378/YmNjMWfOHMTGxiI+Ph6ZmZno3r07xo4di2nTpkEkEglbQObOnYvNmzfjxIkTaNWqFXQ6XaNjsd7OV0989dncr1y5AldXV3z77bdYsmQJli5diilTpiA9Pb1BG5WVlfj000+xbdu2BmWvw+nTp//pvZr/E6ipqUFKSgoSExNx7tw5ZGZmCqQH1C1izp07h+fPn6PdpN9ii/6RBqcBRMIJwqHGtvT8jX8dfzniA4D3Orrj5O3n/6JdqBoPDnwL+zXx+Oijj3D58mXMnDkTM2bMgFqthre3N8aOHQuSuH//Pk6cOIETJ07g+PHjKCwsRGhoKGJjYxEcHAyFQoHLly/j5MmTSE1NxYEDB1BWVgapVIrq6mpotVp4eHhgyJAhaNGiBSwsLCCTyZCTk4OsrCwcPnwYDx48QFZWFp48eQK9Xt8oKdb/a2Fh8aeJ/2U4vrtO+JsGA17cPQ9DebFRHVtbW6xYsQKdO3fGzp07sW7dOqSmpqKwsBBA3d67iooKyOVyiEQibNu2Ddu3b4dGo4G5uTmeP3+OkpISuLm5Ye3atULUjZqaGvTs2RPx8fGCVFOPxYsX48aNG4JNq7m9GjdWf4hHF69i+pqfUSqxQHFFNUrynuHg9g3wMyvDveTDSLHKwag+UUK/T58+jS5duuD69evQ6XRQKpXYs2cP9u/fj40bN6Jz584Nnom/vz/8/PyQkZEBhUKBkpISuLu7w9bWFs2bN0dlZSXmzZuHESNGNDqxtmvXDnv27IG3t7dg3wPqJvLS0lL4+vrixx9/xKRJkyCRSFBbWwt3d3eUlpZCq9UiMjIS9+/fR/PmzTFw4ECkpqYCgLBfr1+/fg3sV3q9HgcPHkRoaCjmz5+PcePGITIyEgcPHgRJGAwGNG/eHI6OjhgyZAi+/fZbJCQk4Ntvv0WvXr1w7do1JCcnY9CgQYKkGBMTI7R/8uRJ2NjYID09HcePH4etrS3Ky8thbW3d6Lhq1aqVsCVh9uzZSElJQWpqKpydndGqVSt88MEHWLZsGRISErBq1Sojgq/HmjVr0Lx5c4SEhDR6jVfh/0/7XmlpKQ4fPozDhw8jNTUVWVlZKCgoQGVlpeBsJBaLoVAo/nA/7IMHD+B7/xrkJh6vNN1UPr4JsVwFqcYehopS5B/5FnLnFhAr6uzGCqkY3nbmjV7jb/xr+MupOuvxr8TqRE0VejhVY8e88XB1dcXly5dhbm6OVatWoX///q9VRWZnZ+PkyZMCGT569AghISEICwtDWFgYgoKCUFFRgevXr+Py5cs4ffo0rly5gnv37gnBdCsrK6FWq+Hh4YGAgAAEBATAx8cHHh4eqKioEIiw/t/6vx88eACJRAIXFxfovALxoGkv1Ir++XWJoboCOd9NRdVL3mJSqRRisVhwzIiIiIBer8eRI0fg6OiIiIgI3Lt3DykpKXj8+LGQQbx+QgcAuVyO2tpaIQKGnZ0dfH19UV5ejrKyMpw+fdrIpnbo0CEMHz4cZ8+ehbOzs6AyXL9+PQwGAzZs2CCQ5/Tp0/H5558DqIsQcu3aNZSWlhrZCUtLS9GzZ09cuHABCoUCY8aMESKc9O/fHwsXLmwQceUf//gHtm3bhpMnT8LExAQlJSUYM2YMTp06hfz8fJSXl+Po0aMIDw9vMDbu378vxCnt06ePQCBmZmaorq4WErdWVFQgLCwMNTU1uHbtGlasWIHo6GikpqYiICBACPO1f/9+I8eOTp064erVq3j69GmDjdLnzp1D9+7dkZCQgAkTJkChUKC8vBxSqRROTk64ePEi4uPjcfbsWfz444/w9PQEUOe8VVVVhTNnzmDnzp1GnpWVlZUwNzeHj48PkpKSBCnP1NQUa9euxeDBgxuMpRcvXsDa2hp79uxBVFQUVq5cKTjSDB06FFu2bMGIESNQVVWFLVu2NHq+h4cHfv75ZwQGBjYofx3atWuHTz75pNGFzb8DDx8+xIEDB3Ds2DFcu3YN2dnZKCkpMTKP1Kurra2t4eHhgTZt2qBHjx5wdXXFqVOncOzYMRw6dAg3btxo9BrPisvR/ovkV5puRCIxCo5vguFFIcQmSihcW8IqfCQkZnUB6+VSMc581OnvGJ7/RvxliQ/454M0N6vOwK3EddiyZQsmTpyIkpISGAwGpKWlwdPTExs3bvynYjvm5ubi1KlTAhHeunULrVq1QocOHRAWFobg4GBhk/GzZ8+Qnp6Oq1evIiUlRSBEiUQCmUyGiooKKBQKgRD9/Pzg4+MDHx8fwW5SUFAgEOHPNwpwrFCDWtGf3+irkIrx9OBXKLpgLCn6+flh586dmDt3Lr7//nvhw9ZoNJg0aRJGjhwpuPcnJSUJqkKJRAKxWIzq6rqQYSYmJnBwcEDTpk2hVqtx5coVoxQ/VlZWaNKkCdzd3XHgwAF8//336Nq1KwDg448/xpIlS4T9b3FxcVi+fLnQv3pPQEtLS1RUVOCjjz4SthfUo6KiAhqNBo6OjigqKsJnn32GL774AgaDAZWVlVi3bp0wSV64cAHR0dE4e/asYJsE6iSQlJQU7Nq1C02bNkV5eTmqqqoEe2D9hm2ScHR0hLm5ObZu3YqAgAA8efJEcHIRi8VC4O7169djzJgxmDFjhjAeysvLodfrYWFhgezsbGg0GuTl5Qn9KCoqgq2tLWJjYxu1r+3fvx+DBw9GRUUFKisrERMTg23btkGlUsHT0xOenp5Ys2aN4EiSlpaGNm3awN7eHgcOHIC7u7vQ1sOHDzF69GicPHkS2dnZsLT8bTO0TCbDkSNHGmS+qEezZs1w9+5dREdHY/fuOpvx8ePHERMTA4PBgMLCQmRnZ0Or1TY4d/HixThz5gx27drVaNuvQnl5OXQ6HZ49e/bKNEyvgsFgwNWrV3Ho0CGcPn0aN2/eRE5OjrAVpR5SqRTm5uaws7ODj48PQkND0aNHDzRp0sQoNujJkyeRnJyM5ORk3Lx5E5aWliguLha2Sb2s7gTqxkhUVBTs+s9E8p3812cpaQQiEfBfvjZ/7+P7N+MvTXwAcPVRIb46dgfJN3Mhwm/x7IDf8vGV3PwVLU1y8MM3i/HZZ59h7969OHLkCDZs2IDFixdj1KhRWLt2LYqKitCtWzcsW7ZMmMD+GRQVFeH06dMCEV69ehX+/v4ICwtDhw4dEBIS0sDGlZWVhfT0dKSlpeH8+fOC2kSpVApu8QDg4eGBli1bolmzZvD19YWPjw9O5Yjw+YGbryV+0ADU1qDo2HrUZCQbhdNSKBSoqalBTU0NvL29sXz5crRs2RIJCQnYsmULysrKIBaLYWNjg9LSUpSUlKB169b44osvhJiPBoMB+/fvx6pVq3D+/Hnk5eXBYKh7D2q1Gu3atUPnzp1RXFyMU6dO4fjx4wDq1KByuRy2traoqKhAbm6ucF5QUBDOnz+PFy9eQK1WC5OGVCqFr68vHjx4IMS8rMfDhw8REBCAqKgopKWl4fHjx/j8889x/vx57Nu3D7W1tejVqxcSEhLQsWNHLFiwQNivVo/t27dj4cKFSE1NRXFxMUxNTXHx4kVs3rwZ27Ztg6enJ4YOHYoBAwZgzJgx2LNnD7Kzs7F69WosWLAAxcXFkEql0Gg0cHJygkqlwqpVq4w2WJ8/fx4dOnQQAmKrVCqUl5fjq6++wtixY4V669atw+jRowXX9+rqauTm5sLe3h6//vorIiIi8OLFCzg6OuLRo0fo0KEDjh8/DrVajaysLEG1+OLFC3h5eUEmk+H8+fNGJFRTUwNfX1/cvn0bXl5eOHLkCJycnIRysViMW7duGRHly7C0tIRIJEJeXh7EYjGKi4vh7++PJUuW4L333kNOTg6Ki4sbkFO9ajkpKcnIK/TP4vjx45gyZQrOnj37ynovXrzAmTNncPToUZw/f14IRVheXi6MNaBu0WZhYQFHR0e0aNECERER6NKlC6ytrRvVBBUVFeHkyZM4duyYQHSurq6oqKjAw4cPIRKJIJPJ4ObmhuzsbJSXlzeI5gPULS7LlXo4DF2Iav7zzm+mMgm2j2nzd+SWfzP+8sRXj7zSSuy89AgZT0pQXFENtUIGbztz9AtwhI+bE54/fw5bW1ts3boVR48exZ49e5CUlIT79+9j8ODBCAsLg62tLb788ksAdelopk2b9i+vJgGgrKwMZ8+eFRxmzp8/D29vb0E1Ghoa2uhKuKamBnfu3EF6ejrS09Nx4cIFXLlyBU+fPhXshOXl5SgvL0eTwI5QBvVCntwWMqkUNS/HHKipggGAj7oGC0dEorm9Go8ePUKzZs0E8hOJRPDx8UF+fr6w2dvOzg7NmjWDWq1GSkoKnjx5ItSVyWTCpN++fftGJwWS6NKli7B6zsrKEqRIiUQCS0tLfPjhh4iJicHZs2eRlJSEy5cv49q1a8LqWCaTwdfXF+7u7vjll19QUFAAtVqNQ4cOwdPTE3q9HmvWrDEKMbVt2zbs2LEDu3btQlxcHE6cOIGSkhIMGTIE/v7+iIuLg4uLC65du4bOnTvj559/btD3xMRE9O7dG/37928QUqu6uhqHDh3Cpk2bcPjwYdjZ2eHOnTuCDYyk8I5KS0sFW+fvn9GLFy8QGRmJixcvorKyEqampujZsycSExNRVFRkpBJu1aoVHj9+jIcPH2LdunWIi4vDypUrMWPGDEEqzM3NRU1NDaqqqhAZGYn09HRUVVXh5s2bqK6uRmRkJG7fvo1Hjx4Zjbfq6moMGTJESDElFoshlUoRGhqKRYsW4d69e+jTpw9SUlLg5+fXIETayJEjsWnTJvTt2xfbt28XjkmlUmi1Wty+fRtJSUkYNGgQVq0yjh40b948XL9+vcEz/rOYO3cuCgsLsWjRIuTk5AgElJqaigcPHqCwsNDI3iYSiaBQKGBlZQVXV1cEBASgS5cuCAkJaZDjsjEUFxcLRHfs2DFhG4e5uTkyMzPx6NEjiMViWFpaIjAwEPn5+bh8+TIkEglcXV0xdepUrF69GidOnGjQtlarxeI9ZzF3/w1UG/48+f1PpVn7X4n/nsTu/7N44403iDpnRioUCk6YMIEff/wxmzVrxpycHBYXF/Ott96it7c39+/fz65du1KlUlGj0XD9+vWsra39t/SjoqKCp06d4meffcYuXbpQrVazefPmfPfdd/n999/z8ePHrzz/xYsXvHTpEjdu3MjJkyczMjKSNjY2lEgkFJuq6Rg5nPZ9p1HffxZdY2ZR024gxaZqAuBbb73FKVOm0NXVlfb29pTJZPzll1/Ypk0bSiQSfvPNNywvL2e/fv0oEokokUgIgFZWVgwJCWFISAjVarXwHEUiEeVyOdu2bcuZM2dyz549TE1NZX5+Pr/++mv6+/uzoqJC6HtZWRmjo6Npbm5Oc3NzoR2pVEonJye+9dZbdHd3Z2RkJNPS0vjZZ5+xe/fudHNzE/oCgPb29oyIiKCHhwetra2N3s27777LRYsWkSQNBgOnTp1KLy8vBgYGsl+/fszIyKC7uzsVCgXt7Ow4ZswYFhUVGT3jadOmEUCD47/H0aNHqdFohGfRtm1bzpgxgwCoUqloZ2f32rEQGRlJkUhEACwtLaWpqSnj4+ON6uXk5FAmkzE+Pp49evQQnoNMJqODgwOnTp1KuVxOc3NzymQyOjs7s7y8nK6urjQ3N6eTkxObN2/Ozz//3KjdsrIytm3blo6OjjQzMxPaFYvFlEqlnDZtGiMjIwmAzZs3p0KhoLOzM3v27MkNGzZwzZo1FIlE/Mc//sFmzZqRJH/66Se6ubnxxIkT1Ov1fPLkCWfOnElTU1Oj95Sfn0+dTsebN2++8hnVo7a2lunp6fzqq68YExNDPz8/ymQyo3FR33czMzO6uroyMjKSCQkJPHPmDIuLi//UdV5GcXExExMTOXnyZLZq1YpmZmbs0KEDhw4dyp49e9La2poqlYoKhYIeHh6Mi4vjiBEjqNFoaG1tTVNTUw4dOpQXL15kbm4ue/bs2aC/9b8HDx5w1apVbN5rHL0/PkDXafvoMvWPf67T9tH74wPcnHLvn76vv/Hn8B9BfBEREcIgUyqVXL16NQ0GA2fOnElfX18+ffqUJPndd99Rp9NxyZIlPHToEF1cXGhhYUFfX18eO3bs396v6upqnj9/nosXL+abb75JjUZDd3d3jhw5khs3buS9e/doMBhe2cbNmzcpk8kIgGPGjGFcXBzDwsJoYWHR6EdmY2PDLl26cNy4cVy9ejVPnz7NSZMmUSQS0dnZmQqFghKJhBYWFhSJRIyKimJ+fr5Rn3ft2kV/f3+KRCKKxWKhvp2dHRUKBUUiEd3d3dm1a1eOGzeOn332GSdMmEC9Xs+LFy+yurqatbW1PHHiBAcOHEg7OzujScHCwoJhYWFcs2YNy8vLaWFhwbi4OLZo0YLR0dEMDg4WSAeAsICwtLTk1KlTjRYQn3/+OV1dXdmzZ082b96cVlZWjIuLo16vZ2RkJF1cXHjkyBGhvlarpYWFxR8+76ysLA4YMEAgGpFIxM2bN7Np06Y0MTERFg1arfa177+qqoo+Pj4UiUQkyQULFlAqlbKkpMSo3uLFiymRSKhSqYzeZbNmzSiRSDh8+HB2796d1tbWFIvFnDp1Kvfv30+JREITExNqtVqhzaqqKs6fP59yuZxWVlZcuHAhw8PDhec4f/58lpaWkiR//fVXisVikmRNTQ3v3r3L7777jlFRUQRAd3d3Xr9+nUqlkpmZmbS1tWVycjL9/Py4adMmYbyYmJjwyy+/FO4nISGBI0eONLrHiooKnjhxgvPmzWP37t3p6elJtVrdgCwkEgnVajVFIhG7du3KRYsWMTU1lS9evHjt834ViouLeeDAAU6ZMoWtW7emSqVix44dGR8fz8mTJ7NLly40NTWlVqulXC5nUFAQ58+fz/nz57N169a0sLCgjY0NHR0duWjRIubl5bGqqoqzZs0SFiabN2/m9OnTje4nMDCQGRkZ1Ol0zMjI4JWHBRy7+Tw9E/bTK2G/EeF5JeynZ8J+jt18nlceFvxf3e/feDX+I4hv0KBBwmQ8duxYo7JZs2bRx8eHT548IUnevXuXwcHB7NKlC7OysrhgwQKamZlRrVazR48evH379n9bP2tra3n16lWuWLGCAwYMoK2tLZ2cnBgbG8tvvvmGN27cMCLC4uJiOjs7Cx/RyJEjWVlZyZ9++ol9+vQRpImXfzKZjFqtlp6enmzWrBnt7OwoFouNymfPns2jR49y+/btAil98MEHDSTfyspKzp49m3Z2dgRAMzMzikQi+vv7c9myZdy9ezeXL1/O4cOHUy6Xs3nz5oK06eLiwtDQUMbGxnL69On84IMPBPL28fGhQqEw6reHhweDg4P57rvvCtdv06YNPTw8uHjxYnbr1o0ikYimpqaCJGlnZ8cOHTqwc+fO1Gg0VKvV1Ol0vHLlCk+ePEkXFxf27NmTjo6OHDNmDNevX0+RSERXV9cG76akpITTp0+nSqWiSqXigAEDGBMTQ61WS7VazYULFzI7O5tqtZpKpZIikYgdO3bk2rVrXyk9lpeXU6vV8vKNO1x17A4d+k6nX9xX/OD7S1x17A6fl1TQYDDQzc2t0YXM0KFDSZJPnjyhRCJhp06dBBL75ZdfaGlpSalUyuvXr/PMmTP09vamlZUVu3fvzurqapLk6NGjGRgYKBBePXbt2kW5XG50rLq6mjY2NmzRogU/++wzarVa2trask2bNpw6dSo/+eQTRkdHG43TwYMH08bGhs+fP+eGDRuoUCjYpk0bOjs7U6lUGo2/l8eon58fY2NjuWbNGmZkZAgahAsXLtDX1/eV39LrUFJSwoMHD3Lq1KkMDg6mSqVihw4dOHPmTH799decPn06/fz8qFQqhQVdZGQkV69ezT179nDYsGE0Nzenh4cH1Wo1u3TpwsTEROEb2bNnD62trSmTyThu3DiWlZXxnXfeMbpPkUjEQ4cOMTAwkKtWrTLq3/OSCn59/A4nfH+ZIzec44TvL/Pr43Xj4W/89+M/gvjS0tJ46dIl5uTkUKfT8dq1a0bls2fPpre3tyApVFVVccaMGbSzs+OBAwf46NEjDhgwgJaWljQzM+OECROMpKA/i9ySCq46docffH+JIzacM5rcGoPBYOCtW7e4Zs0aDh06lC4uLtTr9ezXrx+XLVvGHj16GK2IVSoVdTodQ0ND+e2331IqlRp9aDNnzmRNTQ0zMjI4YMAAKpVKQf0rk8loZ2dHuVxOAHRwcKBGo6GFhQVdXFwokUgol8s5YcIEZmZmNiDBK1eu0NnZmSKRiFKplBqNhlqtlmPHjqWDg4MgAZB1q/u7d+/yl19+4YYNG/jJJ5/QxcWFSqWSnp6eVCgU1Gg09Pf3p1KppEwmEwitXqWl1+vZoUMHAuCNGzeYmJjI8PBwknVkkpiYyAkTJrBdu3a0sbERzjUxMaFEImFoaCgXLFjA6OhoNmvWjH379qVEImFAQACtra2FvtbW1nL9+vXUaDQ0MzNj+/btefHiRSYlJVGpVNLR0VEg4+zsbNrZ2XHIkCEUi8XcvXs3e/XqRQsLCw4aNIj79+8XyKYeqVkFjPkqmR7/ZzXf2Ap/zObzjB0/3WjCrP9bq9WyoKCAixYtYq9evajRaASp/cCBA7S2tmabNm0olUppYWFBT09Pjho1yuj9xcTEcM2aNQ3G38qVK2lubm50LCoqiubm5oIE+fTpU+r1espkMh4+fJhWVlZctGgRR48ezdatW9PGxoYmJiYNCFsul9PW1pbBwcEcN24cd+3axbt37zZ4Po3hyy+/bLCAfR1KS0t56NAhTps2jW3btqVKpWJYWBhnzpzJxMREbtu2jSNHjqROpxMkN5VKxX79+vH777/njRs3OG/ePLq7u9PZ2Zk+Pj60srLipEmTeOfOHeE6N27cYKtWrSiTyRgUFMTbt2+zvLyc/v7+wn2npqZy4cKFbNOmDadNm8Zu3bq9VrPzN/5n8R9BfC/jH//4Bzt37txgoH366af08vIyUpMlJyfT0dGREydOZEVFBZOTk+nl5UVHR0daWVlx6dKlrKqqeu01U7MKOHpTnfriVZNbatbr1Rf379/n5s2bOXr0aDo4ODRYLV++fJlknWoqMDCQrVq1EiQ9+HAkAAAgAElEQVShIUOGsEuXLoLabPTo0SwoqLtmVVUVr127xu3btzMwMJAAaG5uToVCwaZNmzIoKIh6vV5QNykUCrZs2ZKDBw/mnDlz+NFHH9HOzo7Z2dlcvHgxXVxchLpyuZy+vr5csGABHz161Oh9abVaTpo0iWQd4efk5PD48eMUiUQcM2YMP/jgA0ZHRwu2xd9PpCKRiBYWFhw1ahRTUlKM7IubNm2il5cXly9fTjMzM77xxhuCGrCeSOvJxNTUlGKxmLm5uTxx4gS9vLxoZmZGd3d3Hjp0iE+fPuWQIUPo7OxMKysrbtq0iWFhYSTJe/fu0dnZmd988w1FIhF37dpFknz+/DlXrlzJ4OBg2tracuLEibx8+TI3nbn3p206njMSadayq9H9uri4cNCgQbx+/TptbW0ZFRXFwMBA2tjYsGnTppTJZPzkk0/4448/Cvfat2/fBmPfycmpUXvbzJkzjRYBCxYsoEgk4tq1a7l48WIOHDiQnp6ejUqi9WPOycmJHTt2pKOjI+3t7WlpacmsrKzXjvNXoU+fPtyyZcsr65SVlfHIkSOcPn06Q0JCqFKpGBoayo8//phJSUm8du0aly5dysjISCqVSjZt2lT4rkeOHMm9e/eyqKiIO3fuZHR0NC0tLdm2bVs6ODiwZcuWXLt2LcvKyoTr5efnc8SIETQxMaFGoxHe/fXr1wWbto2NDXNzc4VzTpw4QVtbW8HU8jf+OviPI76qqir6+vryxx9/bFA2Z84cenl5MTs7Wzj2/Plz9urViy1btuSNGzdYVVXFJUuW0NLSkq6urnR3d+fPP//8hyu2zSl/fnL7Mwbr4uJirl+/np06daJGo2HXrnWT4bhx4+jr60tzc3NGRkZyzpw5PH78OMvKyujm5iYQZNOmTblx48bXPqe9e/fSxMSETZs25ZEjR7h+/XrGx8ezQ4cOwiSqUqnYtm1btm/fnjKZjPb29lQoFPT29mbv3r3p5+dHtVpNmUxGsVhMR0dHqtVqRkZGcsuWLYJq7dmzZwTQYEKcOHEiLS0tjY41bdqU165dY1lZGW/cuEFfX99GJ9560rWysqJUKuVbb73FZcuW8dNPP6WlpSWXLl1KX19fjhs3jocOHaJKpaJYLG4gnYjFYgYEBPCLL77g7NmzaW1tzcmTJ/Px48c0NTVlQUEBVSoVKysrefPmTbq7u3P79u00MTGhtbU1b926ZdT/mzdvMiEhgS4RQ+gyafcrx0SD3+TdtGpV5yRx717dOKmpqWFoaCgdHR05cOBAlpeX8/Lly7S0tKRIJKKnpyd1Oh3d3d3p6elJiUTCw4cPC/25f/8+9Xq90fgtLCzkvn37GBgYSFNTU7q7uwvagd+TW719t16ibNmyJbOyshp8D1euXBHU8b9HSUkJz50799oxSdYtiqytrfngwQOj42VlZTx69ChnzJjBdu3aUaVSsV27dkxISODRo0dZVFTE48ePc/LkyfTx8aFGo6Gfnx/t7e1pb2/P8ePHMzk5mdXV1bx69SonTJhAa2trBgUFCTbz2NhYnjlzxujeqquruXTpUsHRZfLkyYK9cfPmzcJ317p1ayNptrCwkK6urvz555//1H3/jf9Z/McRH0keOXKETZo0YXl5eYOyefPm0dPT04j8DAYDv/76a+p0OsEx5smTJxw6dCh1Oh0dHBwYHh4uSFv1qCO9/f/U5Ob98f4G5FdTU8NDhw4xNjaWFhYW7NmzJ3fu3MmKigp++OGHtLGxEerm5eVxz549fOedd6jT6RpM4vPnz//Tz+nJkyd0dXWlQqEwmixJMjExkXq9niKRiEqlUpCAdDodW7duzRYtWlCpVLJDhw709fWliYmJoHqVy+XU6/VUqVSMiYnh0KFDG3Uo0Wg0fO+994yODRkyxEgtt2nTJqOJ2NHRkbt27WKPHj2MHGDq1ZxarZbW1tZCP1QqleCtGhcXRycnJ6Gtemm3SZMmgkpZLBbT2tqazZs3p1ar5e7du+nn58eUlBSmp6fT19eXiYmJgo1Rr9fz+vXrRveQmlVAfZd3aGLrTkikVDWPEN6/7dBFVLi2pFhhRrGpmkqvdnSI2ySUO8fvotzek8uWLWN5eTmjo6Mpl8s5btw4I/VleHi4YGuUy+WcPXs2DQYDhw0bRrFYzK+//pqbNm1iVFQUdTodHR0daWpqKki+L6tT6x2dbGxsuGLFCp45c4bPnj3jF198wbCwMKanp1MkEvHs2bPs0KEDFy9e3OBd3r9/n2KxWJCOX8bu3bsFR4/k5ORXjsmMjAw6OzvzxYsXTEpK4scff8z27dtTpVIxJCSE06dP55EjR1haWsrnz59zy5YtjImJoUajoYeHB1u1akW9Xk8PDw9OnTqV586do8FgYEFBAb/66isGBQXR0dGRvXr1YkBAAB0dHTl37txGpbKjR4/SxcWFpqam7NChA+/evSuUjRo1Snh+I0aMaHDuW2+99U+ra//G/xz+I4mPJHv37s25c+c2Wvb555/Tw8OjgVru2rVr9PPzY79+/QQb38mTJ9miRQt6enpSq9Vy5MiRfPz4MVOzCuj98QFaRY5tdIJzmbqPTvE7afZGNMWmaorkSsodm/0f8jvAKw8LmJaWxsmTJ9Pe3p5BQUFctmwZnz17ZtSnVq1aMSIiQvj/0aNHGRgYSJFIRL1ez+nTp3Pfvn2UyWTCqj04OJiTJ0/m3r17X2urrK2tZUxMDEUiET/88MMG5T179qRYLKZKpeLXX3/N7OxsLlu2jCqVim+++SaDgoIEYuzYsSO7du1KZ2dnYSVcP8HWS1YJCQlMSkrizp07CUBQxdZjxYoVHDVqlPD/e/fuCaRkZmZm5Hz07rvvsl+/frx69SonTpxIT09PwQP2ZRuZVCoV3Pjr1Z71v/q2vb29OWXKFMbHx3PQoEHCtoh6CVEqldLBwYFqtZpjx44VbKcmJiZUKBT86aefhH6N3nSe1n2m07rPDJq90dVoXOj7z6au11Q6TdxBp/idVLXoTEWTgJfGzV4GT1pDmUxGLy8vSiQSSiQSDhgwQGj/+vXr1Ol0jI2NFe7TycmJer2+UXubWCymTqdjQEAAR44cyU2bNvHcuXPs2LEj27RpQ39/f9ra2hpJLFevXqVOp+Pdu3fZvn17uru78+DBg7xy5Qrt7OwaLCrffvtt9uvXj2KxuIGzz65duwR1oFwup5ubG7dv387du3dz165dTEpK4u3bt5mUlMTu3bsLi6a2bdty2rRpPHz4MEtLS2kwGJiens758+ezffv2NDc3Z3BwMNu1a0crKysGBARw7ty5vHbtGg0GA2tra5mUlMTBgwfTwsKC3bt3Z0xMDG1sbBgREcHdu3c3anO8ffu2oCK1tbXl3r17hbKysjK2aNFCGD+NLQK2b99OT0/PBs5Ef+Ovg/9Y4svMzKRGo/lDe8P8+fPp7u7Ohw8fGh0vLy/n+++/T2dnZ544cYJknbpj+fLl1Gq1DAoKopWVFcNmbKHr1H207t34BOcydR9VzTpS6RNKx/e/o/OUPbQd/o86tefUffQY+QUdHR05derUBs44L8PCwoKffPIJExISqNPpKBKJ2Lp1ax4/ftyo3oABA+jo6EixWMx58+bx008/ZUREBM3MzOjv78/x48dz586dzMnJafQ6mzdvplQqZcuWLQXHhpSUFOr1emZmZnLcuHGUSCR0cHCgXq83UiXX1NTwzp07/PHHHzlnzhwOHDiQzZo1o0wmE4iofgtAveu3WCymWCxm27ZtOXLkSC5cuJCJiYncs2ePsG+MrJPG6x1fBg0aJBzfuXMnmzRpwsLCwgb38vTpU37zzTeCLfPlX70D0+DBgwUJ8YMPPqBGo2FQUBCHDRvGqKgogTCtrKzo4OAgOAHJZLIGHqn12z78/f157NeLRnZedcjABuPi5Z/t8H9QZGJqdKzJ1J+F/Zn1z0+tVtPX11dQcTam+tVqtWzXrh0/+OAD9ujRQ5DiLl682Og7b926NZ2cnCiVSnn//n3heEVFBf39/blu3TouX76cISEhnDRpEufMmUOS7Nq1K9evXy/Uv3XrFrVaLfPz86nVavn222/TYDDw7NmzfP/99+ng4GD0rEQiEQcNGsTIyEh6e3sLEqdYLKapqSlbt27N8+fPk6z7Hg8cOMD33nuPrq6udHZ2ZlRUFENDQ6lWqxkWFsYvv/xSUA2TddLnJ598QldXV/r5+TEuLo7dunUTtrr8XkKvR1FRESdOnEhTU1MqlUrOmjXLiODT0tJobm5OqVRKqVTK/fv3N2jj4cOH1Ov1Qv//xl8T/7HER5Iff/yx0WT5e3zxxRds2rRpo+S4b98+2tracubMmcKqMCcnhyNGjKCNiztdJv9oNFn9foKzH72KIhNTOk3c0eiE5z59H3OKftubdOfOHQ4aNIjfffedcOzy5cvCiv33ziq/x+3btwmAISEh9PDwEI5XVlYyJSWFCxYsYLdu3WhhYUFvb2+OGTOGW7ZsMbr3zMxM2tjY0MzMTFAX7969WyjPysoS1IYhISGv3ZBfWVnJ5cuXUyQSsWXLlg28UMViMV1dXRkdHc3hw4czKipKUEX6+fkJjjVeXl708fGhSqVibW0tMzMzaW1tbWQ3+v0+r4yMDIH4RCIRo6OjGRYW1oA06lW0AwYM4ODBg4V9fwMGDODmzZuZm5vLxMREqtVqjh8/nvb29uzSpUujxCMWi6lpN9BobLyO+KwiRtPE3ut3moJdNG/dp0H79RvzpVIpzczMaG1tzQ0bNvCdd96hRqOhqampkXNF/Wb936u/09PT+d1331Gr1RIAFy1aZKRGnTp1Kt98803evXuXWq2WN27c4I4dO9izZ0+S5Jo1axgbGyvUj42NFUhx7ty5lMlk9PT0pLu7O2fPns1FixZRKpVSLpezVatWgjNK69at+dFHH/HAgQMsLi5mQUEB7ezs2LdvX1paWgpbR4KDg9mnTx+GhYXRzMyMXbt25bfffmukniwvL+e2bdsYGRlJjUbD0aNH86OPPqKPjw99fX351Vdf/eFG95qaGq5evZpWVlY0Nzdnly5djIi0/p5FIhFNTEyoVquZkZHRoJ3a2lpGRET8oabpb/x18B9NfGVlZXRycmogHb2MhQsX0s3NrYExnSQfP37MyMhIhoSEGH0I0zYlvZb4tN0mUmbtQvOgNyk2VVNm7UJdr2lG3p5fH7/DzMxMxsTECJ6MAQEBXLNmDZs0aSJMeH/GWYUk7e3t2bNnT4pEIl66dKnROjU1Nbx06RK//PJL9unThzqdjq6urhw6dCi/+eYbpqamsnPnzgTAN954g7m5uXzy5AkfPXrEmJgYRkVF8YcffhCky169evHixYu8fPkyL1y4wHPnzjElJYWnTp3iyZMn2bZtWzo7O/Pw4cM8ePAgZ8+eLWy+l8lkwoRdr3Z0dHSkzsGVfgPj6TdmMX3GLqX7kDm0DR9Ksama5ubmgkPGoEGDOH78eMbFxVEmk3HYsGGcMmUKvb29BekBAAcPHkxra2va2dkJm9JdXFwYEBBAKyurBmRYL5UEBARwwIABHDBgAE1NTRkYGEidTsfo6OgG9ZVKJTt27MheC3565bh4+Wc3cjnFCjPaxM5vUNYkZpZgw6yX+goLC9m1a1eamZlxw4YNVCqVLC4uZm1tLfv160elUkknJyeBxH766Sd6eXlRJBJx1qxZwhiYNWuWoOKtv/f6b+SXX34RPBE7d+4skOa9e/eEaDXXrl2jm5sbyToS1ev1LC4u5oMHDxgVFUWRSMThw4fz+PHj/PTTT4XtFi1btuTkyZO5f/9+I3VobW0tz58/z4kTJwoOSz169GB4eDhNTU0pkUj4X//1X9y6dWsDCf/SpUt87733qNVq2blzZy5cuJBjx46llZUV+/Xrx+Tk5FduJTh+/Dh9fX2p0Wjo7OzMAwcONKjz1ltvCe/Bzc3tD/dtLlmyhO3atWNNTc0fXu9v/DXw/0yszn8VO3bswLx583Dx4sUG6V/qsWTJEqxcuRLJyclwdnY2KjMYDFiyZAm++OILLF++HAMHDsSE7ZfxU+pjo3oFJzajtvg5dN0nAgCKzuxA4YlNsGgXA4uQAajMzsCzHz6B3bAvIdPVBQmuvZuCRz/Ma7RP9fEfSQr9fvlV/f61sW4R82cfy/8VXu7by6iPQfly7Mra2lqIxWKIxWLheHV1NUQiEUQikVEgYYW9J8zb9IepWyBIGuUsM1RXAiIRyu9eQMmvO4H8BzAYDDAYDA2i4gN16XaqqqogFothbm6OoqIiGAwGKBQK4Ry5XA6tVgupVIqamho8e/YMFRUVEIlERvdW33eFQgEAcHd3x5UrV4yuJ5VK0aZNG6i7T8G1wt9icf5+XNSjuuAxcr6bCsuOw2HWvFOD/kueXkfWlumoqakR+rNp0yYMGzYMGzduRJ8+faDX61FWVgagLnNFp06dcP78eYSHh+Pw4cMYNGgQXF1d4eHhgdGjR2PChAlYsmQJHj58aDTO67Pbl5aWwt7eHkqlEqNHj8bBgwfx66+/QiqVgiT0ej1SU1OhVqthZ2eH0tJS9OvXD23atEFkZCSioqLQokULXLt2DU+fPkVgYCDCw8PRsWNHhIaGGgVwLykpwdGjR7Fv3z4kJibCysoKNjY2uHfvHnQ6HR48eIAePXqgR48euHPnDpYsWSKkWsrLy8PWrVuxbt06FBQUYNiwYbC1tcUPP/yAGzduYPTo0RgzZgwcHR0bPNd63L9/H/Hx8UhKSoLBYMBHH32ESZMmQS7/bcwVFxcjODgYd+7cgcFgEJ7ry7FW65GWloZOnTrh3LlzRtlA/sZfE3/JRLT/TvTv3x9fffUVVq9eLeQS+z0+/PBDiEQidOzYEcnJyXBxcRHKxGIxJk2ahPDwcMTExODgwYMwtB/z2uuKpCaAWAqLdoMgEkugcG4BhXMLlN+7JBBfFRtPOWRvbw+NRoPMzExotVr069cP1tbW0Gg0sLCwgEajgVqtFvLsvZxvLygoCJMnT8bChQtx9uxZ2NnZQSKRvPJXT0wAcPPmTYSEhGDixIm4ePEifv75ZxgMBshkMkyePBl9+/aFv78/JJK6vhsMBkycOBErV66EjY0NNm/ejE6d6iby7OxsODo6Ijs7G7a2tgCAlJQUtGvXDs+ePRNywp08eRLjl+5AvmtHiCQmEInF+H0o33oSVHq0gappIIqPb4Tl8zQoFArcvHlTIFB3d3cEBwfj8uXLuH79OqRSKcrKyhAZGYnIyEhs3boVT548QUJCApKSkvD06VP8+OOPQiDq77//HnFxcaiqqkJCQgI+/fRTiEQilJaWCiRTn0LpZdTU1OD8+fPQ6M/AxLN9g3KjukXPkLMtARbtBjVKegBQnJcjpM6pJ+Fhw4bBz88Pjo6OePr0KSorK4X6CoUCiYmJCAoKwpEjRxAaGopTp07h7bffxvz582Fubo6YmBiUlpbi2bNnEIvFwntdu3YtRCIR4uPjoVAo8OzZM8ybNw+DBw9GdXU1pFIpRCKRkJG9c+fOIIl169bh8OHDePToEaZMmQIXFxe0bNkSo0aNQmxsLGbOnImePXsKfczMzERiYiL27duHM2fOoG3btvD390efPn1w7NgxXLhwAf7+/pgzZw7CwsKMFqotWrRA9+7d4e/vjytXrqBbt26YMWMGrl+/jtWrV8PFxQVxcXHo06fPKzO2l5aWYv78+Vi6dClkMhnCw8OxdOnSBgveS5cuCdlJamtrMX78eCxdurTRNisqKhAbG4tFixb9TXr/j+A/XuIDgKtXr6Jz587IyMj4w2zJQF3i0qVLlyI5ORmurq4NyktLS/H+++8jucIFdDHOj/X7lX35/VQ82zEbzpN2CYknn+38FAoXf6hbvVnXXtovyEtc0uA6YrG4UQmuXkoC6ghHLpdDpVLBysoKOp0O1tbWSElJgUqlQnFxMdzd3fHZZ59Bq9VCo9FAq9XCzMzsDxPyVlZWom3bthg1ahTeffddAMCdO3fg4+OD2tpatGvXDvn5+cjOzm6QoLe0tBQxMTE4cuQIgoKCsHPnTmHB8XIeug4dOqCgoABXr14Vjv0rSYdNZWJ0sirEVx82TKDq7e2NBw8eoKKiAhEREejTpw8qKyuRkZGB9PR0pKSkAICQWPjRo0eYPXs2vL29UV5ejs2bN+Onn34SJLyX0zz9ERQKBYKDg+HWbQxOF1uhoqoaMNSi8NRW1JbkQdt1PCCWoLasADnfTYXZG9GwCO7TaFusqUTxqW0o/HWn0fH63I4ymQxisRhFRUVo2rQpPD094ebmhqZNm0KhUGD8+PGCFNyuXTucOnUKALBv3z707NkTJLFixQrExcUhNDQUJ06cwL59+zB+/HhUVFQIWTzEYjGGDh2KDRs2oLq6GmPHjkVmZiZqa2tx+vRpmJubIyAgAI8fP8aIESMwdepUoa+dOnUS0jnt27cP+/btQ15eHqKjo+Hm5oYnT54gMTERcrkcffr0Qe/evTF69GisWbMGrVu3FtrJzMzEhg0bsGHDBiiVSjx58gQrVqzAgQMHcODAAfTv3x/vvfce/P39X/l+DAYDtmzZgilTpkAqlUIul2PVqlWIiopqUPerr77C+PHjodPp8Pz5c6xatQpjxvzxYjc+Ph5ZWVnYsWPHa5Nd/42/Bv5XEB9Ql/gUAFasWPHKesuWLcOXX375h+QHAO8s2439D0UQSU1AQ22jExxIPF79DlQtOsGi7QBUPr6JZztmwW7YEsi0TjBUV6Lw5HcoObfbqO16chOJREYqPLlcDqVSCVNTU8hkMpBERUUFSktLUV5eLqjjamtrjQjT1NQUEokEJFFVVQWDwQBzc3NYWlpCp9PB1tYW1tbW0Gq1+PXXX1FSUoIZM2ZAp9PB1NQUo0ePRmxsLCorK/Hpp58iOjoaa9asMcpLePv2bbRu3RphYWGwt7fHF198gczMTKhUKnTo0AF79+4FAFRVVUGpVGLr1q0YMGAAAODKw0IMWv0ryqt/u9fii3tRlpaEqtz7UPl0aKAmrAerK1F1YAH6hreCq6srzM3NUVZWhm+//RY3b95Ejx49YDAYkJ6ejtzcXHh4eMDBwQF3797F06dPBXVnQUGBkcr19+/D2dkZHh4eOHr0KGxtbXHy5El4eHgAAFQqFXQ6HXJzc/HixQuIlRZwfHc9ilJ+QNHpbUZtWbSLAUQiFJ3aCpFMYVTmHP8byRlqqpC9cjgM5cVGdXx8fHD16lUcPXoUmzZtwg8//AAfHx9069YNWq0WWVlZ+Omnn/Dw4UPhHLFYjNjYWDRt2hQmJiaYMWMGAKBbt244dOgQkpOT4enpCX9/f2zbtg0RERGora2FQqFAVFQU/P39cfbsWaSkpMDa2ho1NTXo378/fv31Vzx8+BDvvvsukpKScPDgQYjFYuTn5+PgwYPYunUrEhMT4ePjg969e0On0yE9PR179+6Fo6MjevfujT59+sDX1xcikQgFBQVwdnZGfn4+qqursXv3bqxbtw5paWmIjY3FoEGDkJ6ejpkzZ6KwsBDz5s3D8OHD/1TKoZSUFLz//vt4/PgxysrKMHXqVEycONFIrQnUkePgwYOxfft26PV6FBUV4fDhwwgLC/vDto8ePYrhw4fjypUrjaYg+xt/TfyvIb78/Hz4+PjgyJEj8PPze2Xd5cuXY/HixUhOTm5UdfG8tBIh85NQVUsUnvyu0QnOMjQWVbkPkHdgGapz70Oq1sMybCiUXiEAAJGhBoUb41BTVmgkUcjlcgQGBsLc3BzHjh3D+++/j5SUFKSlpaGsrAwKhQIkUVlZiZqaGojFYpiZmQkkZm9vjx9//BFt2rTB2bNnodVqoVQqkZeXh9LSUpiYmAgqpJqaGlRWVkIikUAqlaKyshK2trYwMTEBSTx79kywo0kkEqhUKhQUFAgqImdnZ2g0GiiVSuTn5yMrKwu3bt1CZmYmbG1thQz0CQkJmD17NmbPno1FixYZ3e+YzRdw5EaOUaLdFzfP1Nnz7l0Cq6v+mPgMBpjk3kCcvxw9e/bEypUrsW7dOkilUkgkEgwcOBDXrl1DRkYGnj59CpIQiURG2beBOvucmZkZysrKEBISgtraWtja2qJp06Y4efIkzp07B5KQSCTCwqIxohSJRLCxsYG62yRUaj2BRmxBrwMNBry4nYLnP37eaLmdnR0+/PBDxMXFYfHixYLUlJaWhv79+6N37964ePEiZs+eLeRInD17Nl68eIEvv/wSCktrKHw6wKC2g0RhDludBUqyMuBS+xgR7YPx8ccfQ6VSgSQ8PDzQsWNHhIeHIzQ0FNXV1fDx8UF0dDTOnz+P+Ph4zJkzB0uWLMG9e/ewb98+pKamIjw8HJ07d8a8efNgMBhQVVWFFi1aoHfv3ujdu3ej39TevXsxZ84cBAQEYMeOHWjTpg1GjhwJHx8frFu3Dhs3bkRISAjGjh2L9957D9u3b0dwcPArn+WjR4/w0UcfCaTcsWNHLFmyxCgRbz0KCwvRunVrPHjwQFgsXr58uYEK9GXk5+fD398f69atQ2Rk5Cv78jf+WvhfQ3wAsGrVKmzfvh3JycmvVUmsXLkSCxcuxC+//AI3N7cG5Y1N2H8eRPmtX2GfmQgHBwccOXIEVVVVMDU1RUJCAvbu3Ytz587BYDDA3t4enTp1wjvvvAMvLy+kpaXh6tWrSEtLQ2pqKtLT02FqagqlUona2lq8ePECJSUlwiRPEr6+vvDy8oKfnx98fX3h6OiIvLw8PHnyBNnZ2cjIyMBPP/0EvV6P0tJSIcu4wWAQVrFVVVUoLy9HZWWl4JRiZ2cHW1tbwd5Xnyy1tLQUubm5Qnb5eohEIuh0OnTv3h329vYwtdJjfZ4bav4gM/UfOYYYobYGhRvfQ9GzbAAQHFXqSar+mFarhYuLC7y9vVFcXAy5XI6vv/4ac+fOxfbt2zFq1Chcv34dP//8MyorK/F/JX4AACAASURBVGFlZYWgoCC0aNECrq6u2LFjBy5dugSDwdDgvn6P9f8fe+8dHmW5tX3/pmWSyaR3kpAECAkBQg+EIhKULggKooBSFKQISpEmbkTAiKiIgICANAXcdAJECEWKCb0kEkp673WSzCQzc39/ZM+9MyQB3Pt93s/n1fM45shk5pq7zT3XutZa5zrXkbOEX9Oi1T976NYEY40W46mvyIz9zez1uudjgoeHB0VFRURHR6PX6zlx4gR79uzBYDCg1+vx8fHh119/pVevXlQonch1ao/KPwQJoKtzbMaa2u+0OuUWmmsHqcq4j6enJ/7+/mIItXnz5jRr1oxBgwZRXl6Ora0tHTt25MyZM7i5uTFkyBB69epFaWkpERER/Prrr7Ro0YLbt29z7949AgMDGzzf/Px8du3axcqVKzEajcyZM4exY8cSFxfHunXruH79OhMnTuTdd98VDebatWuJjo5mz549DW6zsrKS1atX8/XXX+Pk5IRUKmXDhg288MILDY6/cuUKYWFhqNVqSktLadasGdevX6/XmLcuBEFg1KhReHl5ic2t/8b/HvylDJ/BYKBTp04sWrRIDLU9CRs2bODzzz/n7NmzNG/e3Oy9hkJ0zwqhRofuRDi58deAWi9Pp9Ph6+tLSUkJw4YN4+TJkzz33HM4Ojryyy+/kJaWhkKhoHXr1rzyyitMnToVR0dHDAYDSUlJ3L17V3xcu3aNzMxMfHx8SEtLw83NDSsrK0pKSigvL0ev16NQKHBwcMDLy4usrCxat27NihUr6NSpE7/88guTJk1iy5YtGI1GsrKyyM7OJisri4yMDNLT00lISECn06FQKHBxccHS0lIkTOh0OnJza8kZdnZ22NnZiYxJE4nG2toa195j0LfqDzJFg9fpWQxf3ZCxSqWisrISgG7dujF+/HjGjBmDWq02+8z333/PlStX2LJlC1DL6l27di2nT5/GyckJDw8PunTpwvvvv09iYiKxsbHExsYSFxfXaEjUBD8/P6ytrUlVNMUhbBIShfKJ483PRUvJ2W2U3zpRj1m6fv16vL29GTZsmOh91vVeZbLazvfnz5+nvLyc3r17Y2dnh1qtpsy1Hda9xiFTKBHq0Yb+DYkELOUy5vfzp4ebkaSkJBITE0lKSuL3338nNjaWzMzaBYZSqcTW1hZ3d3fatGlDfHw8CQkJ9OvXjxEjRjB48GDs7e1xdXVl4MCB7NixQ9yPXq/nl19+Ydu2bURGRvL888+TnJzM8uXLSUxM5LvvvsPJyYnp06fz2muvYWVlZXac6enpdO7cmZycHLMFrCAI7Nu3j3nz5mFjY0NOTg4LFizg/fffb5TwsmbNGubMmUObNm2Ii4vjpZde4uDBgw0yN+ti586drFq1iuvXr4u54L/xvwd/KcMHcOHCBcaOHUt8fDzW1tZPHf/dd98RHh7eoPH7T0gZQo2OHqocSm8c5+TJk+LkplAouHz5Mr6+vmzfvp0PP/wQPz8/5s2bx5gxY8Tc2K5du7h69SplZWU4OTnRo0cPJk2axJAhQ8x+rK6uroSGhpKXl8ft27fp0qULd+/excrKisDAQOzt7dHr9cTFxZGTk4OFhQUajUac2J2dnfH39ycwMJDOnTvTu3dvWrVqZbaPY8eOiYzTFStWUFlZKRrJHTt24OTkhNFopKCgAKjNN8lkMtG79RixAIN3p0av1TN5fEDl7+fIP/al2WumfJFEIqF169aEhobSokULnJycuHPnDtevX+f777/H0dERtVrN1q1b+cc//sGBAwfEBYe7uzsRERF4eXnx22+/8fbbbxMfHy8uVB6HXC5nwYIFJCYmsmfPHtTtB+LQd9K/GKlPiDAIRoz6aorPbEVz+2S9t21tbSkvL8fDw4NXX32VdevWMX36dI4dO0ZKSkq98SqVCplMxpo1a9gY9Ts5TbojVTz75GylkLJwYCBBikKRmJKYmIi/vz9xcXFi3nDXrl0YDAa8vLxQKpUUFRVRWlqKr6+v6CGmpqZy/PhxXnvtNS5fvszo0aPZuXMnPj4+TJw4kSVLllBcXCyWnnTq1Il169aZEVzqXS5BwMvLi0uXLole4PXr15k1axbZ2dlUVVXRu3dvVq9e3WhJg9Fo5JVXXuHo0aMiAWjhwoWsWNFweVFdJCcnExISQlRU1FNJNX/jz4m/nOEDeP311/H392fZsmXPNH7Tpk2sWLGCs2fP0qJFC/H1+Ph4xi/fSrZHqEjDbwwSCaCvoTDqe5pUJqJWq2nWrBkHDhxAEASsrKwwGo2MGjWKiRMn8vzzz3Py5Em2bt1KVFQUI0eOZMqUKXTqVGso0tLSWLduHceOHePRo0dALZV/yJAhIvV6+/btpKSk4ODgwM8//8yIESNIT08XPcNff/2VM2fOIJPJaNmyJa1ateLs2bN06tQJLy8vUlJSSElJITc3l8rKSgRBQKVS4eLigq+vL61btyYwMJAvvviCvLw8Dh06xMCBA0lISMDf35+ff/6ZwsJCli5dSm5ubr1r4vLKElT+jedpntnwPbpC/oFP671uMrSAGP40rc51Oh0qlYqqqioMBgMODg4olUqR9CKTyWjdujUJCQk4OjpSXV1NixYtiIuLw8XFhcTERKRSKS1btkSn05GSkoKlpSU+Pj7cv39fPAYL9xZ49ZuE3jUAqVSCIP23dyuXGDEaBayKk0g+vpGqzAdPPE8TJBIJSqWSuLg4FAoF/v7+Yj6vLizc/XEb81k9o5fz4wJ0WQ9EtrHMxgnPyZvMxgh6HZaXvmNoz/YMGjSIixcvEh4ejl6vRxAEJk+ezLlz59i0aRO9evUSP1dRUUFycjKJiYliODItLU18X61WExAQQFBQEJWVlURGRoplInK5nMGDB3P48OGnXoOuXbuydu1afHx8WLRoEceOHcPNzQ2j0ci6devEkpqGUFBQQJcuXcjOzqZdu3bcuHGDnTt38sYb9RnCj8NgMNC7d2+GDx/OnDlznjr+b/w58Zc0fOnp6bRv357r168/c93N5s2bWb58OadPn+bixYusXLmSlJQUWrRowaR5n5Bs5c+5B/lIwCy3o5RLAAl9Alzo4VDBm0OeRyqV4ujoKE4ivr6+FBQUYGVlRXp6ulhfVVJSgkKhICcnh23btrF582ZcXFyYMmUKr7/+uuixGo1GIiMj+f7777l06RIFBQWo1Wo0Gg2LFy8mJiaGlJQUEhISxOMqLy+nY8eOLF++nGHDhvH777/z9ttvYzQacXV15e7du9TU1BAcHCw+HBwcyMnJ4c6dO8TGxpKcnCyu1huCychotVqz1yUSCQMHDqQ4cChZFo0XGT+r4SP5Cmk/LzcLDfr5+ZGWliYyFK2tramurqaysrLBgvenQSaTYTQakVjZom7bF4WLL1KlNUZdBZLSLCp/P0dVcV6DRf1GoxGF2oGmz4+iVGKNxMIaZztrfOzk9GthS0i7IH766Sc2bNhg9llTnlUikeDh4YFcLqegoMCMHPR4SNQEGxsbrAd8gIVf53oLspwfF2Ddpg827fo3er4SoJObnCZJx9m5cycVFRX06tWLtLQ0srOzKS0tJSwsjE8//VSsdzNBEASio6OZM2cOMTEx4uvW1tacOnWK9evXc+zYMTH/lpSUJJ5LmzZt8Pf3N8srNm/enKZNm5rV9XXp0oUuXbqwb98+WrZsycOHD1m0aBEzZ85EoWg4dA61NaP9+/fHxcUFmUxGTk4OFy5coHPnzo1+pi5WrlzJmTNnOH369FPDoX/jz4u/pOEDRDWXgwcPPn0wtavEYcOGER0djVQqZeDAgXz11VcirR2gUKNj/80M7meXU1KpIzE+lpTbl/l2zjiG9Q9Dq9VibW1tlifq3LkzKSkpLFy4kLKyMtasWUNFRQVGoxEfHx82bNjAgAEDgNrV5qlTp9i4cSMXL17k9ddfZ8qUKfVYqkVFRWzatIlly5ah0+nEiXHYsGEsXbqU9u3bM378eGQyGVu3bgVgyZIl/Prrr0RFRWFhYYFer+fmzZucP3+ea9eucf/+fdLS0igrq6XYSyQScSJqTD3l8UnZRG4ZO3Ys/fr146HMh/UXUsyIFkCjJSImD6UuGisLsbW1RavVYmtrS2VlJZWVlSiVSjp06EBISAg//fQTnp6eZGVlMWbMGN544w0mT57MnTt3xGOWSCSEhYURFxdHscQWu+6jnqoqUxb9T6pzHjV4Dz0OS0vLWlJJdbWocGO6N0xklt27d7NmzRpUKhV9+vQRGb7Z2dlP3Lazlx+q0V/WCik8hmcxfAAYatD89AEBPk3Ys2cPgwcPJjw8nNmzZ7N//36WLVvGsGHDGDt2bO12c3LYuXMn27ZtA2DixIkoFAoWL15MVVUVMpkMOzs7xo0bJ5K14uLiCA4OxtramujoaLRaLYmJiWJu0fQ3JycHLy8vmjdvjkQi4fTp03h7e4thzW+++YYmTZo88XTCw8NZvHixqHBjZWXF7du3cXNze/J1+BeuX7/O4MGDuXHjxhNVYf7Gnx9/WcOn1WoJCgpi8+bNjbK9AM6cOcP8+fO5efMmLi4udO/enWvXrnHmzBkCAgKeup/IyEgmTpzIhAkTWLp0Kc2bNxfrrJ577jmOHTtGWloaM2bMoKSkhE8++YRRo0aJtXxKpZJu3bqxdu1aWrZsKW43PT2drVu3smXLFpo2bcq7777LyJEjzYgAW7ZsYdq0afz6668MHjwYjUaDXq8X6f4ffvghL7zwAocPH2bbtm0MGDCABw8ekJqaSklJiajYYTAYRBq/XC5HpVKhVqtRKpUIgkBZWRlVVVW0bdsWPz8/9u3bh4WFBUeOHMHV1ZVOnTqhUCjo0KEDWq2WrKwsSkpKMFpY4zXth3qT85NKRB5HYzVvJtJD8+bN6dChAy4uLty4cYM7d+6IsmReXl6Ulpaa5TZNk3NFRQU6nQ4bGxua9XuL8hYvohckTwxnC0YjgqHxXN3jkMvl9eounwVSqVTMMzZGtrHtOgK7nmPMDLQJOT8uoKagNvyocPTE/rlxWPrUL/ER9NUMb2HBmimD2bNnD1988QUvvvgisbGxvPrqq5SVlXHv3j0GDx7M1q1buXjxIiNGjGDSpEmEhoZSVlbGzp07Wb16NWlpaWLRfV2ykdFoxNHRkQMHDtC3b99Gz1mn0xEZGcmSJUvIysqiqKhIrKHMzc1FrVabeYh1n7u5uTF06FAiIyOZPHkyW7duJTg4mN9+++2JKi91UVFRQceOHfn000+fiRj3P4kCjY79NzK4n1NGmVaPraWcQHdbRnbywkn97GSqvzL+soYP4PDhwyxevJjbt2+bhUeqq6v59NNP+e677ygqKiIkJIRVq1aJhazbtm3j448/fmbjl5uby/jx4ykuLkatVnP+/HmaNm1KaWkp2dnZYt3cvn37mDt3LpmZmWzevJkdO3YQFxcn5qfeeecdlixZgp2dnbhtvV7P8ePH2bRpE1evXmXcuHFMmTKFwMBAampqsLa2ZsaMGSgUClatWiVKPjUGU72eq6srPj4++Pv7ExwcTEhICO3atWtU77SkpITY2Fi2bt3Kzp07sbOzo6SkBJlMhlKpZPr06XTs2JHg4GDRgB84cICVFwsotfHhieSPRiCRgDQrlqQdC81et7KyqldyYGFhgVQqxd7eHj8/P65cuSKyI6F2Aq4r3SaTydDr9Xg+/zrG4GF/mJ1ZHbOH3MsHnnDsEtzd3fH29iYyMhI7Ozvu3r3LwYMHCQ8Pp6amRhwbFBQE1ErAlZaWNhrerAunIbMblUPTZT1A4eSNRKagIv4CRac34jFhLQoHj3pjax5dJpSHREREYDQaRRq/Xq/HysqKXbt20a1bN95++21GjhyJWq0mLi6O9evXs2/fPl588UVmzJiBXC7n+eef5/b9RH5N0/2hSTs/P5+PPvqIgwcP0rFjRy5fvoyfnx83b94UxRxycnLMvETT80ePHonKQX5+fiQlJdG5c2c++eQTmjdvjq+vb71C9oYwbdo0NBoNO3fufOrY/yncSS9h/fkEfn2YD5iXpFjKpQjA8wEuTOvdgnbe9v8/HeX/DvylDZ8gCPTv35/Bgwcza9Ys4uPj+eCDD4iKisLS0pI33niDVatWYW9f/yb64YcfRL3HxmqU6sJoNPLNN9/w6aefMm/ePD744AM8PDxo3749586dE8cdOHCAkSNH4uTkxKJFi/D19WXmzJkUFhZiZ2eHwWBg5cqVTJgwAZlMRllZGUlJSSQlJRETE8ORI0dITEwEMAs/1p0sLSws8PDwoEmTJty5cwdvb280Gg1ZWVnIZDICAwN5+eWXmT59uqix+ax44YUXKCoq4ubNm6xdu5ZZs2bh5ubG8OHDOXHiBLm5uWaMyGETZhLr2heDpGHd0idB0Otwvr2Lm1HmZIj27duzYsUKJBIJW7du5eTJk2KZQ100JrZtZWXF8OHDuZ1eTHnIpHrkkJqCdApPfUd1bgIyKzsc+kwQhQlMMNZoqTiyHEN+MqWlpY2ew9y5c3nw4AEXL17Ezs6ODh06EBsbS2pqKgqFgqqqKlQqFXPnzkWj0ZCUlMSpU6dwd3fHzs6O2NjYegX58HTiUF3k7vsYq+ZdsO38Ur33GiMOASLpx9fXl+DgYDQaDffu3aOwsJAxY8bw/vvvi0zoO+klfLTnIg/KasswnmXSrq6u5ttvv+Wzzz6ja9euYnH8lStX2LRp0xMJLFAbrRk8eDBeXl4EBQURERHBgAED8PX1FY1jeno6bm5ujXqLjo6OHD9+nBkzZnD79m2zRef/TdQyyO+j1RueWDtsKklZPCiQsd18/68d3/82/K8yfP8TLv7vv/9Ot27dcHR0JD09nRYtWvDxxx+LeYsnYceOHSxatIioqChatWr1TPu7desWr7/+OiEhIUyePJnevXsTHh7OvHnzAHj33Xc5ceIEp06d4r333hNrkS5fvszWrVtF788U4jKRH0zanqYuApaWlhgMBrRaLdXV1WzcuJHDhw8TGRmJRqNBqVTSv39/OnXqxKpVq8Rt7d+/n+3btxMdHU1JSQn29vaEhoYyfvx4Xn311acm9G1sbPjoo4+YP38+X331FQsXLsTa2hq9Xk95ebnZ2LCwMH7//XcsgsKQdHz1D3lV6KtxybhA0qmdFBUVmb1lypVZWFgQGhrKlClTCAkJYfPmzWzYsOGZtDetra1xGDofmU8H6nqjgtFA1vdTsekwEJvOQ9GmxZF/YFmtx+ToWWecEW3iFSoi1+Dg4IBWq6WwsLBBT00qlaJQKFCpVFhYWFBQUICHh4c4XqvV4ufnh7+/PyUlJRQUFJCeni6Sox6HpaUl7sMX1NOTbQy5P/8Dq2adsO08tN57FXFnKYiorycLtd91TU1NPfLS4zCVdTyN+YxgRC6BoU0N+NaksWbNGry9vamurqaiooJ169YRHx/Ptm3biImJeaIIxbJly1i6dCmvvvoqWVlZXLlyhQMHDpiJZkNtxCQ9Pb2ep2h6DlBVVUWPHj3o1q2bmXH08vISIwb/k/hPtWwXD2r1t/FrBP8rDN9/6+JrtVoSEhJo06aN+FpBQQHz5s1j37596HQ6vLy8iIqKMiOrPAt27tzJwoULOX36tBiSehoqKir44IMPOHv2LAMHDmTDhg3s2bMHuVzOlClTEAQBtVpNXl5eoyohEokEqVSKp6cno0aNIiwsjNDQ0Hre6aNHjwgODhYNpVwuF+sCHzx4QERERKM/3pycHNavX8+RI0e4f/8+BoMBPz8/Bg4cyIwZM+qFeR8+fEhAQAClpaXY2tri4+NDly5d+Omnn+jTpw+//fZvNRI3Nzc8PT3p3r07LVq04LN/XsK65ziMEukTi6wxGhGMNZSe/4GyG8cRBIHOnTuTlZWFVqvl3LlzXLhwgUuXLnH69Ol6RlGpVOLi4kJWVhaBgYGkpKQ06A3K1Q40eXdrvfxjdX4KOTvn4j37n+LEm7t3CcomLbF/bpzZWKlgIHXtONSK2hxVXU/X09OTc+fOUVJSwsWLF7l58yYJCQliaNukvvI4JBIJNjY26PV6URCgoXEBL89AaDMQnd78523UatBlPcCyaVuQympDnZHr6hluqE8cejzEaiLg2NjYiIsaf39/rl+/jiAIFBUVseXXB+x7WINeeHYGpLFaS/FZ8zxp3TZWJs1alUqFjY0NdnZ2ODs74+bmhoeHBwcOHCA+Pp5Fixaxc+dOiouLiYmJoXXr1s98DFC7EBw0aBDu7u7079+/nnHMz8+nadOmDXqLzZo1e6Y64afBJJSRG3O4Qf1afUkumRsnmWm/2nZ7Bfser2OlkLFvcjeCvf4Oez6OP73h+29dfKPRyLBhwzh79ix5eXlER0ezYMECkazy3nvvMXXqVNq0acOxY8eemdZsdoz/Un0/ffp0gz8uk/pJUlISV69e5fLlyzx48IC0tDSxhqkuTLkod3d3AgICCAgI4NGjR5w7d46FCxcyYMAAJkyYIGoJlpSUMHPmTD788MMGZZbeeustdu3axfz589mzZw+pqamiyscfKcA9e/Ysmzdv5vz58+Tm5mJtbU2HDh144403mDBhAnPnzuXAgQNkZ2fz4MEDAgMDSUxM5MqVK0ycOBGZTEZFRQUSiQRvb2969epFfHw8tra2bNiwgWq1O29/9U+KLGtbKVUb6jBCDTUYBYGqxOuURv9MdU6C2bGZJmV/f3+0Wi3l5eWUlZWJuTuTR6xUKlGr1aJBbOz2t+06AvteY5DIzb3Qhg3fR0gUlri+8pH5RvQ1lEfvRXvrmJlxfVx+TC6XY21tjVqtJjc3l6FDh9K6dWu8vLxYsGABGo3GLOf33HPPiUzEq1evkpqaWu/4VY5uuEzaWE8Vx1BZSt7PS6kpygCJFIWTF/a9xmLl16H+RTDUkLdlCj06BYuiCXXxuHqMCf7+/ty9e5cH+donTtpQ28Wk6NRGDGX5WDRpifPgD5DbuSIV9ARmRjJr7MsUFhZy+fJltm/fTuvWrbG0tKS4uJjy8nIqKyvRarXU1NSIIuyNwVTXqVAosLCwwMrKCmtra+zs7HBwcMDV1ZUmTZqIxuzmzZscPHiQmJiYBkkwWq2W5ORkM/apyTAmJydjZ2dXL3Rqeu7m5mbmsZoUbB5XgTFJI1bcb1i/1mT4mn54pB7rWSKB/kFubBz7x+e0/9fxp+7H90dcfEGAqhoDK07EA4jGb+7cuZw5c4aamhrc3NyorKwkJCSE8+fPm6mur1ixgpkzZ3Lp0qU/XJ8zduxYqqur6dOnD7NmzRJX7unp6ZSUlNRT+ZDJZKjVajHPlpiYSHZ2NoGBgdy7d4/s7GxcXV3r7efhw4fMmjWLbdu28e2331JVVcWECRMoLy9n//79bNu2jVWrVvHaa6+Z5a+ysrIQBIHXXnuNoUOH0r17d3x9fQkLC6Nr1668++67DBo0qFHiiglhYWFiXkWj0bBx40b27dvHBx98wLRp05BKpbi4uPDFF1+wd+9eHB0d6devH4mJiQQHB4t5mmvXrpGWlsbevXtxdXUlJyeHbt26iexKpyY+2LR7EYWTDzIrNRYSA2p9GbcPbWTU0IEc0OTweOWgh4cHWVlZpKam4urqKtLc582bR79+/QgPDycmJob4+HgxhBUWFsa0adMYPXq0OHlLpVL8/Pyw7/I8BfL6oVeFoxcylR1lVw5g2+VltGl30abFYenTtv4FkyuQOnjW8yidnZ2xsLBgwYIFhIeHM3DgQL744gvee+89WrRowdixYzl+/Dh79+6luLi43mZHjBjBjRs3OHnyZKM52MqiXHQpt+rV8clUdniMf7q2pASQ5t7H3lJWr3uFh4eHqAnbUBnLo0ePCAoKos/He9DqDcjVTth1f02ctE0wVJaSf2glTgNnomoRQsmF3eQf+RyPN79EkMpp2n8S/fp14p///Cf//Oc/2b17N8OHD2/weE+ePMnLL79M8+bNWbJkCW+++SZdu3blhx9+4NGjR2I+LzMzk/z8fAoLCykrK6OiooKCggKqq6upqanBYDDUM54m8otEIhEF3RUKBZaWlqLXaWoN5u3tTWhoKE2bNsXJyQmJRCISb06ePCkax6qqKtEzdHZ2ZuvWrajVaj7//HMmTZqEUqmkQKPj14f5CAJiDlmXk4ChpuCp3x/UzonnHuRTqNH9zfZ8DH9aj8/k4ldWaSk8tQFtym2MWg1ye3ccer+FVfPOCIYaCo5+gS47AUNZHm6vr8TSJ1h08Q9uWcOnn34q3sg2NjakpqY22MrEaDTStWtXZs6cybhx4xp8Pycnh9u3bxMVFcWtW7dITk6moKCAqqoqsx+LRCJBpVLh5OSEr68v7dq1IyQkhK5du9K8efN6htVgMDBr1izWr1+PVCp9YoG1IAgcOXKE999/n5CQEL744gu2bt1KeHg4arUaJycn3Nzc+Oabb+jUqRPffvutGO7x9fUlPj6eZs2aERsby9GjR4mIiODIkSPk5+fTvXt32rdvj1Qqpby8HI1GQ3l5eaPPKysrxR++XC4nIyMDhUJh5p3I5XJGjx4thls///xzsaZOo9GwcuVK3njjDWxsbIiLi2Py5Mncu3evwXOfP38+BoMBjUbDpk2bzPbh6+uLVCrl4cOHhISEiIYwOTmZsrKyWkLFvxYg1tbWYncLk6doIvg0a9YMOzs7NB3Hkiuvv/gAqM5Lpuj0JmryU7HwaIFMZQcyBc6DZtUb+yRyiK2tLVKplMrKSmpqasRyEVOn+Orq6gbDmFDLUPTw8OD27dtUVVU16Lm2DH2Rqu5T/pBcmQnGGi25Py6o51mbetS5urpSXFyMhYVFw1ELlR1N39uJUIe09LggQfntSCpio3Aft7p2n9VaMta+gceEb1A4eSOXCNic/Zyy/Cw+/vhjmjVrxq5duwgKCqJfv35iE+WvvvqKTZs2MXz4cPz9/Vm1ahXjxo1j9erVZo2WTR5f3ed1e1yaO8pDcQAAIABJREFUUFNTQ/fu3Rk/fjyjRo3i4cOHJCQkkJKSQkZGBnl5eRQUFIjat5WVleh0OmpqatDr9SL79XGY0hMm42l66HS6etfQwcEB/6HTKPHuYZbaefwamjw+mdoRJBIsfTvg0GdC7T1JbSrogxdbMuU5c7nFvzr+tIbP5OIbdFrKrhxA3fYFZHYuVCVep+DoFzSZuA6ZjSPlN09g4d6CgsPhOA+dh6VPMBLAoSKNW9/WNlOt28onPDyc+fPnN7jP8+fPi9Jgd+7c4dGjR+Tl5YnCziaYCCT29vZ4eXnRpk0bQkNDCQ0N5c6dO8ydO5dTp07Rtm0DXsAT4O/vT0JCAq+++io7d+5EJpM1angKCgo4dOgQFy5cICQkhObNm3Py5EmysrJQqVRi7zuNRoO9vT1lZWXo9XosLCxwdnYmKyuLZs2a4ePjg1qtRq/Xk5qaSmJiIr6+vvTq1YtOnTqJQsc2NjZi7Z6FhYVYHlBdXY1Wq+Xnn3/m888/5/Dhw0yePJnMzExsbW3F95VKJdXV1VhYWDBixAhcXFw4f/48d+/epWnTpiKbUa/X06RJE3Q6HVqtFq1WKz6vqqp6YmcEkxHz8PCgXbt2WFpaijJkly5deqpii1Qq5ZVXXuHFF18kmgDOJpU/cbwJObvmYt2mLzYdBtZ7TxN7ltJf1ortnQBRVadt27ZotVpRYcZgMODq6kqLFi24du0agiA06IE8C6ytramsrMS63QAcwiYhtXh24yfU6Cg6s6VeLaKlpSXNmzcnMzOTkpISoOGuEdBwHeHjk3bR6U0IRj1O/aeLY7K2TMOu5xisA3tgrNEh/f0EDjk3yMnJEdtkOTg44ObmhsFgID09Ha1Wi6OjI1qtlsrKSmxsbLCyshKvnelR93/TcxMhzJTnNhGjTDKCpvdMBtLU97KuwXz8/7qvmfZl8iZNj8ePqyG4DpuHVStzVZzHr6Gxuoqawgws3JphrCqj6NR3GKurcHvt34ut4e09+fq19k/51v9a+FOGOuu6+FILS7PCZVWLEOR2buhyErC27yF2M6/b+0wAytTe3I5PwFhVxsiRI8XwVkREBLa2tly8eJH4+HiysrIoLS2lurpaXKWtWLECpVKJjY0NXl5eBAYGEhoaSq9evWjfvn2DIUET+87V1ZWFCxcSFhbGF198gbu7+xO9prrPU1NTkUql7N+/n/379yOTybC1tRUNj7W1NSqVSkzuOzg4MGDAAK5fvy5Sva2trTl69ChVVVVUVFQgk8no0KED+fn53L17l759+9KiRQsOHTpEbm4unTp1QqfTYTAYcHZ2RqVSkZOTw65du9i+fbvYdaG6ulrs3WdijZoMi6WlJampqchkMoYOHYrBYMDR0ZH+/fsjl8tF5RfT6nbv3r24uLgQHBzMO++8w/bt26mqqkIul7N48WI6dOhgtu26+xo1ahSFhYXcvHmTgIAAMjMzCQoKYunSpQwbNoyqqipycnKIjo5m165drF27lsLCQqytrSkvLxdrJgVB4O233yYgIID4+HhOnTpFSkqKGFZz7PEatt1HIzTQOaI6LxmFoyeCYKT85gn0mmLUbeuLIBhrdOgLU+t5bSaJt9jYWGxsbMRuHHPmzGH79u1cvnxZnHDXr19P3759mTlzJpGRkVhZWaFUKimrFlC37YtN01ao7Z0pyE6nJj8Fzd0ojFVlogehuX0SJOAY9jbIFM9UgF8ds6fBAnydTkdqaqqo2mMi4TSEt2Yt4ujdnEb3VXt9tKJnYoJUaY1QXbu4kSqUWLo1484v28w8qIqKCrKyssT2W6acnyAIKBQK8V41fc+mB1Dvr+l5Q561RqNp0JjVfd7Qa48bR9PD5Ok9Pq60tLTegk6hUODu7UfjhTD/ul4WVig9agl5MmsHHF+cSsa6cRh1lUiVtfn+Mm3Nkzbxl8Sf0vDtv5HR6HuGimJqijKxcGm8QSSATCrlva9/5OLmf5i9funSJS5duiQSCpycnGjVqhUtW7akbdu2qFQq3n//fRYsWIBKpRJJEvfu3eO3334T/9doNGg0GioqKqioqBAlmUwTtMFgYNKkSXh5eaFWq5HJZGKYxXTj1/1RmlaF7u7u5OTkiCULVVVVaDQaMjIysLCwMDMGpudubm6o1WqxELpHjx5cu3aNgoICpFIpV65cobKyEmdnZ27fvs2AAQOYOnUqixcvpm3btrRp00ZM+JsecrmcR48ecfDgQU6fPk2fPn0YO3Ys3bvX5hpMq1aDwUB1dTUdOnTAaDTSo0cPLl++zHfffUdOTg7h4eEUFxfzxhtvMHHiRGpqarhy5QonT57kypUrREVFoVQqKSkpoaamhoSEBLFese7K3NRrsLCwkKtXr+Lk5ES3bt3w9vZm/fr1bNiwgblz57Jp0yby8vLw9fVFIpHg5+fH8OHDOXPmjKjY4ufnR3V1NfHx8VRVVZGUlCQuJlxcXMjIyKDkViTq0Nca5JdWxJ1Dc+cXBKMBpXdr3EZ/ikTegD6kREL5ndP1XjYZPpNH//PPPwO1DWNNME3GU6dORaFQiBOnwc4LeehIvJp3FqXTtIDayR9jjQ67XmPNpNMkEgmVd35BVZWPtM0ALHw71Qqm1zHodfvxFV/eS3VOAjY2Nmg0GtFA2NjYEBoayrVr18Tu7L/99luD0ml+fn4UaZ5c4gAgVVhi1JnnP43VlUgs/q0+1MS3BfKgIB48eCD+TkwC6h4eHkyZMoXVq1cjlUpZvnw5np6eZveyQqGod2+bXlcqlWYRjMrKStq3b8+aNWvqlT38t6iurha7gty7d49Hjx6Rnp5Ofn5+g1q3jo6OeDjZU1q/CciTYbph6xh2W8vGtUv/qvhTGr77OWX19BsBBIOegqOra0WCnep3Ua4LnUHgQU7DoSoTBdxkwNLS0syo9gaDgY8++shMO9EUmzc9TLJfcrkcOzs7nJyckMvlZnkEa2trMaRoCg2aVnqAGF6RSCRiLZSPjw/u7u6ihqBGo8HS0hI/Pz8xrFTXIJhCiQaDARcXF0pKSoiMjARqfzymc5RIJGJ7oLlz54oT2scff2yWe2jor1KpFMsDoHYStLW1RaFQoNVqyczMFMW2TR0Dpk6dKlLcvb29yczMZOXKleJ2HR0d6d27N3q9nrS0NJKSkqipqWHNmjXIZDL8/PwICgrC2dkZnU7HvXv3uHfvnsh6e/HFF3FwcKCyspKXX36Z3bt34+joWK8/m6k1kbOzM4WFhbzxxhu0bduWn376CW9vb3r27MmJEyfIz68tlTF1EnBWKVAWJaJzDqjnJTmETcQhbOIT77/aOr7r9aTUHodpASSRSAgODubu3btmTYRN94lWq0XdfiDOL07GKJEhkUrrGWVTWFHl3w2rZh0pPrMVP0MGKpXqXx3Rl7Npx08U2vrzS8xdEtKycFRbknInmpqHF9GW5BMeHs7HH39MZWWlWcf5qqoqli9fTocOHVi3bh3Lly+ne/fu3L9/X+wOYkJycjJlRw82qhxjgsLFh4rYM+L/xmot+uIcs0Vtu1Yt+ToujszMTFasWMGmTZtISkrinXfe4Z133qF37954e3tz48aNen0X/yhmzZrFiy+++B8ZvYKCAq5du8bt27eJj48nOTmZrKwsCgsLqaioQK/XI5VKsbKyElteBQUFERgYiKenJ1OnThW3Zfqt3jx3DPteY6k2CKJ+LUYDCEYEfTVIZVTnJCBVWiN3bIJRq6Ho9GaUTdsitawtpbCUSwn0sPmvrsv/i/hTGr4ybf2wgyAYKYj4EmRyHF9895m2o7J3bjAH0bFjR3GlZ2JomVaFpoSzqU9Xy5YtRSPXmGF40t9bt26xZ88eZs+eTbNmzRodt3//fh4+fMgnn3yCTCYjIiKCtWvX8s033xATE8Pp06f5xz/+Qbdu3Z64v6ysLAYPHkxQUBDp6emiEf/222/JysoS6f2TJk1i0KBBvPTSS6SkpNC06ZM96NrvoFZ1f9OmTRw5cgR7e3syMjJo2rQper2ehw8folKpUCqVvPrqq5w4cYIFCxYwffr0p267R48eLFmyhOvXr/Pxxx+L3SRMi4Nu3boRExNDt27d6NevHxYWFnzxxRfi55s0acKnn36KSqVi7dq1zJw5k+DgYARBYNOmTbi4uBATE0NAQACCIHDx4kVSUlKIiooyI+NIJBJCQ0O5ePEisZllvPZ9NNo/UDgsXitDNaXRPzf4numeNN2XCoUCDw8PMyk5QRCwsLAQFza+L76J0P5lBJlCNHiGqnIKT3yDNuUWUitbHHq/hXXr52uNotQSh7BJqPOvYp19U+wzt3ntl6SkpDBq1Ci+/+QDampqaN16nrjfxYsXExgYyMWLFxk0aBAxMTG4ubmRn59PSEgI/v7+FBcXU1RUxLFjxxo9/7beTiQbakCmaHTSVrUMpfjcNiruX0bVogull/egcPUVF7VSQc+t88dZcGsvGRkZHDlyBKPRKBq80NBQ+vXrR0RExH/dKWH//v1cvnyZW7du1XvPaDTy6NEjrl+/zt27d3n48CFpaWnk5ORQUlIikosUCgVqtRpnZ2c8PT3p3bs3rVu3pkOHDnTu3BlbW9t62y4sLGTbtm1mCx0T2Wpcv/bs1hgAKaWX95rp11b8fg67Hq+jcPKi+NedGCtLkFqosPRtj8vQD8VxAvBqx78FtR/Hn5Lc8v6+Wxy+nSX+LwgChSe+QV+ai+vIpQ0K72asfwvnIXPMxHYrfj9HwWMNSiUSCV9//TVhYWFPLDI9efIks2bNIjY29pm0/J6EAwcOMG3aNE6ePEnHjh0bHNO3b180Gg1XrlwRXzP1QcvOziY6Oprx48czbtw4li1b1mBdkV6v5/nnn2fo0KFMnz6dtm3botFo6NatG1999RXHjx9nzpw5GAwGQkJCSE5OxmAw0LVrV06cOPHM5xMdHc2gQYOorKwUyxECAgIoLy8nPT2dgwcPMnPmTD766CMmT5781O3l5uYSEBBAbm4uSqWSgwcPMmbMGLRaLV271spuxcXFiXmrYcOGERUVRUpKCiqVis8//5yVK1fi4OBAv3792L17N88//zyXLl1CoVCwdOlSNm7cSFpaGsHBwZSXl1NQUIBMJqO0tBRLS0ux32CrVq24fv26WA/5n6hmSI16Ck5vpib+bD1VEy8vL8aNG8dnn33GiBEjOHTo0BN1N5s2bYpHm25ktxplVqQMkH9kFQgCToNmUp2bRN7+T3Af+wUWLj7iGGONloK9i8Vef+3bt6d3796sW7eO1NRUdu3axcKF5lqnUMvelEql5OfnN3h8SqUSuVzeIKMT/sXqnLEDQSp/ouj4v+v48rDw+Fcdn31tjaJUMJD13UR0ZYXi5+RyOW+++SY//PADc+fOFVWH/hskJibSpUsXJk6cSEVFBQkJCWRkZJCfn095eTnV1dWiYLydnR2urq40bdoUf39/2rRpQ5cuXQgKCnpqORDUzmU3btzgu+++IzIykuzsbCwtLfHw8CAtLQ2FQkGLFi3Izc3lueeeo6TtKBKqVPwnk/TfdXyN409p+Db+msjXUQ/FcGdh5Dqq85JxG70caZ34P4CgrwEEMje9g9OgWVh6twGZAjlGqm8eIuP09ifuSyKRYGVlhZOTE35+fnTs2JHevXsTEBDA7Nmz6dOnDx9++OETt/EsOHTokChHZmomWxdubm68+eabZl6MXq/H09MTb29vrl+/Tn5+PhMmTCA3N5c9e/aYNcWF2hzR5cuXiYyMZMyYMVhaWrJx40a+/vprvvzyS2bMmMGAAQMIDQ0VC7mtrKzIyMjg2LFjDBky5InnYDQamTRpEjt27OCFF17g6NGjlJWV4ebmhoWFBTU1Nbi4uCAIAp999hmTJk16pmuzZcsWTp06xZgxY1i1ahU5OTm8//77REVFcezYMRYvXswnn3yCSqWiTZs2FBcXk5SUJJIs7O3t8fb25ty5c3Tr1o3hw4fz448/kpqaSps2bURvPSEhgYqKCtHTsrOz45tvvuGtt97Cw8MDrVbLvXv38PAwF2veHZPCpxH30NYYniy5ZTRiNFSji95Dc6G2g4BcLuf33383G6ZWq6moqMDCwgKDwUBwcDAymYxr167V26SDgwP2L32Iwb212b6N1VrS14ymydvrRcWVgmNfIrNxwuH58eI4wWik8lE0BYc+A/4dXpfL5bz88sv88ssvIkPzcZho/05OTigUCjFiABAQEMDOnTuZMmUKycn19UilUilery9D6t3+P5u0EXCszCD++9kNMnmHDx/O7t27GxRseBx5eXnExMRw9+5dMQyZnZ1NUVGRWDsqkUhQq9U4ODjg4eGBn58fAQEBtGvXji5duvxXbYg0Go3YASUmJgadToeLiwv9+/fnvffeo1OnTty6dYtOnTphaWnJiBEj+OCDD9i8eTOnbz7EYsCH6Ax//Cr+rdzSOP6Uhq9Ao6PH52fR6Y3oS/PI/G7ivxhp/64JchwwHXXrPmRsmIihLM/s857vbkXl5E76urfQlpoXezo5ObFt2zb8/f25desWFy9e5Pbt26SmplJcXGzWv84EOzs7mjRpQlBQEN27dycoKAhfX198fHzM2gA9DYcPH2bKlCkcP37cTCHGaDQil8uJjo4WPRwTEhMTCQgI4MMPP2TlypUIgsC6detYtmwZq1ev5s0330QikXDhwgVee+01bt68yY4dOzh48CAXLlwQc2JpaWnMmTOHGzduoNFoaNWqlThhmfKI/fv3Z/Xq1TRr1qzesd+8eZOBAwdSXl7Orl27GDFiBAcPHuTtt9+mvLycmzdv0q5dO7FlkYl4MGbMmAZDPCaYvLr8/HyaNGnChx9+yIgRI8TV8+bNm5k2bRpubm4UFhZSWVlJbGws48ePJzY2luDgYG7fvo0gCNjb24t51VGjRhEREUFlZSUeHh5IpVJKSkqoqKjA09OTzMxMrKysOH78OL1798bW1pa7d++KjYn1ej0xMTFEREQQERFBUokedcgrqFp0qSUO1JEyM/Xjsyh4iDLhPPkPbhAZGUmrVq2YOnUqe/fuFVnDpjo4qF10jRs3jqNHjzZufFR2DbZuqs5JJGf3hzSd++8OEKVXDqJLi8V1pDmhq7HWTc8CpVJJWFgYLi4utGrViqqqKlasWIHBYEAikaBQKMTatcfRpf+rlIVM/I9CxVYKGZ1KLvDjt5/Rt29fYmJiRO/S39+frKwsKisrRUH15s2bc+/ePRISEkhNTSUvL4+SkhK0Wq0YhrSxscHZ2Vns6xcUFCSqKZkIb/+n8OjRI7Zv387+/ftFRnlgYCCvv/46EydOFBdXeXl5fP3112zevJmePXuyevVqSkpKGDNmDN27d2ft2rUcvVf0t1bn/2H8KQ0f/LuO7z87OgEHTRojPUr4xz/+YUZVVqlUGI1G9Ho9fn5+DB06lAEDBtC9e3dx9VhSUsKlS5e4cuUKP/74ozhRmRrEgrkQsqOjI35+fnTo0IHg4GB8fX1Fw/i4BNGRI0eYPHkyERERdOnSBahlmvbu3ZuampoGcxVbtmxh8uTJZmozd+/eZfTo0bRv356VK1fy3HPPsXHjRgRBYPLkyVy9ehVPT89624qKiuKNN96gsLCQ2NhYDhw4wPLly6murqZdu3akpqYydepUFi5ciI2NDUajkRkzZrBx40Z69erFiRMnyMvLY8aMGaSkpCCRSLCzs8PW1pZTp06xa9cuRo8ezdmzZ9m4cSNnzpwRayPrerrFxcVs3LiRtWvXkp+fz6FDhxgyZEiDwsPx8fEEBQWhUCgYNmwYFy5c4JNPPmHr1q106NABjUbDqFGjePPNN6mqqhK/b1O9HNR6Ov7+/ly9ehUbGxu+//57lixZQl5eHu3atSMjI4OHDx8SGRlJREQEkZGRNG3alCFDhuDi4sKsWbNqQ11uXug82iN39kFpY4+hSsMrfbvR0qKYL1csFXstfvfdd7z77rsIgsDq1av57LPPqK6uZtWqVSxatMjMQ5JIJLz55ptMmzaN5s2bc+bMGSZOnEh1dTVOPV9D0XF4vfC+Nj2O/MPheL+3W3yt/HYkFb+fx31MuNnYxpr1Qm2kwcHBQWRN1oXJ21u+fDmXLl0iPj6e+/fvU1FRUW+sqT9gXUgkEhZtO8k/Ewx/yGOxVEiR3T3Cw+Nb2bp1K5aWlowfP56qqir8/PzMutDXPQ65XE6TJk0IDg4mMDCQNm3a0LlzZ1q1atXg7youLo4+ffoQExMjdpH4T6HT6Th79izbtm0jKipKLJ3p2bMnb7/9Ni+99JLZIjkrK4vVq1ezfft2Ro8ezfz58/Hy8iI8PJy1a9eybt06Ro4cKY7/uzvD/1n8aQ2fSbmlqubJRccNQWrU05e7HNyyhtDQUJHKrlQqcXBwwNHREV9fX9LS0nj48KHYvy04OJghQ4bQt29fQkJCsLCwoLy8nMDAQPbv309oaCharZarV6/y22+/cefOHe7du0dmZiZlZWUiScJU8GowGMT4fWBgIG3btqVZs2ZkZ2ezdu1ajhw5Qs+ePfnggw/Yu3fvE7tqv/zyy0RFRZGTkyOy1yorK5k9eza7du3ipZde4pNPPqFXr14cPnxYLDtoCBqNRqwPnDlzJqNGjaJ9+/aoVCpRsisvL4/33nuPb7/9luLiYrZs2cKoUaP48ssv+fLLL5k7dy6zZ8/G3t6eWbNmER4ezujRo9mzxzyXk52dzbZt29i8eTOurq6MHDmS9PR0fvzxR4YMGUL79u05efKkyBhtCMuWLWPZsmUiG3fZsmV89NFHbNu2jffeew93d3eSk5Np1aoVs2fPRqfTMWfOHLP8mkqlQqFQ0KpVK6KiokTDPGnSJCZMmEBZWRlyuZx+/foxdOhQBg8ejFKp5Pjx47z77rvU1NRgNBoJDQ2ltLSU4uJi8vLyxDCsCUuWLOHrr7+moqJCrOmcOXMmR48e5ZVXXqFXr15ER0eLFHa1Wo2lpSVOTk6i+kdmZqbIFLbo/Q5VbvWFEBry+MquHETbgMcHUHXvPIXHvxYL24EGa9dsbW0pKyvD09OTjRs3Ul5ezu7du7l48SItWrQgJydHFISOiopq9Dury4hWdxiI8wuTQa548kJWMIJBT2HU9/XqCKVSKV5eXnh6euLn50fz5s1Ftu+FCxdo1qwZ5eXlpKSkIJVK6d69O/Pnz2fgwPqiAlBrqEJCQnj//feZMGHCEw6qcaSnp3PgwAF+/PFH7ty5I3r0Q4YMYfLkyXTq1KmewU1NTWXVqlXs2bOHt956i3nz5tGkSROSk5MZN24cSqWSHTt2NBhavZtRwobzCZx7kI8E0DYg1t8nwIVpz7f4O7z5FPxpDR/8Z8QCS4WUmiv7SDq1AxcXF2xtbcnMzESr1fLTTz8xatQozp07x48//sjhw4fp2LEjbdu2paCggFOnTqHT6UQZph49etCvXz+0Wi1Hjhzh6tWrT2SPGY1G7ty5I7LD7t+/T0pKCkVFReIkbCqBMKnvmzxQOzs7Jk2ahJ+fn+gxent7i8Qao9GIl5cXrq6u3L59W9znpk2bCA8PF1fAK1aseCZCSdeuXamurqZVq1ZcvnyZli1b8ttvv2FjY4ONjQ0ZGRlotVpUKhVHjx5FLpczdepU/Pz8WLduHX5+fly/fp2QkBBxMtXpdI2Gi27dusXcuXO5ePEiUqmU0aNHM2fOHFavXk1ISEijzM9Tp04xcOBAmjRpwsmTJ8WcX9OmTSkvL6eoqIhmzZqxc+dOfvrpJ3bu3ElVVRVhYWEkJCQQFhbG9u3bWbRokajaX/eWl0qluLq64urqSkpKClqtlrCwMEpLS7l37x7u7u48evQIZ2dnNBoNKpWKsLAwDh06hLOzM0uXLjW73uPGjaNnz56cP3+eK1eukJmZiUQiwdPTk6SkJHGfjo6OuLi4kJaWJtZsmr5Da2trpk+fTpMmTVhxsbDBvnrPmuMTx6ffIf3HxdjZ2aFUKsnLy0MqleLh4UFmZqYoNefp6YkgCGRnZyMIAra2ttjb21NYWMjQoUMJCAjg+++/x8nJifv374vRk6fBrVUIDj1eo8qhGYJgNBP/NtURGjNjyTu3S5RJM7FfBw8eTERERKPb1mg0HD9+nJ9//pnTp0/j4+NDaWkpGRkZWFpaEhYWxpIlS8zSCHPnziU5OZn9+/c/sb1RXej1eqKjo9mzZ48o82ciRI0dO5bRo0c3yo5OSEjgs88+4/Dhw7zzzjvMnj0bV1dXBEFg9+7dzJ49m/nz5zN79uynMlQLNTr238zgfnY5ZdoabC0VBHrY8GrHvzuwPzOEPzl2RScLgUtOCr4LIwSfBY0/fBdGCIFLTgq7opOF3NxcQSqVCtSyeQWZTCao1WohKChIOHnypLjtiooKYe/evcJLL70k2NnZCaNHjxbWr18vhIeHCz179hQsLS0FLy8vwdXVVZBKpUK7du2EtWvXCnFxcYLRaPzD55KQkCD88MMPwowZM4SwsDDB3d1dkEgkZsdpaWkpqNVqwdraWpBKpYKTk5PQtWtXYezYscL06dMFqVQqjBw5UkhISBBu3bolODs7C3FxcUJYWJjg6ekp9O7dW0hLS3vqsRw5ckSQSqWCTqcTzp07J7Rq1UoAhJkzZwo2NjYCILi6ugqenp6CUqkUVCqVsHnzZrPzHjRokCCVSgUvLy8hLCys3j6MRqNw9uxZYcCAAYK7u7vw2WefCUVFRUJaWprw8ccfC56enoJcLhe++uorobKy0uyziYmJwssvvyw4OjoKMplMiI2NFZYuXSq0bNlSaNKkiSCTyQSJRCIoFArB09NTkEqlgoODg7BgwQJBp9MJgiAId+7cERwdHQWlUimo1WoBEBQKhXi96z6sra0FGxsbwdbWVpBIJOL5KhQKwcvLS1i2bJkgl8uFsLAwQaVSCSNHjhQcHByEFStWmJ2vu7u7kJCQIJSXlwvNmzcXQkJCzL7jli1bChYWFoK1tbXd8OfYAAAgAElEQVTQtGlTYdiwYeJ7tra2gkKhMLt3nYbMbvSeV7XqJahaPSd4z94vuI1dJUiUKsFj0voGx7ae9Hm9cx44cKAQFxcnuLi4CD179hRfVyqV4l+VSiW0bt1aaNmypSCVSgWFQiFYWFgIMplMeOutt4TIyEjBzs6uwWta9yGRSASZTCY0axUsDJrzleD80hzBZ9xnwqy9N4WNvyYIb/1/7H13WBRX3/Y922GXztJ7FxAQFAQVjRVQNKJYosZuYh6DBWuMwUejxhqS2GsMpmgsMRFLorFGY+wdGyrBDkqvu3t/f/DtPG5AE/O87fte7+uai4udmdPmzO8+vzZnxD8oCALHjRvHNm3amNzn5+f3l9+xkpISfv311+zevTstLS3ZqFEjOjk5iePbp08frl27li4uLnz8+PGflvfo0SOuW7eO7du3p0qlokqlopmZGRMTE7lx40aWlJS88P7Lly+zf//+tLOz4wcffMDCwkLx3JMnT9i7d282atSIZ86c+ct9fIV/H//jiY8kz/3+lG9lnWDA+zsZ+P5Okxc68P2dDHh/J9/KOsFzvz8V7xkxYgSlUqlIKDk5Ody+fTv9/f3ZqVMnXrhwwaSOx48fc8mSJYyLi6NWq+WoUaO4d+9ebt26lSNGjKBWq6UgCPT396ejoyMdHBzYp08frly5kjdu3PhbREiSW7duJQCuXbuW3377LSdOnMikpCQ2atSINjY2Yh8kEgnNzMxoZmZGAOJfKysruru709HRkZMnT2ZKSgqtra25dOlS1tTUvLBuc3NzfvjhhyTJmpoa2tvbi4T33Xff0d3dXVw0+Pr60tramrNmzWJlZSWPHDlCQRDYpk0bCoLAEydOiOXW1tbym2++YVRUFAMDA7l69WpWVVXVq3/v3r308fFhQkIC7ezsOGbMGJ48eZLvvfce7ezsOHnyZKpUKtrb29PR0ZFpaWn86quvGBkZyaCgIMpkMlE4bty4USzXYDDw1KlTnDZtmgnRCYLAqVOn8qOPPjIhIzMzMzo7O1OtVovz5VmhHRcXx9zcXAKgvb09X3/9dc6aNYs2NjYcO3asWO+lS5fo5eXFvLw8tm/fXrw/KCiIy5cvZ0hIiEjALzqerd8ypgfd07c0SGZuo7+mmX9zCnIlpZZa2iePb/A69/QttIlNrVePmZkZpVIpFQoFLSwsxLap1WoGBAQwJCSEycnJ4kLoz9r8LGE/ewQFBdHZ2Zm2trbs3bu3OM8A8Ny5cwwLC6NcLud3331HvV5Pb2/vfxG/nR2vX7/+t96t4uJibtiwgV27dqWFhQX9/f1pY2MjkuDw4cP5+++/m9yj1+t54sQJvv/++wwICKBcLqdSqaSTkxNHjhzJI0eOUKfT/WndZ8+eZc+ePeng4MBZs2axqKjI5Pz+/fvp4eHBUaNG1Vv0vcJ/Pv6fID4jCkqruPzgDY755gyHfP4bx3xzhssP3mBBaX2hevv2bapUKiqVSqpUKjo7O/P3339ndXU1MzMzqdVq+fbbb/Phw4f17r1x4wZnzJjBgIAA+vr6MiMjg1evXmWPHj3YsmVLvvbaa1Sr1QwODmZkZCS1Wi3d3d05ePBgZmVlMT8//y/36ZtvvqFMJqNWq+Uvv/zS4DWlpaXcvXs3//nPf7JHjx7iCvtZ4a1SqWhra0tnZ2dqtVpKJBIKgkA3NzfGx8fzzTff5AcffMC1a9dy//79vHXrFnv06EFPT0/evn2bvr6+osCNi4ujQqGgr68vx48fT1tbW7Zr1442Njb09fWlg4ODKCS7du1KR0dHknUa9OLFi+nt7c0WLVqIgux5GDNmDGfMmEGyTsNLTk6mRCKhhYUFAwMDqVKpKAgCt2/fzsrKSk6bNo1KpVLUODp16iRqJ02aNOHWrVs5bNgwuri4MCAggGPHjmWPHj1EgSwIAl1cXGhrayuSXHBwMD08PEThmpubK5579lCpVATA8+fPMzk5mUuWLKG9vT0HDBgg9mfy5MmiUJdIJAwLC2Pbtm1pa2v7QvJQqVR0cXERidx4tGjRglaObvSatP2F1o4/O9zHb6Wl1qVevRKJhFKplN7e3mL/nqetAaBGo2HLli3Zpk0bBgUFUSqVUqlUMigoiLa2tnRzc3tuGZGRkXRxcaGVlZUJ+UulUjo4OPD27dssLi42aUt8fDzt7e159OjRv/w+PQ9FRUVcv349nZ2dKZfL6e3tTUtLSwKgi4sLu3btytdff52WlpZUq9WUy+UMDw/nvHnzXop4jx8/zuTkZDo7O3PBggUsKyszOV9dXc2JEyfS2dmZO3fu/Lf79Qp/D/9PEd/LYvjw4Zw9ezaLi4vZqFEjKhQKZmdnkyQLCws5ZswY2tnZce7cuaysrKx3v8Fg4IkTJzh69Gg6OjoyMjKSarWahw4dYnFxMbdu3crhw4fTzc2Nrq6ubNWqFWNjY0VNzdfXl5999tkLTSr9+vWjr68vd+3aRa1WyyNHjvxpv7Zt20apVEovLy/a2dlx3bp1XLBgAfv378/o6Gi6uLiIhACACoWCdnZ2dHd3p5+fH319feno6GiyQreysmJaWhotLS0plUrZrVs3urq68rXXXuPPP//Mnj170svLi40bNzYRaEqlkunp6czIyKBWq+Xrr7/+XAL/49h6eXnx3Llz/OWXXxgYGEgbGxuamZmxWbNmDA0NpSAIDAkJ4SeffCIKSxsbG2ZkZLC2tpa5ubnUaDT08vIS2zJ9+nTOnDmTbdq04bfffsuBAweaENnYsWOp0+m4Z88eAmB4eDglEomoHRsMhnoE9Mf+WlpasmfPnoyMjGRiYiI3bdpkIvSNZtg/ao6CIIiHUbg/+wwaN27MMWPGiMLY2tqacXFxdEr9gB4Tv/9bpOcx8Xs6pEz9U43NxsaGHTp0EBcHz7ZdIpHQ1taWnTt3ZkZGBpcsWcKAgAD279+fP//8M2fMmEG5XE4rK6t6Wp9UKqWNjY1IMg2N7ejRo3n+/HlaWlrS1dWV9+7d47Zt22gwGLhjxw66urry7t27fzqn/gxZWVkMDg7m3bt3OWvWLAYFBdVrr9GMfe/evZcq+/Dhw+zYsSPd3d352WefNajFXb58mU2aNGHXrl356NGjf7s/r/D38f818f0Rb775JgVB4OTJk8Xfrl69ym7dutHb25ubNm16rsmytraWu3fvZtOmTSmTyZiYmMgvv/ySZWVlNBgMvHDhAufNm8c2bdqYrGiNAjAgIICjR4/mtm3b+PTpv0yyAQEB7N27N0ly9+7d1Gq1PHz48HP7kJ+fTwcHB37++ecEwISEhOdeq9frOXv2bGo0GsbGxrJVq1b09PSkWq2u51t0cHCgVCoVTajGw9bWlnK5nCEhIYyPj3+u4ExOTuaVK1f+8rM4ffo0tVot/f39KQgCAwMDuWLFCj558oQkuWrVKpG0jYQzZcoU7t+/n5MmTWJISAi1Wi09PT35zjvv0NXVlS4uLqKmC4DR0dFcvHgxb926xWXLlhEAhwwZwselVVx24AYHrdjP1z/eQ4duE5iUvoiPSypZWFho0i+5XE6pVMr09PQXmvOePYz+QqlUSkdHR9G8ZhSsSqWSjRo1oiAIzMnJYWVlJZs3b24yZ+RyOe3s7Ojg4MCA5h3onr7572l76ZupcPJ7blvDw8NFc/CzfZPJZGJ/z549yzt37nDLli3s1q0b5XI5NRoNnZ2d2aVLF06fPp0ajYaurq5ct26deL+R5JydnRkXF8fg4OAG2+Do6EigTvuura2tN1dmzpzJ5s2bN2gu/6u4fPkyraysmJKSIlosNBoNtVotX3vtNTZr1oxqtdpk0di4cWMuXbq0wTaRdYukvXv3snXr1vT29ubKlStF//IfrzNaCJYvX/633SKv8B+H/1XER5KrV6+mVCply5YtTSbpvn37GB4ezri4OB4/fvy599fU1DAoKIhjx45lYmIirays2L9/f+7evZu1tbW8du0ap0+f3qC5yN3d3URz8PX1pUQi4TvvvCNqnHv27KG9vT0PHTpUr26dTsc2bdpw+vTpbNOmDbt27UpBELh79+4X9vnGjRuMjo5mUlISHz58yI8//pgymYxeXl5s2bKlGMxhbm5er922trb08PAQTXXPM2dJJBImJiZy7dq1PHToEH///fd6vhCj723MmDFUKpUUBIHx8fG8dOmSeM2jR4/Yv39/sVw7Ozu+//77bNGihShMW7Rowa1bt7KyspIZGRl0cnKinZ0dlUqliaYSExNjUn9k+9fp2uef9J9a5xc2IYkJ2+g9aTv7LT9IlWsgATA0NJRqtZoqlYrW1tbiIuHPiE8ikTA4OJiDBg0yEfaCIHDp0qXMy8vjDz/8QABs3769GIQhk8lM5olcLhfJQxOR+NLk556+mV7tBzApKaleUI+zszMlEglnz57NBw8eMCEhwaRvgiDQ2tqaNjY2NDc358aNGzly5Ej6+fnx7NmzNBgMvHXrFjdv3szU1FTRBw3UmW7T0tLExRQADho0iP3796/XDmP/zMzMqNFoGB0dzYMHD5qYyPV6PVNSUjh8+PAXzvM/Ijc3l5999hnbtm0rznGVSsWIiAjOnj2bly5dMiGhgoICrl69mh07dqS5uTkdHBwok8kokUgYHR3Nb775hnq9XtREmzdvzsDAQH7xxRfPJccHDx6wc+fOjIqKYk5Ozku1/xX+8/C/jvhI8sKFC7SysqJWq2Vubq74u06n45o1a+js7Mx+/fo9Nzryp59+ore3NysqKvjw4UNmZmbS29ubcrlcNJUYV+0qlUr0rxm1wbZt27Jv375s3bq1iVYYFhbG1atXc9euXbS3t+fBgwdN6p01axZbt27NUaNGMTExkTqdjn379qVKpTKJFmsINTU1TEtLE4Xr1KlTOW/ePNra2hIAd+7cyby8PAYGBorCSavV8r333mN0dDQlEomJ+fSP5iFjX83NzcVgBqOfMDY2lpGRkbS3t6eVlRUtLS1pbm7Ozz//XGzfwYMH2bRpUxMtz9vbmxqNhl26dOHy5cuZl5fHI0eOsGPHjlQoFJTJZPTz8xPN1UYz4rNt27NnD8m66OCAqdl/ajL0mPg93dM3UxORWE84P+8wEpS9vT29vLzqXW/0mTo4ONDW1pYqlYqBgYEiOTdr1kwc2z+2/9nDs10/eozfQq/JP/ylPlhFdTG539XVVSRmc3NzMXJYrVbT1taWgiCwQ4cOBMCwsLB6vk4LCwtmZ2ebkNJvv/1Ge3t7vvPOO7S3t6cgCPz88885adIkxsfHUxAEUZM0Rt6uWbOmnoapVqsZFhYmmuDNzMyYkJDAmTNnct++fbx37x6Dg4O5fPny587x6upq7tu3j+PGjaOPjw81Go1IXnZ2dlyzZk2DPv2G8PjxY65cuZLt2rWjmZkZ7ezsRJ+oRqOht7c3N27c+MJAlx9++IFOTk6cMmVKg5rgK/z34X8l8ZF1gRgRERGUyWTcvHmzybnS0lJOmzaNtra2fP/991laWlrv/pSUFM6cOZPHjh1jZGQkW7VqxdWrV3PatGn09fWlQqFgXFycSbQjWRdptmXLFg4bNoxWVlYUBIHDhw9neno6W7VqJWo14eHhVKvVXLlyJXU6HY8ePUoHBwfOnz+fAQEBorlUr9fT09OTgYGBL+zvihUrKJfLReFrZ2fH9u3bc8OGDbS0tGTLli1JkhUVFUxJSSEAWltbc+PGjbSwsKCfnx8bN27M9evXi2QJQAzKMDMzMxFkEomE1tbWVKvVVCgU9Pb2pqOjI9VqNX18fCgIAhUKhWhKNa76jaTh5OTE77//nmVlZTx37hxnzZrF2NhYWlpasnv37ly6dCkzMzMZExNDe3t7WlhYiAuIqKgohoWFURAEmpmZ8eMdpxg0bedLa0sebftRo9E0SPhRUVGiSduo6chkMjZu3Fg03cnl8ucSmbHPrq6u9PT0pCAInDhxIvft28dz5849l/wCYjvQtc90eozfRu9J35m02WfydnpO2Eb77lMaNG+6uLhwypQpIhk9a4INDAzk+fPnuWjRIrHNMplM1L6fNYErFAomJSVx3bp1dHR05Pfff8+RI0cSANetW2cy79atW2cSOGNnZ2dCqEYLgpGAO3TowNDQUEokEioUCgYEBNDf359mZmYMCgqimZkZP/jgA+bm5tJgMPDevXtcvXo1u3fvTrVaTScnJ9ra2orBa59++im1Wu1fSvF5Hu7fv8+hQ4fS3Nxc1ByNY9K1a9d673h5eTlHjhxJT0/PeovXV/ifgf+1xGfE22+/TUEQmJaWVu9cXl4e+/fvTxcXF65Zs8ZkdXfr1i2q1WpqtVpu2LDBxGRiMBh47Ngxjho1ilqtlrGxsVyyZEm9IJfExEQGBgbyo48+YuvWrUVtsHXr1rSwsGCLFi0olUqpVqtpbm7Orl270tbWlpcvXzYp5+7du1QoFHz77bfr9eHp06eixvaPf/yDw4YNo6OjI5s2bcqwsDBaWVmJWqDRXGMwGJiQkECJREKZxobBPUYzdVE2B6/7jaO/Oc2w3ulU2znS19eXTk5O/Oyzzzho0CC6urpywIABIiEYzWV/1Bz+mKsmCAItLS0pk8no7OxMoC7YRiqViqQaEhLCwYMHc/369Tx69Cjv3bsnjvnZs2fp4vKvqEWlUsmMjAwuX76cYW260GN8/XQA17fXUOUTRYlSTYnamhaRnekxcXs98lM6+zdIQKGhoXRwcBDra8jcaWFhQS8vL8rlcnp4eNDJyUkUmsYgouTkZAqCwFWrVonP7PLly/XKmzp1Ku3s7ESTq8TMklbNezBm9BL2Wvwzm7yTSdu4XlRZ/StV4I+RmmZmZpw9e7YJiRn9vRqNRmzLswTn4ODAcePGMSUlhU+ePGFcXFw9jdaYAwrAxOSn1+vZtm1bAnUpDdHR0VQoFGIdzZo14/jx48U8O+M4Wlpa8p///CfT09NpYWFBX19furm50dLSkm5ubqL1QSqVUiqV0tramiqVio0bN+b06dN5+vRpGgwGlpeXMygoiF9//fXLiAQRNTU1XLduHf39/RkXF8ddu3bx/v37XLp0KePj46lSqUQXgKWlJfv168etW7cyKCiIb7zxhokv/xX+Z+F/PfGR/0opiIqKajC68/jx42zRogXDw8O5b98+kuSiRYtobW3NpKSkF5ZdU1PDHTt2sG/fvrSysmJycjK/+eYbVlRU0MXFhe+88454bVFRETdv3syhQ4eKphVjME1ISIjod3B0dGTfvn25atUq3rx5kwaDgd9++y0FQeAPP/wglvfFF19QqVTSxcWFs2bNoqOjI999910WFRVRr9czKCjIRIAtXLiQ9+7d4+TJk2nlE0ZtylT6TP6hnj/M770d9J60ncPW/8b1Ow7Q39+fdnZ2VKlUVKvVokAyms8UCgXnz5/PzMxM2tnZifVpNBra2Ng0GDCi0WjYuHFjDhgwgHPmzGFmZiYnTpzIXr16MTo6mlqtliqViv7+/oyKimpQs5JIJHTt8096NmDeVPlEUR3ajh7jt9JtVBblWk/atB9RPyKyR8MRkUaN5FntDQC9vLwoCAKDgoJ44cIFDh06lNOmTePQoUO5cuVKkuT8+fPFjyIY7/Pz82NaWhoPHDggEou1tbXoI+vQoQM9PDyoVCrp6ekparjG8TU+Wx8fH5MFwLNtNubHGU2dRnI21jdq1ChqNBqTdt26dYulpaW0tbXlrVu3SJJr1qyhVCpt0N/r7+/P9evXMy8vj/7+/mJglE6nY0pKiok52hjURZIjR46kIAgcNGgQPTw8xHY6OjrS09NTfNZmZmYm5GnMsXNxcaFKpWJMTAzT09O5ZcsWDhw4kP369XtpeVBVVcXly5fTy8tLjGpuKCDl/v37XLx4MePi4qhUKsV5YGFhwZEjR/L+/fsvXfcr/NfgFfH9X1y7do22tra0sbFpMDrRYDBw06ZNYo6aVqvltWvX6OHhwQMHDvylOkpKSrh+/Xp27NiR1tbWFASB8+bNa9BPYDAYuHHjRioUChOzWGZmJvft28fVq1fzjTfeoJOTEz09PTl48GC2atWKCoWCN2/eFINW3njjDbZu3ZpRUVEmJpkNGzbUIwulUklra2s27TOWHulb6PVnJsFJ39MjfQsjer7L/v37U6vV0tfX16Tc1NRUEw3BxsaGCoWCBQUFnDp1Ks3Nzenk5EQbGxvGxMQQqAuESEhIYFBQkInwl8lkVKvVYi7Yn/neJOZW9Bi/tcG2y+zc6JCaIf5vGZ1CTURCfX/Z+K2UmFnWK/vdd9/lhg0bRA3My8tLXOHfvn1bJGO5XM6bN2+yT58+/Oqrr8Rn26NHD1HT2rNnD3v27GmS2C2RSJiSksLw8HBxgfD666/z8ePH9PDwoKWlJW1tbenu7i6OQ2BgoEi8Rk1aIpGYRIwCYEhICPV6PT/99FOT3wMDA7lhwwaTDz8YBX56ejrT09NZW1vLLl26MDk52SR62RhN++wzkUql7NWrl/iVE2MKjpG0JRKJSQTzpEmTKAgCly1bxu+++07U4o3mRWO/zM3NaWdnxyZNmnDFihX8+OOPOWTIEDZq1IgqlYpeXl7iV5GcnZ35xhtvcPHixTx9+vRzg1DIOjP/J598Qjc3NyYkJPyl1CKSvHPnDps3b05fX1+Gh4dTqVSKiw43NzdOnjyZxcXFf6msV/ivwSviewbV1dVs3rw5pVIps7KyGrzm0aNHtLa2pqWlJUePHs01a9YwLCzshS9UQzDmkRkTe9PT00UTjRE5OTlUq9ViOoKFhQUTExPp4uJCX19fjho1ijt27OCpU6e4ePFivv7666JwUKlUbNu2Le3s7Lh48eJ65Jqbm8u5c+eKyfhGYdUvY1mDpsEXHUHTdjLr2C0uX778udqRMULS+CUM499Bgwbx0KFDrK2tpbe3N9u3b8/y8nLu27ePEyZMYHx8PJ2cnEQtxJhyYWZm9kIfGgBaNX/+V09sO/2D6pDX6J6+ma7/+Jxyew9qu7/XgK+v7qsnUVFRtLa2pru7Oy0tLTl16lQqFAoqlUo6Ojo2KCQ7depEtVpNmUxGHx8fbtu2TTzXq1cvAmBERATJOpO00QxqJAVjn11dXdmnTx+GhoaKuXKNGjWil5cXr127RpKcO3euiWnTGPxjDMgwjp1R4+rUqVO9Z2S8b8eOHTQzM6MgCGzRogVPnDjBW7du0dbWloMHD2bHjh1ZU1NDX19f8X7j4syo0Ts6Otb7Sk2zZs14//598TNuxk/NrV27liUlJdy2bRujoqJEralRo0binAHA2NhYzpo1S7S02Nra0tfXlxqNhj4+PuzVqxenT5/ODz74gGq1WsyptbGxoZeXFx0cHGhmZsbWrVtz6tSpzM7OZmFhIUtLSzlv3jw6OTmxW7du9Xx2L8LXX39NrVbLOXPmiO9Yfn4+MzMz2aRJE5OFq5+fH+fOnfsq0OV/AF4RXwMYN24cBUHgsGHD6p1bvHgxU1JS+PDhQ44cOVLUcj755JOXqsP4lQ+yzqczdepUenl5MTg4mLNnz+bVq1fZpEkTpqam0tLSkgsXLuTBgwdpb2/PH3/8kWfPnuWcOXMYHx9PCwsLduzYkQEBASaCz9nZmRqNhhERERw3bhx37NjB4uJi6vV6btu2jXFxcfTx8eGSJUtYVlZGS6/G9HgOUdh3nUCZnRsFuZIyayc69vuoXmCFxiOkYQKysqKLi4tIVkbtbfLkybx8+TKXLVsmRrgaBa7xO6VNmzZl9+7dOXjwYCYkJJjkGyqVyhfm1TmnTH4uWbsMW0aFoy8h1N2vDm1Hj0kNR0s6dJvA0NBQuru709vbWySPKVOmcODAgVSpVPU+D5ebm0s7OzsWFhZywYIFonkxKyuL69evpyAIDAgIoEwmY1ZWljgugiBwwYIF4jcg9+zZw8jISJNP1wHg8OHDmZmZSQcHB+7fv59kHfkZ8w5NxsHZWfQVd+7cWQy+eVYzMz4TqVRKf39/Dhw4kPauXhwy/yu6pU5l5JiV9OqbQfeOQ3j7fgF1Op14f2xsrMkCpEuXLiTroqSN/sRnF1fG730qFAoxklcmkzEoKEj80ARQl6NqjLrevn07nZycRC2yZ8+edHNzo5WVFffv38/Lly/ziy++YFpamhgw5efnx169enHy5MmcOnUqR4wYwcjISNE8ahwXiURCLy8vZmRk8PLlyy/82pARRUVF7N+/PwMDA3ny5MnnXpeXl8dFixYxNDRUfDaCIDAsLIwrV678S3W9wn88/kfvzvDfie3btyM1NRVBQUE4evQoNBoNSCIkJATLli1D69atAQCXLl3CiBEjcPz4cXz++efo16/fX/rae1xcHORyOQ4ePCj+RhJHjx7Fhg0b8Pnnn0OhqNt89NNPP8X06dNx/fp1HDt2DCkpKfjyyy/RsWNHAMA333yDQYMGibsO6PV66PV6vP/++5gwYQIuXryIn3/+GT/99BN+/fVXSCQS2NjYYNiwYZg4cSI0Gg2WLl2KmQceQuHdtN4u45W3zqBw16fQdpsEhUsA9GVPAAAyC/t/XUQDpPcvIfeLKfX6am9vj6CgIBw/fhy1tbXw8/PDnTt3xG2cZDIZDAYDNBoNmjVrhtLSUuTn56OgoEDcvudZGDcVdXV1RUhICEhi+/bt6NChA5KSkqBSqZCWlobXMjbiXEH9nT1IA+4uGwqLiARYRqfAUFuJwuxPILdzhc1rQ+o/rHsXkJf1nsmuDkqlEnK5HBKJBHq9HoMHDxZ31fD29kZmZiY8PDzw4YcfAgCaNWsGBwcH7Nq1CyTRpUsX5ObmmuwWIZVKce7cOQQHB+PAgQNYunQp9u7di169emHkyJEIDg7GW2+9he+++w7FxcXi7gnV1dUYOXIktm7dCplMhrt375rsjadQKCCXy1FTUwONRiPupPEsZDKZuFtIWJtk3NEEQe4RDpVKhepntr9hbTWUKjNYlOXhypZMXDyYjc8//1J6HnkAACAASURBVBwzZ84Ur5FIJDh27Bh69eqFvLw87N+/H61bt8aDBw8wbtw4bNy40WTjWmPdLi4uWLBgAZKSkrB582YMHz4cY8eOxcKFC8VrV65ciQkTJqCqqgrdu3fH4cOHUVhYiIMHDyImJgarVq3C0qVLcfToUeTm5uLUqVM4efIkTp06hXPnzokbSt+9excXLlyAg4MDqqqqUF5eDisrK3E/x+bNm6NNmzaIi4tDs2bNxK3AAODw4cN48803kZCQgAULFkCtVtefMw3gzp072Lx5M1atWoXc3Fzo9XVbrkVHR2P8+PHo0aPHXyrnFf59vCK+F+DOnTuIjo5GVVUVDh8+DEtLS8TGxuLevXv1yC05ORm//PILIiIisGjRIkRERDRYZnFxsbgT9OjRo5GRkVHvml27dmHIkCGorKxEREQEzpw5A4PBgIyMDIwaNQonT55ESkoK1q5di+XLlyM7OxuRkZHIy8vDyJEj0blzZ7z77rs4efIk1Go1YmJiYGZmhl9//RWRkZHo1KkTCgsLsX//fpw/fx4uLi54VFIJ28FLYUD9LVEeZI2HOqwjLMI7vnC8BIMOT9a9g+qSwnqC9VnIZDLY2NiguroapaWlDW6ASlLcvsfFxQVeXl7QarUwGAx4+vQpCgsLUVhYiCdPnqCgoABSqRS2trYwMzODXC5HXl4eXHpMQa1rk3r16yuKkf9pP7iP2QiJqk5oVVw7hqJDWXAZtrTe9WUXfkZh9qLn91sQYGNjAzMzM8hkMlRWVuLRo0cwNzeHj48PvL29ceTIEfTq1Qvr1q1DbW0tSMLCwgKlpaViGXv27MHly5exfPlySCQSjBw5EgMGDICVlZVYV2pqKpKTk9GyZUt06dIFJFFRUYG8vDyT8f3ggw8QHh6Obt26wdLSEuXl5dDr9XBwcMCjR4/q9SEmJgY5OTnwat8fRd7tIMgUeJFgoMEAhUzAP+JcMC65qdifsrIy+Pv7o6CgAEVFRZg7dy40Gg127tyJAwcOwN3dHbdu3UJVVRUUCoW456URZmZm2LlzJ1q3bo1NmzbhjTfewLBhw7BixQrxGoPBgBkzZmDu3LmQyWRwdXXFzZs3kZaWhvXr1+PQoUMIDg6u1+b8/HxMmzYNmzZtgpeXF5RKJa5evQp3d3cEBweLc/LmzZs4d+4cVCoVZDIZioqK4OPjg/j4eDx69AhHjx7F6tWr0bVr1xeM0Itx+/ZtbNq0CStWrEBeXh70ej1kMhni4+Px/vvvo02bNn+77Ff4c7wivj+BTqdD+/btcfjwYYwYMQJ5eXnIzs6ud92TJ08QFBSE4cOHY82aNejcuTM+/PBDODs7m1zn4uKCp0+foqqqCkOGDMGAAQNMJvmDBw8QHh4OCwsLpKWlIS0tDcXFxejSpQseP36MR48eISUlBSqVCkuXLoVCoYC7uzs8PDywdOlSBAYGimX5+PigoKAAer0eLi4uKC4uhpWVFRITE5GUlITY2FiMGjUKmzdvhllkV1i26AtI5SbtpUGPvAU9YN2qH8rO/Qjqa2Du3xzWrw2ptyu4XAIUHd6AgsPf/OXxFQShHvFZWlrCyckJDg4OsLe3h62tLezs7GBrawsbGxuQRElJCQoKCnD//n3cvn0b165dQ2VlJYKCghAUFAQA+OWJORiaBIMgrVfv3WVDoYlIgGVMClhTiYLsTAhyJbRdJ5j2X1e3e7mQs89k13QnJyeUlpaivLz8L/fViGc3aX0WCoUCzZo1w+DBg5GSkgIbGxuT8zqdDg4ODuI+gRUVFUhOTsbhw4dF7dnc3BxKpRJPnz6FpaUldDodqqqqYGFhgRYtWmDnzp0mZQqCAGtrayxbtgzXDI5Ye6YI/MMceBEEfS38yi5g3XuD4ebmhoSEBOzZsweCIMDCwgIymQwBAQHQ6XTIyclBREQErly5AicnJ3Tq1AkLFy7ElStX0KpVK8jlcjx48ABAHXlHRkYiMTERM2fORJ8+ffDll1+a1F1bW4u0tDSsWrVKHFMHBwds3LgRrVq1Eq/Lz8/H/PnzkZWVhX79+mHChAnivnk6nQ6XL1/GqVOnRO3wwoULcHd3h5+fH9RqNUpKSnDhwgXcu3cPMpkMMpkMSqUSsbGxaNeuHeLi4hAZGSnunfmyyM3NxcaNG7Fs2TLcu3dP3MA6ISEBGRkZz11Ev8Lfxyvi+4v44IMPMHPmTAQEBODKlSsNbha5fPlycZPK2bNnY82aNRg7dizGjRsHc3NzAEDHjh3F3cYlEgkaN26Ms2fPoqCgAJaWlujSpQvy8/MRExODtWvXiprlwoULkZ+fjzFjxiA5ORkXLlwQX/ZBgwaZXHv+/HnMnz8fO3bsQGlpKbp164YtW7aAJM6cOYPly5fjhx9+wIMHDyCRSJCUlATrxNE4/Ht9LU1XWoi7SwZC4eQHbc8PIEikeLzlQyg9GsOm9Zv1rq+9/gvubZlT73djW41ttLS0hFqtRllZGUpKSrB9+3bs2bNH7MfEiRNNzIE5OTnIycnBtWvXYGNjg6CgIDRq1EgkuoCAALi6ukIikaCsrAyjRo1C1rffwe2ddRBkinrtqXmYiyd7V6L20S1AIoXKMwy2Hd6CVG1KNtTVoK/5JVgoBGzYsAE5OTkAgEWLFuH1119HkyZN0LRpU8ydOxcffPABzp07hydPniA1NRVHjhzB7du3IZfLX6gBvwhSqRRmZmawtraGRqPBgwcPMGPGDDg4OODTTz/FiRMnRNJLSEiAvb09cnJysG7dOmzbtg2ffvopCgoKANRtcNsQUUskErTq1h8PQ/uislYv/p63sGe9sbBokgTbjm+b3m/QoY/2AfZuWoMTJ05AEATRfK1UKpGUlITk5GQkJSXB3t4erq6u8PHxQWxsLObNmwcAuHv3Ljp16oR27dohOzsbubm5onnWuDhq0qQJfvvtt3qbHZeUlKBZs2a4du2auKN9ly5dMHz4cLz11lu4e/cuhgwZgvT09HoLUQAoKKvG5lP5yHlQgpIqHTQKKaxRDm3pDVw+8xt2796N27dvw8HBAWFhYVAoFHj48CGuXr0KkpDL5SgvL0dgYCDatWuH1q1bIzY2Fk5OTi/9vG/cuIEvv/wSy5cvx+PHj6HX66HRaPD6669jxowZ8Pb2fukyX6E+XhHfS2DUqFFYtmwZ/Pz8cPz4cVhbW5uc1+v1iIqKwpQpU9C7d2/k5uZi0qRJOH78OObMmYO+ffti2bJlGD16NPR6PSwsLHD27Fn4+PggJCQEpaWlMBgMcHV1xcGDB6FSqcSyMzMzcfToUfz444+oqqqCWq1G+/btAQCbN2+Gh4cHOnTogGvXruHatWtIS0vD22+/jaNHj6JLly6YO3cuCgoK8PXXX8Pa2hpOTk64evUq+vfvj127duGuX1eY+Tar12d9VRnyM/vArvNYaBq3AwCU5/yC4qMb4TLk03rXV1w/jsdbZtb73dzcHNXV1fD09IRSqcSTJ0/w5MkTkIROpxN3JC8rK8PDhw+h0+kgCAK8vb0RGhoKLy8v+Pj4wMfHBzY2NlCpVFAqleLRrVs3nDt3zkSDFAQBQcMXodLOH39nlgsg5I+u4PraiWJ5JOHt7Q29Xo/4+HgUFBTgwYMHOH36NM6cOYOUlBTcuXMHbm5umDhxIvr06YPr16+jRYsWWLhwITp37ozXXnsN9+/fF+t56623kJ2djfz8fAB12o5er6+nCf8VmJmZwdzcHGVlZejcuTN+/vln6HQ6BAUFobS0FFevXq13vV6vh123yVD6Rj/XvGmoqUT+ZwPgkDodKo9Qk3M0GFB5/Vc83jZbXNgMGzYM7u7u+OyzzzBz5kyMGDFCPGdnZ4emTZsiMjISc+b8a5H05MkTJCcnw8fHBxUVFfjuu+8wY8YMnDt3DtnZ2aioqAAAeHp64h//+AfS0tKgVCpx7NgxdO/eHatXr0ZKSgpqa2uhVCrFxUb37t2xdevWen0693sRlhy4gYPXHgOAiS9TJZPAQMLsaS4MF3djw6ezQFL0F548eRIXL16Eu7s7HB0dQRL5+fm4d+8ezMzMUF1dDQsLC8TGxqJTp05o0aIFQkND65H2i3Dt2jWsX78eq1atQmFhIQwGA2xsbNCvXz9MmzYNDg4Of7msVzDFK+J7CXzxxRfYsmULTp06haKiIuzbtw8xMTF4+PAhSkpK4O/vj8OHD6Nfv364cuWK6PQ+cuQIxo4dC0EQMGbMGPTv3x+CIGDnzp3o1KkTKioqYGVlBZ1OB4lEgj179oikBtT5NKKionD27FnY2dnB1dUVK1asQPPmzaHT6TB79mzMmDEDSqUSgiCgadOmGDBgAJo1a4bs7GzMnz8fT58+xTvvvIMBAwYgMzMTe/bsgUqlgoWFRZ2W6d4Ov9V3/QAA8pcMgnX8AJH4Kq4eRdEv3zRIfOWX9qNkz2eiHwuoCwTx9/dHaWkprKys8PTpUxQXF5v496RSKfR6PRQKBQRBgE6nE53/QJ0ZUCaTQSKRQBAEE4LT6/WiUHwWUqkUUq0PnPp9BEH+8mYoKfToorqOb5bOM/GLabVadOnSBV999RUiIiJw8eJFODo6oqKiAkVFRVixYgXmz5+Pli1bYtasWXBzc0NlZSXatm2LI0eOiAE7GRkZ+Oc//4mqqioolUrcunULISEhqKysRKtWrbBp0yYYDAZcuHABly5dQkZGBsrLy0FS1Kr0en2DZtOXgcTc6rmasRFlF/ah+MhXcHl7dYPBWwZdDe4tHQwziR41NTV4/PgxLC0tcf36dXTv3h3NmzfH4sWLoVKpoNFo0KFDB4SEhIjBP0ZUVFSgd+/e0Ov1iIiIwEcffYTRo0fj448/xsGDB9G2bVtIJBLodDrxWVRXV2PZsmUICwvDu+++iwMHDsDGxgZPnz4FULdgWbBgAcaNGyfWs+HX25i1MwdVOv2LF0UkVAop3k9qhP7NvUxO1dTU4OLFiyYBNJcuXYKLiwvs7OxQXl6Ou3fvorKyEnK5HLW1tWjUqBHat2+Pdu3aoXnz5vXM2c9DTk4OVq9ejbVr16K4uBgGgwGOjo4YNmwYJk+ebBJ88wp/jlfE9xK4cuUKkpKScPPmTXTu3Bk//vgjPvroI6xcuRIGgwE3btyAIAjo27cv/Pz8TCLdDAYDvvrqK0yZMgX5+flo3769aPLcvXs3kpKSREEuk8nwySef4J133sGJEyeQmJiIJ0+eQKlUYs6cORg1ahSqq6uxbt06LFq0CK6urujatSvmz5+PuXPn4tixY9i6dSuePHkCb29vpKSkICsrS3xh5HI5xo4dCz8/P9y8eRMHDhzAFbjCulV/1DYgQ4sObUBl7ik4pGYAUhkeb54BlUdjWMcPMLmOumpU/rYZjw99Xa8MiUSCoKAgxMfHIzw8HI0aNUJaWhoAYMqUKRg/fjyaNm0qansrVqxAeHg41q9fj/T0dJSXlyMpKQlpaWmiaencuXNYsmQJfv/9d5O6pFIp2rRpg6tXr+LBgwdwbNkTsqa9gBcI9j/CUFsFnN4Cy0fnYTAYcPXqVZFgjME3z746Li4uKCkpgSAI4or/WZ+gsV1GMre2toaHhwfOnz+PyMhI2NraQqlUorKyEocPH4ZcLkdlZSWCg4MRGhqK7OxslJWVQSaToWvXrkhMTIRSqYRCocCAAQPQu3dvNG7cGHfu3MGuXbvw4MEDVFdX/yVStIxJgVXLfvV8ts/iwVfvQeUeAutW/Rq+QF+LvqEWaGVfjdTUVPj5+WHdunWIjIxEWVkZBg8ejDt37mDLli3w9fVFamoqfH19MWPGjHpF1dbWYvjw4bh69SqGDh2Kt99+G+3atcOuXbtw8+ZNREREwMfHBz179sS8efPERY8gCGjSpAnatWuHJUuW1FsMDRw4EJ999hm2XyrErJ1XUNnQZH8OzOQSTG2A/P6I6upqXLx4USTCU6dO4fLly3B0dIRarUZRUREeP34MmUyG2tpa2NvbIyYmBklJSYiPj0dgYOCfRoVfvnwZS5cuRVZWlrh49PDwwLvvvou0tDQxGvwVno9XxPcSIAlHR0ccPXoUfn5+mD17NqZOnQqJRAJzc3Ns2rQJiYmJ+P333xEREYETJ07UBZg840N4WlaFndu3Qlp6H72jvTDjvQmIj4/H+fPnRa2mqqoKBoMBqamp+Pbbb0Vz1P79++Hv748lS5Zg6dKlaNGiBSZMmICwsDBs374dS5cuxbFjx9CiRQt07doV+fn52LJlCx49egRBEFBTUwOZTIamTZviwoULCAsLQ5s2beo0R5kZJhyugr6BqE7qdXiydyXKLx+EIJNDHdQKNq8NrqchUFeDR6tGoKb0iYnANRKFvb09SkpKYGtri8DAQBw4cAAfffQRUlJS4ODggFmzZmHdunXo2LEj9u7diz59+mDmzJmQy+X48MMPsWjRIkgkErzxxhv4+eefkZubCwDQaDSYMGECCgsL8dlnn2HSpEnYvn07YmNjMWDAAAwdOhQZG/Zi9s4cVNbo6qVrPAsBgEwgfIrP4tcN8zFt2jSYmZlhy5Yt2L9/P2QyGQRBgLm5OUpKSsR0BmMfHR0dUV5ejvLycnEMzM3NUVlZKRKlnZ0dgoODoVKpsHfvXsTExMDd3R1yuRxSqRQ5OTm4ffs2PDw8cOrUKbFtGo0GvXr1AlCn5ep0Oty4cQPHjx9Hu3btUFtbi+rqalRXV+PGjRsoKyur69P/FaQNverOzs5w7z0ND1Uezx0TXfEj3F0+DC5vrYTc+vl+q/KLP6Mw+2MxIhcALCwsEBoaisDAQNy9exe//voriouL0a1bN3h5eWHmzJnQaDT1hD1JTJ48GT/88APmz5+P1NRUuLm54fTp03jy5AlCQ0Mhl8vFwJ3WrVvjzJkzuHnzZj2yN6ZLyGQyxCT1QmH4APy+dS6qbp+DobYKUrUNLJv3gEV4J9QU5KFwxyLontaZohVOfrDp8BYU9h4wk0uxcURzhLmZujj+DNXV1bhw4QJOnjwpHjk5ObC3t4dUKkVRURHKy8vFuRUcHIz27dsjISEB0dHRL0yXuHTpEhYtWoSNGzeioqICJBEQEIBJkyZh0KBBDcYivMIr4ntpTJkyBSUlJViyZAkWLVqE9957T/QlNG7cGOfPnwcAzJo1C2fuPIFtq74N+hCUUgG1Oh2qbp3G0yNfg4V3MGfOHJw9exZffPGFeJ1Wq8Wbb76JI0eOICoqCl999RVSU1ORlpaGO3fu4Msvv8TOnTsRHR2NwMBAXL16FXv37oWHhwdatWoFpVKJa9eu4dixYyAJvV4PtVqNyMhI6PV63Lx5EwUFBZDJZLDqMgFmvtHA33lZaIBw7wLub5qBJk2aoLCwENevXwcANG3aFObm5khNTcWvv/6KQ4cO4e7du5BKpfD29hZf/NDQUHh6euL8+fOorKxEYGAgLl26hMzMTPTo0QNLlixBenq6aCq0srLCwoULMXToUADA48ePMX78eGRnZ2PevHkYMmQISKJp06b48MMPsWX/CfyYL0DmEQ69Tmdi/pQJhE6vR0JjV/DSj1j50VQ4OTlBLpcjMTERX375JSQSCQICAvDTTz9h7dq1uHHjBoYOHYpWrVqhqqoKcrkcOp0O1tbWaNmyJXbs2IHOnTvjypUruHnzJoC6nK1Zs2ahsrIS5eXlGDx4MDp37oymTZuKhPn06VNs2rRJ1FgUCgVqamrE9A6dToeKigrRDyiVSuHu7g61Wg21Wg25XI5ffvkFcrkcgiAgJCQEhYWFuH37NgCIWmnXrl3RqlUrfHHbHA+k2uc+2qJfvkHV7bNw6vfRC6dA1c0TKN+1EDqdDrW1tZBKpSYm7z/iWbIzMzODlZUVtFqtGPzi6uqKM2fOYP/+/Zg+fToyMjKg0+mwbNkyZGZm4rfffoOFhQVu374NW1tbsawPP/wQ06ZNM6nL398f06ZNQ3aJK47frUT1ozuQ27hAkMlRW/g7Hnw1BQ6p0yG3doKhqhxSKweABpSezkbZuR/hMnQxBAHoFOyI5f2bvnAc/gqqqqpw/vx5UTM8fvw4rl+/DmtraxgMBjFP02AwwNnZGTExMUhOTsZrr70GDw+PBhcKFy9exOzZs7F9+3ZUVlZCEAQ0btwYM2bMQLdu3f7tNv//hFfE95J4+PAhGjVqhJMnT2L69OnYtGkTZDKZuNpasWIFRowYgfW/5GL27hzU6PknPgQDoNdBcWkHpqS2xJAhpgnUbdu2xcmTJ0ESo0aNQkxMDPbs2YNNmzbBw8MDXl5eePToEc6fP4+QkBDY2dnh9u3buHTpEvz9/REXF4fffvsN+fn5MDc3x8OHDwHUCR2pVComjTdr1gzn7xbjvLYtBNnL+8Nk0KNyxxzcu/ir+JsgCLC3t4e5uTnkcjmKi4vRvXt3xMbGYsiQIfjoo49QVFSEY8eO4cSJE7C3t4ezszNkMhnu3LmD/Px8KBQKGAwG6HQ6UYC6urpCoVAgPz8fTZs2RVZWFtzc3JCeno7du3dj8+bNJiHga9aswYIFC5CTk1MXbSg3h0ebXnAMjIReokDL6CicPZiNX7IWwtXeCvPnz0fv3r1FzUGpVKJnz57Iz89HREQEMjMzkZiYiKFDh8Ld3R2dOnVCcXExpFIplEolnJyckJubC0tLS4SHh+Pw4cMA6kjvyJEjkMv/lS7g7OyMN998E3PnzoXBYMDKlSsxZswYVFdXQyqVYvXq1Rg4cCCcnJzg5+eHY8eOITo6Gps3b4a1tTWsrKywfv16xMTEoKKiAjdv3hQDSWbPno3i4mIsW7YMMpkMN27cEPskk8nE8XToNgGKgJbPfbZ3V4yAVfOe0PxJHmfZxZ/hmrcXTZo0wdatWzFo0CBUVVXh8ePH+O2331BYWAh7e3vcvXvXZI5IpXXpJkZB/6xIelZb/WMaiEajQVVVFSQSCQYNGgQPDw9otVrMmTNHJHkAot/YQusC20FLTBagAFBbmI+HX02BTfsRUDf6VxoEDXqUndmFp/vXwWP8lrq5IJPg6KS2sNP8vdSFF6GyslIkw5MnT+LYsWPIzc2FWq1GbW2tSGZKpRLBwcFo164dunXrVi+VgiTOnj2L6dOnY8+ePeJcio6Oxty5c01SPf4d/DEa1lIlQ5CTJVKj3P5Txuc/Eq+I728gMzMTWVlZ4qr66tWr+PXXX/Hhhx/i8ePHyMjaizWnn7yUD0EuEA92L0XZmV31zvn7+6Nz587YunUrBEGAq6sr8vPzUVlZCU9PTzHp1tfXF/b29igrK8OtW7fEMHZBEODl5QVfX1+4uLjg+++/R3l5OSwsLFBcXCwGkwBAk9Q0lAV0RI2+XjOeC+qqEcFcfDs7Da1atcKJEyfqCa+FCxciISEB2dnZmDFjBsrLyzFw4ED07NkT7dq1g1QqxYULF3Ds2DEcO3YMv/zyC/Lz88VQfSPUajUkEglCQ0NhZWWFI0eOoLKyElZWVoiNjcWGDRtMom3Ly8vRt29f/PDDD2JbIiMjsXnzZkRFReHSpUtwcnKCQqEQ6zKah54VssYw8tjYWDE5PDAwEGVlZSgoKEDbtm0xc+ZMtG/fXozOValUKCoqEuvdsmULunbtKgp6AAgMDER0dDTefvtt9OjRAw8fPoStrS2ysrIglUoxfPhwZGVlYdiwYbh+/TpOnz6NPn364ObNm2jcuDGuX78upihkZ2dj0KBBqKiowPnz5+Hr6wug7kMMgwcPxuHDh8Xn/CyavfkeHjo0bTC4pSr/Ch5tfB9uo7IgUZo/dw5IYYD9/V9x+st5IoE5OTmJEbDl5eUoKCgQQ/SNY2LUYo2aqlQqFc3GVVVVqKysRFlZmRjU82doKC8UqJs3zm3fhC6oo5inWLhnKcov7AN11VA4+sKx30eQKMwAAHkf9wZrKgESVq36wbpFHwB10Z5jOwTgrXjfP23LfwQqKipw7tw5USs8evQo8vLyoFQqUVNTI46li4sLYmJi0LVrV3Ts2FFMpTBGok6ZMgWHDh1CbW0t5HI54uPj8fHHH6Nx48b16qyurn5hTuKfRcMSQJtALd5p7Ydw95czC/9X4RXx/Q2QRO/evSGRSLB+/XqTSbJl/wm8M3cdis79hJrHt6Fu1Br2XcYCwAv9BwAAXQ3Kts9E4fUzJvUpFAp4enoiPz8fdnZ2kMvluH//PrRaLRQKBUpKSsTUALlcDnt7e2i1Wty5cwdPnz6FSqWClZWVmPPm5eWFjIwM0ednFIaenp4IDw/H0UdSWMQPhEGQAMIL/GECoJJJ0damCEvH9YVMJkNCQgL27duHqqoqeHt74/79+5BKpWKgRWhoKM6dO4dPPvkEBoMBW7ZswaVLl9C5c2f07NkTLVu2xOTJk7Fu3TrxpXZ1dUVpaSlKS0vFgI7ExER4enri1KlT+Pnnn8VIx7CwMKSkpCAiIgLOzs7o3r077t27JwpDS0tLHD58GPPnz4eHhwciIiKwZs0a7Nmzp4H+1UWPNhQgolKp0K1bN0yYMAFxcXHIzMzEyJEjER8fjyNHjmDgwIH4/PPPTa739/fH06dPMWTIEPETZ1FRUbhx4wZKS0shl8sxe/ZspKeni/elp6djz549aNOmDRYvXiz+/uWXX2LAgAEQBAFz5sxBUVERsrKyEB8fD41Gg4EDB+KLL75AdnY27t+/L5LRs5BKpdi4cSNGjp0IqwGfNhjYVLh7MVhbDfvk9Ponnx0rgw6LWpujfavmGDhwILZt2wagTrPs27cvZs2aBXd3d+zduxedOnWCSqVCUFAQOnXqhFWrVmHOnDmIiIhAeXk5KioqUFpaioMHD2L79u0wGAxo2bIlZDIZtmzZAr1eD1dXV+Tl5cHW1hYWFha4c+cOgOd/HAAA7LqMgya0rclvNOhRfTcHVXkXYNW8JwTpv9INDDVVKL+4D1JLB5j7/SvVJ9KmFu82qzPLarVa2NnZvVSawr8LY2DXyZMnceTIERw9ehQPHjwQTctAUTqAzwAAIABJREFU3XwLDQ1Fu3btkJKSgsjISEgkEhw9elRMsdLpdFCpVOjUqRMyMzPh5eWFEydO4LXXXsNPP/2E2NjYenX/1WhYo2yYmhT0pwFB/x14RXx/ExUVFXjzzTfx+PFjbN269f+w991hUZ3b12t6o83QOwoIig1EQbAAihKxd8WCBnsJRrHEEqPGXtFYY1cEK5oodsUSFVEBEQsqINJ7G8qU/f3BN+cyAZOb/HJv8vs+1/PMo5w5c87MmTPvevd+914LhoaGAIDJR+MRHX0OAAvVaU9BijqG+NQ1lZ9cP6jfQQ1kJSLj+NJG5+NwOMwid2VlJUNyurq6EIlEUCqVKC4uhq2tLZycnJCWlgalUonQ0FB8++232Llzp5YW4O3bt+Hr68v8LRKJEBsbi44dO6KoqAjhx6IR9bwUcmnz+nKXBtEAj10/wPg6GWO6jwPaWhnA2NiYiTA1pdsfPnzA+PHjUVFRgfz8fPj5+SEiIgJKpRI6OjowNzfHF198gU6dOuHdu3fYunUrioqKANSTzrBhw7Bnzx4YGBiAiHD27FmmdysnJwdqtRp1dXVwd3eHj48PYmNj8eTJE0gkErRs2RLPnz9HdXW11nV0dXVFSEgI5s2bB4FAwPST7dq1S0s6C6ivvDx58iSjiaqBJj189+5dEBFEIhGmT58Oc3NzzJ07F5MnT8bu3bsB1Bey+Pr64urVq+Dz+WjdujWkUiliY2OZzwEAEyZMwN69exsNoLW1tTAyMsK4cePwww8/MNuzsrJgZWWF4cOH49SpU+BwOOjXrx/Onz8PFoul1QrCZrNhZ2eHgIAA7Nu3DwqFAlwuF7q6ukzjdaXraJBFm9+UKfsUSK0GJ/cFis+vBZfLhZ2dHRITExtFlxYWFoz+Kp/P11pz1rT06OjooLy8nPkueDwek+puSGhCoRA8Ho+ZDJmbmyM7OxsKhYIpOALqfzdSqRRyuRxmw5dDZdZYygyoJ3iekQ303LVlyIjU+LgtCBaTdoEjqY9e1JmJUNyob9nRRKUSiQRSqRRGRkYwMzODhYUFzMzMGHI0MTFh/m9kZKSV7v4rUFlZiYSEBDx+/BjXr19HXFwciouLmXuBxWLB1NQU3t7eGDhwIAIDA5lIMCEhgWmUFwgEKCoqgkQiwa1bt9Cx478Iv570/jPVsP9tfCa+/wHUajW++eYbHDp0CMuXL8egkWPRbdMdJvQvuXMUqvJChvgaoqn1AwCASoHMHeOhri7X2p/NZjORJRHB2dkZrVu3ZqK4li1bwt7eHhwOB+PGjUN+fj4uXLgAsViMhIQEBAQEYPv27Rg2bBgA4PDhwwgODgZQPzi4urri8ePHWud89OgRfL/oD2HL7tC3bYWqOjXEXKAm7z1e/LRfK4//3XffYdWqVUz13KFDhzBw4ECYm5vjw4cPSE5OxldffYWnT59i/PjxSEtLw5s3b+Ds7Iz4+HimApHD4cDT0xNCoRCPHz+Gv78/hgwZgr59+0JXVxdyuRzffvsttm3bBpFIBA6Hg7Fjx0IsFuPhw4fMTFYz8w0JCcHp06dRXl7OKMcQESQSCbp16wY3NzekpaXhxIkTWikyHo+HHj16IC4uDmq1mklZAoC1tTVatmyJGzduaBEMUF/IEx8fz/wdGBiIzMxMZGRkYMyYMUhOTkZcXBxDyJr3Y29vDysrKwgEAigUCuYz1NbWIiEhAWw2G9bW1mCxWFAoFCgqKmpE6g2h6fOTSCSMhiiPx0NhYSHKy8sb7d+6WyAqPUL+kFyZBqSoRe7xBajLfdvk82w2G6ampqipqYGdnR1evnyJDh06MGui9+/fZ4qDAMDFxQULFixAz549wePxmMfChQuRmprKFGt07NgRLVu2xOrVqyEQCODs7IykpCQt8XMNDAwMwOn6JYROTa9vFV0KB4sngMx/ivZnU6uQuXkYzMZsAN+sPr3ZQaZEgEE+oxerETHIz6/fVlpaioqKCubzaao1NRM1TSpRT08PMpmMWdu2sLBgGuI1JKl5/Bk5tIqKCiQkJODu3bu4fPkyEhMTmQkFEUEoFMLBwQEBAQEwNzfH/v37kZKSwryex+Ph9u3b8PLyQmJmKYbvuoOsiztQk54AdU0luAZmkHYfD5G9Oypf3ELx5X9NzEAEUtbCLHgrDKyd/lQ17H8Sn4nvL0BCQgLmzp2LdJEj0CaQaQn4FPF9av0AANSKem3IijhtpQlLS0tIpVKsWbMGgYGBTfb6KBQKBAUFoby8HOfOnYNIJGKeS0xMRO/evREeHo4rV67g4MGDmDdvHq5evYqUlBRcvnwZfn71aaCamhosW7YMhw4dwrhx47Bp0yZcvnwZAQEBzEBtZmaGMWPGoGfPntDT00NaWhrjEKFUKhEQEIDWrVvj8uXLCAsLg1KpxKZNm5CRkcE0MZeWljK9bmw2G/b29mCz2cjIyGCKRNhsNkpKSlBYWAgjIyPo6OggMzMTMpmMUdXXFEgYGxsz/WsNe+aaAp/PZ9byFApFk/vq6urC1tYWEokEjx49AvCv9GerVq2QnJz8yeNzOBz0798fV69ehVQqhVKpxODBg3Hw4EFUV1czeqTp6ekgIvTs2RMPHz6EmZkZAgMD0bNnT+jq6uLhw4eIjIzEF198gf3796N9+/aIj49nipQ0EIvFqKmpgZGREQoKCjB8+HAcOnRIS/1H891q9GI10NPTQ2VlJebv+wlRbxRQs/79tJ2Qx4azPAXnN81jtnG5XBgYGKCwsBA6Ojrw8vLC48ePMXXqVJw5cwZv376Fl5cXBg0ahOnTp+PAgQNYunQpysvLoVQqIRKJsHjxYujr6+Pjx4/IyspCUlISkpOTGRIRiUSorKxkCEUzqenevTvevn2L7Oxs7N27F/369UNBQQEGDx6MajtvoE1fqGvlqMlIhMihE1hcPmrSE1BwbjWM+s8Hi8sHR6QHnokdSFGL0jtHIX99H5ZTfwSLy/+31/iICJWVlVpi6g2JMjs7Gzk5OSgoKNAiy9raWkYPFKifXGsidB0dHYYsjY2NYWZmBktLS9ja2sLa2lorqmz422+I8vJyPH36FJcvX0ZMTAxSU1N/cwIFoL6/MGQTriRmoOzhGei06QmOvjGq38Wj8MIGWEzcAa6BqdZrKpOuo+yXSFhM2Qc2m/WXVcP+VfhMfH8RiAhBO67il+x/pXd+K+L71PoBAHAynyAtYrlWBDJ//nwkJSXh7t27sLKyQseOHSEUCqFQKKBQKFBXV4f79+8zihcqlUorclAqlSgrK2N634yNjZkmWo27geZvzSCisd6pqKjQWgvUQKP6r6OjA1NTUxQWFsLKygo8Hg9PnjyBjo4OnJyc0LJlSyiVSkRGRqJjx4549eoVM/PkcDjo0qUL5HI5kpOT4e7ujh49eqC2thYvX77E8+fPkZWVBScnJ8jlcrx//x4cDgft27eHr68vRCIR9u3bB7lcjpKSEujo6CAkJARPnz7F06dPUVdX18jaiM/no3nz5vDw8IC3tzecnJzw4MEDbN26FQUFBUx/mK2tLfLy8mBvb4+qqip8+PAB9vb2SE9Px7Rp0xAeHq6lEKIBi8XCgwcP4OHhgbi4OMaCStNzduTIEQwcOBAAsHr1anz77bfQ1dWFv78/OnTogLt37+LevXvw9vbGq1evUFpaipKSkkZrV87Ozhg5ciSmTp2KZcuWQSqVYu3atTh9+jQmT54MuVyOpUuXYvHixcxrzpw5g2HDhmnJumn+L5FIwHLsBuNeU6AC+zf7HUmtBlQKKB+fhIugGLm5uXj9+jVzrQcPHozY2FhER0cjKioKhw8fZgpXNApFFRUVYLFYkEgk4PP5KCkpAZ/PZ9o4pFIp9PT0mAmSmZkZ2rRpAycnJ9jb28Pc3Bzbt2+Hvr4+IiIi0KNHDzx//hwxMTHMZK1169Z4/vw57OzsELpgKbZ/MEFNZRkKzq1BXX4aQGpw9U2g26EfdNsHoOrVPZTeOQZVRSFYXD4EFi1g0H08+Cb1xU3/yapOoL4/s7S0VIssNUSpkUQrKChAcXExSktLUVlZierqaqhUKqZoStNXKhKJoKOjA319fchkMpiYmMDU1BRWVlawtbWFnZ0drK2tIRAIkJycjKFDhzZK93M4HLR274xq/28aVcMCQPb+mdD3HgWJs7fW9tyIRfUiF11G/1eu2x/FZ+L7CzHx8GPcfPUvaavfIj6g6fUDAKh+G4f809qKFl999RWjzRcbG4t79+7B19cXgYGBEAqF2LFjBzgcDhYsWACxWMyktjT/pqWl4csvv2Qq55YvX47BgweDy+Xi6dOn6NOnDwICAhAfH49NmzYxhRMAMGTIkCa1DnV0dJCRkYErV67g+PHjuHfvHgIDAzFmzBjI5XIMHToUI0aMQGRkJNzd3fH06VNmkHV0dMSWLVtw//597NmzB1OnTsX48eNx4MAB7Nu3DwEBAZg/fz7atWuH9PR0jBo1Cq9fv2ZaJBwcHFBRUYH4+HjU1dVBrVYz1YB8Ph+zZ89G69atsXPnTiQkJMDU1BQZGRlgs9no1asXFi9ejO7duzPCzZp079u3b/HNN99gy5YtGD58OOYt/g67rjxDQnoB8orLkP7mJeoK0lH1/Dp0ePWDzK8HCwDYt28fxowZgxEjRuDChQsAgLFjx2r1aALAzZs30bt3b6SlpWHVqlWIiopimtB/TXQymQwlJSUwMDCAiYkJI5j97t07eHh44PXr18xas1qtxrJly7B+/XoYGBhg+/bt2LFjB+7du8d40DWV8gQAgbkjuk5ZhQ9KXbAA1DT041PWQigUQac8A+9/3g1zQR2qqqrQr18/7N+/HzU1NfDx8cG9e/cYGySlUomKigqIRCItNRtNClYul4PD4UAsFsPBwQHW1tZISEhAWloarKys0LZtWzRr1kyruEeDuro6BAcHIzMzExcuXMCIESNw7do16OrqoqamBgqFAjNmzECvXr1w5MgRfLANQD7fDPVSBX8Mf2Uf31+N2tpaxq6rsLAQWVlZTEtQXl4e8vPzUVxcjLKyMoYsfz0hbIoK2rZtC4d+05DMsm1EfKqqEnzcOREWE8PBM7RmtjclePDfrob9PXwmvr8QoVHPEJ2Qzfz9u8TXxPoBAFS/jEX++Q1NvobFYoHH44HP50OpVEKpVILH40FfXx99+/aFjY0NbGxsYG9vDwcHB5iYmODHH39kKg6vXbuGV69eoVevXti4cSNGjx6NpKQk9OrVC3l5eYiNjUW3bt20zjlx4kQcPHiwyfdz8OBBZq0wPz8fJ0+exPHjx/H69WsolUpUVlZqFRt07NgRBw8ehIuLC3OMzMxMLF26FJcvX8bSpUsxcuRIHDhwAFu3bkWzZs2QmZkJf39/bN++HQKBAE+ePMHp06exY8cOyOVyJvWlUCigo6PD2LrU1tZi0KBBOHbsGJKTk+Hp6Yna2lpUV1drVf/dvn0brVq1wsOHD7Fy5cr6GTV0od95GLg27cBms6Ckf0U/pKwFi8WGTkUGUqN/QF1uKvOcRj9TI5KsWU8cP348Tp06hYiICPTs2RMlJSW4d+8eLl68iD179jBmsZrUraZKlcViYdasWbh79y6ePXvGiCSsXLkSS5YsAVAvxdW8efMmvR0rKyvh7e2NpKQksNlsWFpaIikpCUlJSYyZ8q+hr6+PNWvWYEhQMA7feYXnH4pRVCFHwuNfUJH5BtbKLHx48wJyuZxJGWvSxc2aNYOvry+ICKdOnUJ5eTmMjIwgkUjw8eNHJhpRq9Xg8/kICQmBp6cnTp48ifj4eISFhWHq1KkQi8U4ffo0o1Szb98+TJw4scnG7WfPnmHy5MlISkqCnZ0ddHR08OxZfWV0w+9ZJBLh/N0EzDr/DjV/oEBDgz+r3PJPhFqthlwuR1FREbKzs5Geno6QkJBGMm99+/aFyYD5uPFOe5JEKiXyT34LrtQchgEztZ4rvX8CNemJjQQPBrW3xJYR/wyLpc/E9xdid+w7bLn+BjV1CkCtQum9CKgqimD4xSyAzUFNRtJvrh8AAFQKFMce1VrjY7FYyMrKgoGBAd69e4d3794hPT0daWlpjF4fh8NhhK7lcrlWjw9QPyDr6elBR0cHBgYGEAgESEpKgo2NDbKzszFu3DjExsYiPz8fOTk5WoUBO3bswIIFCyCXyyEQCKBSqSASiZCamgpTU+3cPlAfBbm6uiI5OVlrFvnLL780WSKtQWJiIsLCwpCeno61a9eivLwcs2bNgo6ODqytrTF//ny4ubnhyy+/xO3bt8HhcDBy5Ei0b98eiYmJjPA2i8Vi9DuJCM2bN2cqHjU9UA3XNaRSKQoLC8Fms3Hjxg2E7jgNRZv+qFWof9eMFSoFim/8iMqEGMydOxfbtm1jUsIaJRdNO4qJiQni4uJgYmKCoqIiJo2nUf7h8Xho1aoVhg0bhilTpmDz5s04efIkPnz4AF1dXWZ99ujRoxAKhVi6dCm6dOmCoUOHIjU1VcuwFqj3oQsICMDLly/RrVs33L9/H0qlEt26dUNKSkojSTSgvvKyoKCAaSTX2AhZWVlBLpfjxo0bTC+pn58fzp8/j969eyM9PR0JCQmoq6uDubk53N3dwWazERcXh4KCAiiVSvj5+aGgoAAWFhYwMjLCkydPGNWVhQsXomPHjtiwYQN++eUXhIWFoU+fPvD09GQmA+3bt8fevXvRvn17vH79GidOnEBkZCRqa2sxcuRIlJeX4+jRoxCLxRg6dKhWFSxQn1ZetGgRjj1Mx6pLL/8Q+f2nqxOJiGlSl8vlqK6u/lP//3f3q6urg1AoZNw8RCIR3r59y/xexWIxLCwsIBaLYdB/ETKUug3eqxqFFzZAXSuHyZClWi0gAJC1ZxL0Ow+HTlt/re09nE2wf3xjB5i/A5+J7y9EYWUtvNfdRN6toyi7ry3UrO89Cjxj299cPwDq9S6LD05HdWmBFnGxWCwIhULY29uja9eu6N27N7Zs2QJLS0scOnQI0dHRTGpw/fr1MDU1RadOnRgSMTExYVIfubm5yMjIwIsXL7SaVRt6xnG5XAiFQojFYujq6qK6uhrZ2dno0KED5HI53rx5g0uXLsHBwQE2NjaMxujs2bOxf/9+JvU4atQoxkBUIBDA1dUVQUFBGDFiBIyNm5bJ+vnnnxEcHIyqqirs3r0b/fv3x7Jly3DgwAEmwps0aRJ27dqlpUWoVqvx5MkTxpFCo3mqQZs2bTB9+nRMmzat0Tl79OiB69ev49C9d/g2OvEPuTmo62pQcnM/qp9fbVQk06JFC2RnZ6Ouro5xpmi4VqqJDL/55hvMnTtXS3qre/fuSE1Nhb+/PxwcHLB3716UlJQw6zJ8Ph8JCQlwdHTEunXrEBAQAA6Hg/LycoSFhWH//v0wMTFh5NM6deqE1NRUpoVCT09PK93JZrMRHh7OOKfr6upCKpWie/fuyMzMRGpqKpNeZbPZCAwMRFpaGiwtLbFkyRKYmZmhQ4cOcHZ2Rk1NDVq0aIEzZ87gyy+/RFZWFi5fvgyxWIyAgABIJBL4+vpCIpFgypQpMDMzQ0FBAaZOnQo/Pz/s2LEDP/30E3r16oV27drh9u3bePbsGRNBc7lcjBw5EqNGjUKnTp2QkpKCoKAgsNlsfPz4Ea1atUJsbCzz2TTrrdu2bcOsWbNw7GE6Vl5MQU2d6ne1WwVcNqZ7mSPAXvw/IqXfIyjNupyGiP7d//+Z12gmiOXl5YiKisKVK1dw/fr1RsLqPB4Pnb76AR+5FgDqCbro0jYoy/JgMmx5I2Hzmo8pyI9a2qTgweeI7/9hTD4aj2sv8/6U/xvUanDzUtAiPxb3799nBqWgoCAsXLgQN2/exKVLl/Ds2TPGJsfQ0BDt2rVDr1694Ofnhxs3bmDt2rWoqqqCsbEx4uPjYWFhwZxCpVJh8+bNWLduHVatWoWuXbvC398f69atw9ixYxmR6+nTp6Nt27bIyMhgKtCuXLnCDDplZWVNFrxowGKx4OnpiczMTBQUFCAoKAiHDh2Ci4sLHB0dcf36dXTt2hVBQUEYMGAAY9SbkZGBYcOGwczMDFZWVjh06BAUCgV0dXVRUlKCjh07wtDQEAkJCZg1axamTZvWyNrlyJEj+Prrr1FSUsLoVdbU1ABo3OAsFApBRLCwsMC52KcYue+hlhlrQyiKs5C9fyYkzt4w6jdP6zm1ogZ5xxc2Kuk3NDREaWkpQ4gSiQROTk54+vQpU42qVCpha2uL4uJi6Orqom3btmCxWIiJicGyZcuwbNkycDgclJSUQCaToVmzZigvL2dEsjWu5po0lUbD09HREc7Ozrhx4wYmTZoEfX19hIeHY9++fXjy5AnWrVvHzPD79euHhw8fQiQS1TtamJqiuLgYXC4XIpEI3333HTw8PODj4wMOh4O6ujpIpVLcvn0bnTt3xvnz5+Hh4YEpU6bg0aNHjDwam83GnTt34Obmhrt376J79+7gcDjw8vJCSEgIxo4di6ysLAQHB6OwsBCtWrXCpUuX0KJFC8jlctjY2ODOnTuQy+WQSCSMIkxRURGmTJmC4cOH48SJE9i3bx8mTJiAmpoa7Nu3DyqVCn369MGdO3dQVVUFHo+H1q1b4+nTp4y7QxHpIEu/FeqMWtSv+DXoVVUrasFisVCb9hSq5zEQVOX+KYL5dwlKJBL95b19DfHmzRscP34cd+/exZs3b1BUVMT8JoD6gi+RSMS4PQiFQhw6dAjDhw9nMlm1SjWKLu9AXX4aTEeuYlRuGqIoZjtIWddI8ODzGt//40jMLP3NwfO3IOKxMcWhGj+uXwZdXV3069cPu3btQn5+PlQqFdq2bYupU6fi0KFDaNGiBcaOHYvo6GjExsYiNTWVafJVq9UQi8Vgs9mYN28eFi1aBD6fjzdv3iA4OBh8Ph8HDhxA8+bNAdTbLfXs2ROrV6/G+PHjsWLFCsYAtOFaHJ/Ph6GhISMwfeDAAezevRtxcXH1718kQp8+fZCdnY2ioiKYmZnhzp07TBRTWVmptaDe0FdPE1kWFBRAKpWiqqoKpqamkMlkzHrNkCFDsHPnThgbGyM5ORkbN27ETz/9hODgYMyePRtJSUnYtWsXrl27Bm9vb8TGxiIyMhLTp0/HDz/8gPnz56OgoEDrBw8ALVu2REpKyu9OWvIil4KUteDqmzQiPlKroVP6DqkH5zeSWWOxWLC3t8fMmTNhbW2NpKQkfPfdd1r7sNls+Pv74/bt20zkrSFGlUrFiAIQERwcHGBkZIRnz56htrYWXbp0wbhx4xAZGYmbN2+Cy+Wic+fO8Pf3R3h4OAYPHoz8/HzExMSgWbNmyMvLQ1VVldZ3IZPJsHbtWvTo0YOJ4CsrKxEcHIy4uDjU1dXhp59+QmBgIEpLSxETE4O+ffvC29sbQUFBWLVqFTp06ICYmBjU1dXh2LFj4HK5mDp1KuRyOYKDg+Hi4oK5c+dCV1eXkWYbNGgQ46f44sULvHnzBoaGhsjNzWXeW8MJlkbmjM1mM4pAfD6fqbaVy+VwcHCAg4MDbt++DQ8PDzg5OTEKNt26dcPt27cxaNAghISEQCQS4fRPlxHzugTd+o9CHXFhIOGjlYU+RnSyhbFu020B/0SoVCrcuHEDZ86cQXx8PDIyMlBWVqZ17UQiEUxMTBitz5EjRzIT45SUFLi4uMDd3R1nz56FtXV9wYomk1VVlIusXRMBDg8s9r9k92QBM6Dj4gtS1iFz+1gYD1oEkZ12ZPe5qvP/A/wZhQM+B1jSpxXGeTWDWq3GyZMnsXz5cpiYmGDZsmUoKCjAunXrkJiYCDabjR49eiAsLAx+fn7M4NinTx9cvXoVTk5OKCsrQ35+PuMbp3E3nzhxIlatWtXIPf7Vq1fo0aMHvv/+ewQHB8PLywtv3rxBTk4OMxM1MTFBQUEBHB0dGecFoH7QPHjwIFauXImqqirk5OQgNDQUGRkZiI6ORnFxMbPvL7/8gu7du8PPzw/Lli3Du3fvcO/ePURFRTERbkNVjiavFZ/PCDTz+XxkZWWhtLQUIpGIkQBzdHTE+/fv4evrC3t7eyxfvhx1dXWws7PTcj/XHO9hwguMjEhtsmQbAKpSYiF/8wA8Q2soS3MaER9Qn6b++ENwI/EBZ2dnGBgYIDk5mUnV/jolymazYWZmhtLSUhgaGkJXV5dReklJScHLly+hUChgamrKVD3W1dXB0NAQcrmc0ets1qwZOBwO0tPTGRd7Q0NDVFZWYty4cXB2dsbhw4eRmJgIABg6dCju3LmDkpISKBQK2NnZoXv37lAqlUwa7vXr18jIyNCSPdOkvzXn0FTTWlpaoqioCDKZjLnWlZWVyM/PZ4TGxWIxM0FTq9XM/fb8+XNcvXoVL168gK6uLubMmQOVSoWjR48yzfgtWrTAvXv3YGRkhJcvX8Lf3x+PHj1CaWkpHBwccP36ddja2gIAkpKS0KdPHyxatAgzZszAuHHjcPz4cYwePRoRERGYMWMGwsPDQURMtHjixInf9cP7u1FWVsakJ58/f46cnBzI5XLmu+FwONDV1YWVlRVcXV3Rv39/9OvX73eb4NVqNWJiYpiUeUP8TzJZ/8Rq2M/E9x/CH9O0Y+Pjz9uhfHkL48ePR3BwMDw8PBjz2u+++w4WFhbIz89H165dYWdnhz179iAnJwcCgQB9+/bFvXv3UFRUhJiYGPj4+ACoV26Ijo7GnDlzGPLh8XhQqVQwNjZGx44d0bt3b3h5eaF169Z4//49evTogZUrV2LUqFHMms3169exdOlSrF27ttGArUl7isVidO3aFffu3dN6fvbs2di2bZvWtkePHqFLly5wcnJilGVMTEywb98+mJqaYtiwYXj//j3EYjHmzJnDuCBkZGTg1q1b2LlzJ16/fg2RSITS0lJIpVLw+XyUlZUxBNAQAoGA6WnSOL83RLt27ZBj4AKxx3AQu3HztrpWjpxDoTAdtRqViVc+SXxqRS3lpRHzAAAgAElEQVSQ9BM+Xj/cqDRcKBSiRYsWcHBwgI6ODqKjoyGVSlFbW4vc3FwmgnF1dUX37t1x5MgRBAQEQCwWIzc3F+np6Xj27Bmzn4ZEPiXKrPluNIU8GuUfTc8nUD9hGTlyJIqKihAVFYXhw4cjJiYGVVVV6N27N4KDgyGRSCAWi/H8+XMsWbIEFRUVzNptdXU1Ll68CKVSiS1btmDFihW4du0aDh8+jIiICOTk5CA2NhZLlizBiBEjMHfuXCb64PP52LVrFyIjI3Ht2jWw2Wz07NkTRAQdHR3Y29vjxIkT2L9/P3r27Inw8HB88803sLS0hJ6eHl6/fg2VSoXa2lrweDyMGjUKly9fxoABA7Bq1Sqm9SctLQ29evXC6NGjsXz5cqxbtw7ffPMN/P39cf36dYwbNw4HDx5ETU0NunbtimHDhmH+/PlNXs//Nl69eoXIyEgmo9NUelIqlcLe3h6dO3fGiBEj4O7u/h8h7v9ZJusfWA1Ln/EfQ2JmCU05+phaLLlETksuke3Cn5mH05JLZDPvLI3edYsSM0vIx8eHABCbzSaJREKWlpZUVFRERES5ublkY2NDenp61KtXL3rw4AEREaWkpFDfvn0JAAEgIyMjmj9/PqWmppJKpaKdO3eSoaEhbdiwgWpqamjHjh1kaGhI3t7e1Lt3bzIzMyMej0disZh4PB61bNmSRo4cSTKZjNauXUvx8fEEgMzMzJhz/Prh6enJfN7Q0NBGz/N4PJo0aRIREdXU1NDp06dp4MCBpKOjQywWi3g8HoWFhZFCoaB169YRn88nExMTunnzJt2/f5+mT59ORkZG5O3tTZs3b6a1a9dSq1atyNbWlpo1a0YuLi50+fJlIiJ6/PgxWVpakqurKwEgXV1dGjJkCEVFRdHGjRspNDSUmjVr1uTnMB+0UOv7afjQ7dCPDHyCyXbhz6TvPYokLj6f3Ncw8Osmj8/n80kqlZKlpSU5ODhQmzZtyMPDg7p160YcDof5/gwMDIjL5RIAYrFYxOVyydjYmGQyGQkEApo8eTK5ubkRAOJwOKSnp0erV68mmUxGz549o5ycHHJ1dSV9fX3icDjE4XCIz+eTtbU1cblc5lwsFovu3LlDarWaiIisra1pwIABRES0YcMGEgqFpK+vT8eOHWO+37t37zKvB0Br1qyh0tJS6ty5MwmFQhozZozWPfzzzz9TWVkZSSQSKikpIbFYzJybzWaTUCgkPz8/GjRoELPdwMCAiouLiYjoxo0bZG1tTbNnz6bnz5+ThYUFWVlZkbm5OXONjI2Nic1mk7e3N71//56+/vprMjQ0pPXr11NNTQ0REeXl5ZGbmxtNmTKFlEolRUdHE5fLpTZt2hCbzaahQ4cSEdGHDx/I3Nycrly58h8bE34NlUpFMTExNHnyZHJ1dSVDQ0Pms2muiVgspmbNmlGfPn1o8+bNlJ2d/V97fw1x9EEaOS+99Ml7v6mH89JLdPRB2t/yfn8Ln4nvv4DCihraHfuWQiOf0cRDcRQa+Yx2x76lhd+uookTJxIRUWRkJEkkEmaQHDVqFKlUKsrPz6e2bdvS/Pnzqaamhvbs2UPW1tbUp08fmj17NrHZbOrfvz/FxMRQ7969ic/nE4/HI5FIRNbW1hQbG6v1XkpLSyksLIxkMhmtXLmSPn78SBcvXqSwsDBydXUlgUCgNUA1HLzZbDazjc1mEwDatGkTc+yDBw8y2zX7GBgY0I4dO2jixIkklUrJz8+P9u/fT+vWrSOpVEpcLpfc3d2ZgXnx4sWNrt+jR4+oV69exOPxiMfjkZeXF0VFRVFVVRWdPXuWHB0dyd/fn3x9fWnp0qUkEokoICCAzM3Nyc3NjVq2bEkHDhyg2tpahvikUin17t2bIRqTocua/OGaTwgnnpEN2YSd+7eIz3LUSjI3N9e6DgYGBnTz5k06c+YMrV+/nqZOnUr+/v5kY2NDLBaLOBwOCQQCEgqFNGPGDJo2bRp169aNIiIiaNGiReTr60sASCaT0ciRI0kgEBAAEgqFdOLECSIi2rp1K3Xq1InmzJlD3t7eFBoaSk5OTjR9+nTS09MjFotFpqam1LZtWwJAYrGY2Gw2icVi8vb2phEjRhCbzabCwkIiIqqtraWxY8cSm80mBwcHOnDgAPn6+hKbzSYLCwsCQB06dKDCwkIqLS3VGqw1JO7v709ERE5OTrRv3z5ycXEhAMy9qa+vTyEhIfT119qTBXt7eyooKCAiouLiYho6dCjJZDJisVg0YMAA4nA4ZGlpSYMGDSIDAwMaNGgQGRsbE4/HoyVLltDTp0+pX79+ZG9vT+fOnSO1Wk1lZWXk5+dHQ4YMoerqanr+/DlJJBIyMzMjDodDAQEBREQUGxtLJiYm9Pbt2790DCguLqbdu3fT4MGDydHRkXR0dLTuEQ6HQwYGBtS6dWsaN24cnTp1iiHufxLqyS+G7Bb9NuHZLfqZnJfG/CNJj+gz8f2tKCoqIplMRhkZGVReXk58Pp+EQiGJRCI6fvw45ebmkouLCy1evJiZmRMRyeVyZhBxcXGhhIQEIiJSq9UUHh5OOjo6ZGJiQgKBgPh8Pnl6etKhQ4eorKyMOca7d+9o6NChZG1tTceOHSOVSkVE9QPel19+2Yj0Gv5ANdEUADpz5gxzzNu3bzODKgAyNzcnKysrat26NXXv3p309PQoOTmZhg8fTq6urvT8+XPq1q0bASA9PT3Ky8tjjlVdXU2HDx8mT09Psra2plWrVlFOTg6VlZXRwYMHqUePHmRgYEATJkygK1eu0KJFi4jNZpOdnR2JRCJycnKiM2fOkFqtpp9//pnc3NxIV1dXK2JpGH24zQxv8gcs7TGJWDwBsSUGxJYYEIsnJBaXT3xT+yb3txi8kHg8HhPhaa5jy5YtqX///hQaGkrbt2+nFStWkKGhIa1evZpmzJhB1tbWFB0dTSYmJtS7d2/av38/cy3u3r1LLBaLZsyYwUw+LC0tSSKRMBH1xYsXycnJiWQyGY0fP546depERUVFtHv3bmKxWOTm5kZ2dnZMlC6Xy6mgoIA2b95MHTp0IB6Px0xWHB0daejQobRixQoKCwsjHR0dAkDOzs5kZGREly9fJi6XSwKBgCwsLJh7seFDKBSSTCajsWPHkkgkIisrKwoLCyMA9OjRI+rbty9FRETQzJkzic/na2UINJHq1q1bKS0tjbp06UJGRkbM/bdu3Trm2mRnZ9OiRYtIJpNR8+bNSSAQkFQqpbVr11J0dDS5uLiQn58fJSYmUk1NDQ0bNox8fHyorKyMCgsLmevI5XKpS5cupFKpaMeOHdSmTRuqqKj4w7/pFy9e0NKlS8nHx4csLCyYSUrDyN/U1JS8vb1p3rx59PjxY63f9v8G/F4mq8WSSzTl6GNKzCz5u9/qJ/GZ+P5mhIWF0ezZs4mIqH///jRt2jRKTEwkY2NjsrCwoOXLl2v9MPLy8sja2prEYjHdunWLtmzZQmZmZhQYGEhdu3YlV1dXSkpKIqJ6cvvmm2/IxMSEdHV1SSgUUr9+/Sg6OpqZTd69e5fc3d3J3d2dAgMDtWahTT0kEgmx2Wzi6khJz2MwGfWbR/YTNpDX3D005vtD5NdnADOAzZkzhxISEqi4uJgkEglDAsHBwbRx40YSCARkaGhIe/bsIYFAQF26dKHXr1/T3LlzycjIiAICAuj8+fOkVCqbvHYfP36kjRs3Uvv27UkkEpGrqyvxeDxisVgkk8lo1qxZ1KlTJybCMDU1/eTnGrJkN7VY0jiNYz33NFnNPMo89DoNIrGTF1nNPt5oX5t5Z6hD0AJm4D937hxlZGQQi8VivkOlUklLliwhS0tLunPnDhERrVmzhqRSKRERnTp1ilgslla6zcvLi/h8PrHZbDI3N6fIyEgiIsrPz6d58+aRVCqlli1bMkQuk8lo27ZtNHLkSGKxWPTdd9+RSqUioVBIenp6FBgYSMbGxrRo0SLKzMwkovqIpFevXsRiscjc3Jy6dOlCZmZmJBaLSV9fn3R0dBiCcnZ2JrFYTAEBAQxhNvWQyWTk5uZGXy/6lvxnr6OZxx+T+Yjv6KvIp9Rx3Dd04tzPRERkYGDAkNr8+fMZktMQcfPmzQkA2drakpeXF/n4+FBGRobWvVBRUUFbt24lY2Nj4nK55ODgQCYmJrR69WratGkTmZiY0OTJkyk7O5umT59Orq6ulJubSwqFgjw9PYnL5RKPxyM3NzdSKpU0YcIEGjp0aJOkpFAo6OLFizRp0iRydXUlmUz2yfRkYGAgbdmyhXJycv7IsPC/Ap/KZBVW/PMi1V/jc3HL34ycnBy4uLjg1atXMDY2ZlRavLy8UFRUhBMnTqBfv34A6nUdAwMDYWlpibi4OMhkMhARfvzxR8yZMwdEhL59+2LFihVwcnJizqFWq3Hv3j3s3bsX586dY9ybhw8fjsGDB2PXrl24dOkSgPqCiHbt2uHJkydMk6vGb6yqqgrNO/rCZ/pq3HqVD7VaBXAa9z5Vv3+CFso09GjvgE6dOiE2NhZbt25lyvz5fD5UKhVCQ0Oxfv16qNVq7Nq1C6GhoWCz2QgNDcW0adOYdovfw6NHj9CjRw/weDzGPujX/XoNZcAa3vLt27eHj48Piipr8dC0L+pUv/1zKL17/JPFLSy1El8ap+PS2Si8evUKLi4uOH/+POzs7FBeXo68vDyMHl0v2hsREcGo3pw4cQITJ05EdXU14uLiMHToUCgUCly9ehWHDx/Gpk2bYG5ujpUrV2Lbtm2MTZEGXbp0QUJCAtzc3FBSUsI4YBQUFEAkEsHb2xuvX79GZmYmUlJS0LJlS6SmpmL79u04duwYevXqha+++gpubm6QSCQwNDRkimB8fHwwadIkuLu7IyUlBUuWLGHaV5qC5vpKpVIc+ukW5h+8DrVZy3plkgYFsyy1AhwODz1ameLMyikY2NUVjo6OWLFiBaqrqxsV7PD5fKSkpMDOzg4bN27Epk2bsG3bNowaNUprP6VSifDwcCxevBg8Hg9OTk7IyMjAtGnTUFhYiJMnT2LBggUoKyvDiRMncPXqVTRv3hzBwcE4cuQIeDwe7O3tERcXh27dusHGxgYsFgvJycnIzc1tsnrS2toarq6uGDBgAPr27Qs+v7GT/Wf8s/CZ+P4BmD59OgwMDLB69Wp8+PABfn5+mDx5MiNCfeTIEcTHx2PZsmUYMmQIoqKiwGazkZubiylTpuD9+/c4fPgwHB0dsWPHDmzZsgVffPEFli5dCgcHB61zyeVynDt3Dtu3b0dcXJyWRNHatWsRGxuLM2fq/QGFQiG2bt2K+Ph4nD9/HlY+I1Fk6wM2T/DbZc1qNdSqOqjjTwNv7yIrK6vRLjdv3oSTkxN+/PFH7Nu3DzY2Nhg4cCCWLVuGNm3a4OHDh1qDe0NkZ2fj5s2bOHHiBB48eMCQ3aduZS6Xi379+mHjxo1MHxyHw0GfPn3w7t07pkLQdOhSCJt3BH5DyeNTYAEQFLyC8vYuHDt2DJGRkTh69CjTXxcVFYXRo0dj4sSJ+Pbbb7XKxePi4tC5c2eoVCqsWLGC0bds6KpQU1MDd3d3xotOg5SUFHh7e0Mul2PgwIHYuXMn7O3tUVlZiSdPnsDCwgLff/89tm3bBnt7e+Tl5cHKygqdO3eGp6cnWrdujV9++QUbNmxg3BK4XC5KSkpQXV2NU6dO4ccff8S7d+8QHByMCRMmYMCAAVCr1Xjz5k2T10IgEMDAvS8kXcZBxWLjtwShGzp1D2xtBGNjY63KRSsrK7Rq1QrXrl2Dg4MDrl27BltbWzx9+hRBQUFwc3PDDz/80Kg9p7y8HH379mU0Sq2trRlpvhcvXuDdu3fo0aMHLly4gPDwcCQkJCAiIgJpaWmN3iObzYaJiQns7e3h5eWFkSNHwtXV9R/f9vAZn8Zn4vsHID09He7u7rh58yYGDhyIWbNmYc6cemHre/fuwc/Pj5nJzpw5E0SEqKgofPXVVwgJCcGyZcu0enTKysqwbds2hIeHY8CAAViyZAmaNauXRXv58iUGDhzIDFqGhoYQCoWQy+UgIsawVQONA8OlN+VYei4BxP731SX4bMChMglXdixp5DQA1A8oGmudoUOHMs7xbdq0QcuWLfH48WOw2Wy8fv0aO3bswNWrV5Gens40cmsG6V83jHt6eqJz584wNjbGvXv38ODBA8Y6SFdXF6ampmjdujXc3NzQvHlzWFhYIDQ0FFnVXOgOXPqnzFjZaiWUVzYAxR+QkZEBlUoFHx8fPHnyhFHFOHToEAICAhq9tri4GIaGhsjJyUGfPn0gk8lw8+ZNODo64t27d+jQoQPmzp2LjRs34tGjR8yAm52dDQ8PDwgEAhQWFuLAgQOYMGECdHV1YWRkhEmTJiEoKAiGhoZo3bo144qenJyMBw8e4P79+7h27Rrjm9euXTsUFxfjxYsXGDNmDDZt2sS0Bbx8+RLbt2/H0aNHGYHjX0MikYDNZuP7k3cRfucDFPTvTyBEPDbMch7g9o8rtbazWCzo6+sjOjoaM2bMwMuXL7F48WKsWLECcrkcCxYswIULF3D48GGmjUcDIsLatWuxZcsWtG/fHnfv3gWfz2fcOH4tpiAWi6Gjo4O8vDytzACHw8GrV68aTSI/438vPhPfPwSDBw/GrVu3sGLFCsyaNQtA/cDm7u6OkpISCIVCREdHo1WrVpg+fTqSk5Nx+PBhdOrU6ZPHLCkpwZYtW/DDDz+gS5cuePjwISN15unpiVOnTsHKygpEhMePH2Pv3r3Yv3+/1jHYbDY6BQxDTqsRKE+8gqrnN1BXkA5Jy+6M6wSpFCi8sAG1OW+hKs+H6ajVENq2BQBwWWoURi6GgbqcsdJRKpWoq6sDl8uFhYUFhEIhiouLIZfL4erqirq6OmaA1xCmxh+Qy+WitrYWCoVCy3ZJLpdDpVKBxWLBwcEB9vb2zKN58+YwMjLC3r17ERkZCbVajQEDBmDmzJno2rUr2Gw2fvnlF4wZMwa+k5biepH+H9Lq5LEJuZd2ojIhBkKhEAMGDEDv3r3RuXNntGnTBkqlEvHx8ejQoUOj1/r6+iIuLo7RalSr1ZBIJJDJZOjWrRuOHz8OmUwGPT097NmzB7169QJQH9F4enqipKQEo0ePRmJiIm7dugUPDw/cuXMHaWlp8PLyAofDQXFxMSPbBdRrsh45cgRr1qyBra0tZs+eDS6Xi4cPH+LBgweMxqUm7a0RBXj8+DG++OIL2NjYYPv27U0amG46dBr73kka9XsV/rQRNemJUCtqwJFIoec5BLrtemvtQ4pa5EUshKWo3lNSV1cXUVFR4HA42LhxIyZPnozw8HCEhYXBysoKV69ehaOjI2JiYhASEoKgoCB89dVXuHDhAq5cuYIXL14gNzcXVVVVjfwHNdeiXbt2eP36NRQKBXbu3IkJEyYgOTkZbdu21XqNg4MDnjx5Al1dXXzG/358Jr5/AFJTU9GtWzdG9UQikSAmJgYDBw5E8+bN8ejRIzx+/BiDBg0Cn8/HhAkTsGLFik+6LDfEmTNnMHHiREYVxc7ODjExMXB2dm60748//ogZM2Y08ukyGbIEIvtOkKc+BFgsVKc9BSnqtIiv4ukl8M0cUBi9Fkb9wxjiYwEwrs1G6sH56NOnDywsLLB161YolUpMnToVfD4fFy9exIcPHxpFbr8Gm80Gi8UCn8+Hg4MDmjVrxqzRmJub49atW/jw4QMsLS0/eYyamhqsWLEC4eHhEAgEEAqF6NOnDyoqKhAVFQWpVAqFrScMe04COFyA9dtmrAIeG8v6umBP2Fit5n2xWAwTExM4ODjg5s2b6NixI+7fv99IEWP+/PkIDw9nZMoEAgHKy8thYGDAEItGpis5ORnOzs6oq6uDn58fkpOTMWfOHIjFYsyfPx8uLi5arvCaJu1Lly7hiy++QHV1Nfbv34/169ejVatWWLJkCbp06dLoc8XFxcHDwwP29vZIS0tjCKBVq1YYOHAgvLy8MHHixEYu8OvXr8fFcktkqPQbpcLrCjLAk1qAxeVBUZSJ3IhFMBm2HAKzBlEUqcHOTkbOqRWwtbXFhw8fwOVyIZVKYWpqCg6Hg927d8Pc3Bzdu3fHq1evYGlpCbVajeLiYi2RdT6fD5lMBgcHB3h5ecHLywvLli1Du3btsGHDBhw7dgwbNtRbf1VXV8PW1hbJyckYMmQIhEIhjh07pvX+XVxc4OzsjFOnTjERd2FlLU4/+YhXueUor1FCT8iFs5kehnWw+sdIc31G0/hMfH8zXr16hZ49e2L58uW4fPkyunbtivz8fKxZswZjxozBkSNHUFxcjFmzZuH27duQy+W4cuXKb0Z6ALB9+3bMnz8fNTU14HA4mDx5MpYsWYLNmzfjwIEDGD9+PBYuXMgUWGgMO0+dOoXKykrY2dnBw8MD3Xv3xYbXelpFH7/lM/jxh/Ew6juXIT4A4LIIBwZYYNbkCUhKSmr0GjabDT6fz1iz/DotymazYWNjAyJCXl4eWrRogU6dOuHDhw8AgBcvXgAA3NzcGNPX30NRURFCQ0Nx4sQJLSkuDXZEXMBzlTluvMxDXW2tVgQo5LKhUquh+JCAgtvH0NerLaZNmwZfX19mHx0dHRw6dAgSiQRhYWF49+4dQkNDsXr1aq3z7Nu3D5MnT2b+1qQ07ezskJGRwWzXuJf/8ssvWLlyJa5du4aVK1fi+fPnOHLkCPr27QtHR0ds2rQJQL3FU/v27WFjY4NevXrB2dkZmzZtQseOHbFkyRJ07KhtD1NbW4vLly8jMjISMTExUCqVTBGVWCzG4cOHsXnzZmRnZ0MmkyEtLQ18Pp+J3Dt06IBdB4/9puybBoqij8iLWARpz8mQtOyq9Ryfy8YQ7jNsXbuS8fgD8JsKNRwOB126dMHAgQOhUqmwdu1aLF26FDNnztRaJ5bL5Zg0aRJevnyJs2fPwsLCAlFRUVi5ciXy8/NRV1cHhULBOMTT/5X706Bjx44ICQmBxxfD8cPtt4h9U1B/7Rp8XiGXDQLg42SM6d0d0M76H6RW8hkM/vgq/mf8ZXjx4gWjjxkSEoKwsDDMnz8f69atw969e3HkyBH8/PPPaNOmDYyMjJCamoqjR4+iX79+ePr0aaPjqdVqLFiwADweD7NnzwYRYfXq1airq8POnTthYWGBjRs34sWLF1Cr1WjZsiXGjh2LSZMmwcrKCsnJyVi9ejVyc3ORmpqKY8eOQWXT8X+8iE+kRr+vvm+S9DgcDtRqNVQqFczNzTF69GjcuXOHGXSSkpKYKKhZs2bgcrmoqKhAQkICbty4gdu3byMvLw9ZWVmwsrLC6dOnkZmZ+clBUgNDQ0MsXLgQAoGgyfXHk7s3wkPxHFdneqAdOxOWiiwY1+Wi6sVN1D09h5NBLfD+8CJ8P3cKI96sgVAoRFVVFdLT01FZWQlra2v4+Phg06ZNuHHjBoB60153d3dMnToVvXvXp/xYLBZDgkZGRlrvRygUwtHREd7e3vjpp5+wdu1anDx5EhEREbh48SLc3d2ZdV4igpeXF6RSKeNqf/bsWcTExOD8+fMM6SmVSly9ehUTJ06Eubk5tmzZwlghnTp1CqmpqUxKOSQkBCkpKUxxCQA0b94cLBYLLVq0QFJSEnpOWgKVqmm3DgAourITHzYOQfa+qeDoyCCyb6zdWFNdjZ0xT1BTU6Mlj6enpwcnJyd06dIFtra2EAgEMDc3Zyx2YmNjcerUKbi6uuLy5cuIiIhgBNM1EIvFOHbsGMaNGwdPT0/cuXMHY8eOxevXr3Hy5Em0b9+eudfVajWkUik2bNiA5s2bg8PhwNzcHLU2Hhi57yGuvcxDrVLdiORr/u+2qyl5GLnvIY49TP/k9fiMvw+fI76/CUlJSejduzc2btyIoKAgZGRkoFOnTigqKsLixYsxZ84chIaG4s6dOzhw4IDWwv25c+cwbdo0XL16FW3btkVdXR0mTpyIiIgIEBF0dXWxa9cuBAUFNXnutLQ0HD9+HAcPHkRhYSEUCgWCg4OxatUqLT84oLGrPPDHIz4AUL17gJyzjbU+p0yZAn9/f62BviHRslgsFBYWYsyYMZDJZNi/fz+ysrKwZ88evH//HsXFxVCr1RAKhWjVqhVqamoY9wgXFxe0atWK+VdHR0fr+CwWCxEREdiyZUujz7FmzRpcuXIF8fHxcHJyQl5eHs6ePQtfX19UVVVBJBKhe/fuCA4OhoWFBcLCwvDo0SMAwKlTp/Do0SNs2rQJLVq0YCJTS0tL5OTkICgoCPv374eZmRn27NkDe3t7uLq6Qq1WIykpCSwWCz169MDHjx8B1KftFixYgLS0NCYFp6+vD5VKhXPnzsHe3h6TJk3C4MGD0adPHwwbNgzx8fHQ19dHjx494OPjg++++w6XLl2CqakpHj9+jJ9++gmXLl2ClZUVBgwYwLTJNLzu7dq1g7e3N3bt2qV13aKjo/HVV19BpVJBqVRCIBDg8OHDOJkpxpOi355Lk1qF2qxXqPnwHPqeQxuZmAIAPzsB8hu7kJeXB6FQiLq6Oly9elXLMf7GjRuYNm0aWrRogZCQEERHR+PYsWNgs9ng8XgwNDSESCRCVlYWpkyZgsmTJzPVvABw+/ZtjB49GnPmzMG8efMY4XBTU1MUFRUx5+HxeBg3bhyCgoLwtFyElcu/ReX7Z1DXVIJrYAZp9/EMgVenJ6D46m6oygvAt2gBo8A50DUy+48a2H7Gn8Nn4vsbkJCQgICAAGzbtg0jRozA+fPnMWzYMDg7O2PDhg2YMGECuFwuAgMDsWHDBmbAbghNVWezZs3w8OFDAPXuCadOnUK3bt0a7V9SUoKTJ0/i2LFjePXqFUaMGIExY8bAw8MDHz58wPfff4+zZ89i5syZCA0NZcrDJx5+jJuv8rWP9SeIr+bdY1Re2gilUsmsxbD/D3vfHRbV1X29pjEzdIbei1KMILPymW4AACAASURBVCIooGJBUcGoIBgVBA02YkGjsbcoorGixhaJLYpdUUFsWIOoWBALFqqKoBTpMAwzs78/+HHjBDCaN8mb53tZzzOP3nLOnHvnctfZ+6y9N5sNDw8PBeusuf8TESQSCe7fvw8ulwsHBwc8ePAAAoEAampqKCgogJmZGerr61FZWYmamhooKSlBSUkJLBaLqWzN5/OhoqLCfKRSKbKzs5uQMdDgqjQyMoKSkhJKS0vx5s0bBXdbY9WDsrIycDgc1NfXg81mM0mYNTU1oaamxlSCBxoqvTeqS7W1taGjo9Ng2fJV8V7DGlxtcwg1RYBEjLLcJxA/vYq68mIYGxujurqaadsIfX19CIVCEBFev34NPT09lJWVQSwWg8fjQUdHB1wuF0SE0tJSJkygUcEoEAjA5XJbvO/V1dWorKxklJ2Nx8RiMaqqqhTaqKmpQXvoQpDhb2WsPoaSc5vB0zGDusvgJsfaqUsx202dKbR7/vx5LF26FE5OTgrnicVirFq1Cj/++CPmz5+P0NBQ+Pn54dq1a/Dz88PIkSNx9uxZHDp0iHFdtm/fHo6OjnB0dIS+vj4iIyNhY2ODnTt34t69e+jVqxfzbDQ+pwKBAEs378HODD7eJR2BqkNfcDR0UZt1F8Wn18AodDNYSgK8+Wk8tL3Dody2C8qu74c47wkMQ9b9O5M0/4+jlfj+Ydy7dw8+Pj7YunUr/P39MXPmTERFRWHs2LFYv349Zs6cyRRS/f16UCPevn2LAQMGMKVlzMzMmHJEH6Kurg4JCQnYt28fLl26hP79+yM4OBj9+/dvNsg2OzsbERERiI+Px7Rp0xAeHo6FZzJx+qFiGZ8/Q3wapc/x8CfF4pSampoYPHgwTExMmnx0dHSauFiLiopgY2MDFosFJycnvHz5knFTZmdnK1x3amoqkpOTcfPmTSQnJ0MqlaJ9+/bQ1NREXV0dnj59ipycHIbALC0tkZaWxgT3BwYG4uzZs4wres6cOeBwODh27Bgj/hEKhejbty9SUlKYIp4mJiZQVlbG/fv3IZFImrhc27Zti5ycHEyePBmh3y1l1ookkjqFUBGSSiAQCNDTRhcab25h7bypEAgECjFuLBYLubm5OHLkCH788UeUl5ejvLwcNjY2eP78OdLT03Hw4EEcOnSIWT/19fVtUi2jJcjlcqirqyM8PFzhWTx48CBCQkKYunhisRh8Ph9q/aZApX3vj/T4G0oSNoHF40PkNbHJMVF5BtTTT6K4uBjFxcUoKSmBUChkJguNn8ZtmUyG48ePo6amBkuXLkVNTQ2mT58OgUCAU6dOoWPHjvj222+RmJiI2bNnQy6XIy0tDWlpaXjy5AlTF9La2hqlpaVYunQpvLy8wOfzMXPmTKSmpqLD5M24nl3WRLSTv3MKNLqNhFxciepHiTAIXttw7yRi5G0KhOHXG6GkY/qvK8vzv45W4vsHcfv2bQwaNAjR0dHw9vZGz549cefOHezZswdGRkYIDQ1Fnz594O3tjaVLlzK19xrx/Plz9O/fnxE9dO7cGYGBgVi3bh2uXr2KNm3agIhw48YN7N+/H8eOHYODgwNGjRqFgIAAaGho/OEY5XI5Tp8+jYiICDx+/BgqLr7Q7B4IOZsLkssAuQxlSQcgqyyBtvdUgM0Bi80BSesBUMOs12caBKb2DQUrWSyw5FJUJB0AN/MqU/cNaAhO7t27N4RCIWQyGQoKCpCXl4e8vDxUV1fD2Ni4CSEqKSnhm2++AZfLRXBwME6dOoWIiAh88803LV5To0WUnJyM5ORkXLt2DY8ePWIKc3p4eODcuXOMm1dfXx9VVVXYsGEDbt26hZ07d8LV1RVPnjxBQUEBpFIp1NXVGRKys7NDSEgIEhMT8fDhQxQUFCAsLAxbt25tMpbw8HBYWlrip0vpgNPQPy5bBYKsvg5aOZfx8MRWsNls6OjooKSkBHK5nClQ6+/vj1u3buHt27dYvHgxjh49ivfv32P48OEYOXIknJ2dkZeXBxcXF5w6dQpubm6f9CwEBgYiNjYWzs7OyM7ORmlpqYLqt7FIrImJCdoNnYpcNfsm2W9k1WUQv0yDsG0XsLhKEOc+QFHsCugMng1la1eFc5ur1E1EKC8vR0lJCUOGjYT44XZ6ejqysrLA4/EgFovBZrMhk8mgpaWFLl26oK6ujlGsBgQEQF9fH1paWqipqcGhQ4dw8OBByOVyJj60U6dO6NixI8Tg4ap6H+B38Z2y6lLkbQ2FUegmVN5PAMml0O4/mTme//MkaHQPgopdt39dIdb/dbQS3z+E5ORk+Pr6YteuXWjXrh1cXV0hk8mQmJiI3bt34+TJk9ixYwd8fHxARHB2dsbSpUsxaNAgXL9+HUOHDkVJSQlYLBZ8fHxw5MgRKCsrAwC2b9+OiIgIDB06FGfOnIFQKERwcDACAwNhZmb20XEREV68eIFLly7h8uXLuHz5MgQCAUQiEYqKivC+ph5GYTvB4iqh7NcYlN84qNBeo9tIaHoEIW9rKGQVii5R47Cd4Grqg89l4+IUV/yaeBb79+/H1atXIZFI0KVLF7Rr1w5paWl4+vQpzM3N4eTkBCcnJ7Rr1w56enqorq5myDAvLw/Xrl1DTk6OQgC1m5sbzM3Nm7UcDQwMGHce0KDm7Nq1K96+fQsOh4Pw8HCsWbMGEokEhoaGcHJygkgkwpEjR2BnZ4eMjAxoa2uDxWIhJycHgwYNApvNxoULF7BmzRpMnDgRV69exf79+3H48GHo6+vD1tYWiYmJTUQz2trakEgkmPXTaRx4WvtZhYqpvg6d2C8xL6AbevXqpRBDJxQK0bFjR9y8eRMaGhoIDAzEyJEj0a1btybZb2JjYxkrpnEiVFtbi5MnTyI+Ph5paWnIy8tDVVWVgguYz+fDzMwM9vb2cHV1xdy5cxlXcqNLsJN7T1R6zm5KfDXlKIpdCUlhDkBycDX0oOY8CGodmwbz/6cEUVpainnz5uH06dNYtmwZ5HI5pk+fDhaLhcmTJ0NZWRn79u1DRUUFnJycIBaLGeIsKipS6IvL5WLGjBlQcfHF3vvFkH2gBSSZFIVHloCrZQjtAVNQnLARHGUNaPUaw5zzdt8sqDr2h2qHvs0Seiv+e2i6styKvxy//vor/P398csvv6CiogJ2dnZwdHTEDz/8gOHDhzPVp7W0tAA0uLDmz5+Pb7/9FiNHjkR1dTXYbDYmTpyIrVu3Mi+zwsJCHD58GPv27UNlZSX27duHQ4cOoX///h9VYr569YohugsXLkAqlUJbW5sJIpfL5SgpKYFEIoGysjI4hc8hN2gPTY8gaHo0L5gxmbSr2f0sFtDVQgNKJMGIESMQFBSEoqIi7NmzB8ePH0dcXByGDRuGdevWQUNDA2lpaUhNTUV8fDwePHgADQ0Nhgx79eqFEydOwNzcHO3bt0dsbCx4PB6WLVuGoqIi5OXlITs7G9evX2eIsri4GHp6egwJ3r59G+Xl5WCxWNi/fz/S0tIgFovx6tUr1NTUMO5RNTU1PHz4EG5ubrCxsYFQKERMTAwj9efxeHj69CkOHjwIV1dX7Nq1C+7u7oiJiUFxcXET0msUT/QdPhab9x5BWdrFJokAPkRZ0kGUJ8VAb8RyCC06gsXj4ynPDv1HTmgSOC6RSHDz5k106dIFN27cUCD63//uL168QH19PYyMjJj1usa5L5fLhYaGBtq2bcix6ufnh969e+Orr77CnTt38OLFC1RVVWH9+vVMKEPjtQFA4plYBG69gmfViintOMoaMAj6odkx/f5ZYb1Nh7GOHxPeIpVKMWrUKERHR/9he6BhHXX79u0YPXo0Jk6cCAMDA9y9excLFizA2rVrMWDAAFy9ehW7d+9GVFQUwsLC4OXlhZqaGoSGhqKoqIhxfdrZ2aGurg7vq+SKpEdyFMevAzhciLzCAABsngDyOsVsNnJJDVhKDbG2YqkczwoUCyC34r+HVuL7m3H16lV89dVXOHDgAGJjY7Ft2zZMnDgRQqEQISEh2LZtm0LuRQBYs2YNFi5cyMRIrVixAvPmzQPQEIt0+vRp7N+/H0lJSRg0aBAiIiLQp08fbNiwAeHh4bh27RoMDQ2Z/goLC3HlyhUkJibi/PnzKC0thba2NkNuPB4PWVlZkMvl0NHRgZOTEwYOHIigoCDo6Oj8R9WXBVwO7uyNhOG4BLDZbKiqqkJLSwuhoaG4desWcnJycPDgQUyePBnV1dUIDAzE+PHjYW9vD7lcjpycHKSmpiI1NRVLly5FcXExCgsLkZmZCYFAAAAIDAxEZmZms67c+vp6FBQUICcnBzNnzkRFRQUkEgn69++PyMhIJkOMs7OzgqU4btw4rF+/Hv369UNxcTFSU1NRXl4ODoeDrl27Ijk5GUePHsXjx4+xaNEiVFRUwNTUFBkZGU2Iic1mQ1NTE1u3bsX5ajPQ+3hodB3OJAJoMubSAtQ8TwJHVVFhWyeVQ6/XKJRlpynsl8lkEAgEqKioQGFhITIyMnDs2DHcvn0bubm5KCsrY9zLjRlwpFIpbGxsMGLECIwYMQLW1tYt/oarVq2CjY0NTExMkJ+fDxUVFVhZWeH58+dgsVgwMjJCXl4eRCIRBgZPAt/iS4g/w5pthIDLQVgPK8zYVa8Q0G9sbIxz586hurqa+dTU1ChsN7e/MWOOvb09I/I5e/YszMzMoKurC5FIhE2bNiE6OhpOTk7MhMDJyQlv3rzB69evoaSkhJIPIjSICCUJmyCrLoPesO8ZVSpP1xzVjy4x58klYkhL30JJ9zePS4X44wkaWvHPodXV+RcjLy8PN27cwPDhw5GYmIjAwEDs378f8+fPR1paGpYsWYJ9+/bByckJmzdvZmT8crkc06ZNw7Zt2yCTyaCqqopRo0YhIyMD58+fx7Vr17Bv3z6cPHkSXbp0QXBwMHx9fZsoPlesWIG9e/diwYIFuHv3Ls6ePYu8vDxoamqirKyMWcOoq6sDl8uFmZkZ3N3dMWzYMAwcOLBFa2H/rVwsT3j6WS80IY+NBT7t4K4rQ7t27ZiXL5/Px9atWxEaGsqc2xizd+DAARw4cAAikYhx2TUqNm1sbMDlcmFlZYXy8nLk5ubC3d0dcXFxkMlkcHFxgYuLCzp27AgnJyc4ODgwqscJEyYgNjYWFRUVuH//Puzt7TF06FAmDrDRYvzwc+TIEXA4HFRXV+Pdu3dMzJ+trS0yMjIYYYe6ujosLCzw6NEjEBHMzMwUgs8BwNXVFSZt7PDIajgT+9WSSOjd4cVQdxmEkvPboO0TDqFFR+YYm2Qo2D4W4vJihTYqKipMvlUAzCTDyMgIjo6O8PHxwdChQ5nn5dGjR/D09MTNmzebzUHZaNnt378fmZmZYLFYUFVVxdmzZ+Hg4ICkpCT4+Pg0GUN0dDSu58txsVgd0s8IE6Z6MUov74L48UVwOBwFEY9IJIKNjQ0MDAwUVLkffpSVlVvc//79eyxevBjZ2dnYvHkzdu3ahUOHDqFv3744cuQIVq1ahb179yI6OlohHnPPnj2YPXs2us/+GfdLGsIgSs5thqQwB/ojloOt9FvmJFlN+f+pOqdBuW1nlP0aA/HrxzAMWcec49fRGFHDf/stW/HfQyvx/cWYNm0aNm3aBHd3d2RkZCAqKgpTp04Fm81GQEAATp06hR9//BHDhg0D0BBE7O/vj7i4OBARdHR0cOLECXh4eOD+/fvo3bs3+Hw+TExMMGrUKIwcOVLBmgMarMAbN24gMTER8fHxePbsGYDfUnw1BogrKyvDzs4Offv2RXBwMOzt7T/r2vbfysX8Y/fA4QnwsYfmw4z7jfFLERERWLlyJWpra8Hj8RATE4OAgIBmXbKNZZRiYmJw/PhxfPHFF7CyskJKSgo4HA7y8/PRo0cPeHp6YurUqaiqqoK1tTXEYjHmzJmD58+fIzU1FS9evGCCjzMzMyEWixEXFwcfHx+mjE98fHyTF3gjrl+/Dj8/PwgEAuzbt4+Rwi9atAjHjh0D0LC+dvHiRSaMoeH6FUsgsdls6OvrQ8nRB5yOQxi3WXPEV/0sCdWPr0AvYBHytoY2IT55fR3Kfo1BZcoJhbG6urrCzc0NZWVlSElJwYkTJyAUCj9qHV28eBEpKSkYMWIExGIxysrKkJaWhtzcXCZ3aCOh1NbWMmnvGgmltLRU4br5fD58fX2hoqKCQg1bpPPt/u9aP1KdAQ2ZfdQyL+Bt0jF88803mDBhAqZMmYLjx49j06ZNkEgkWLduHTp06ID58+fDw8Ojxf5aAhHh1KlTCA8Ph6enJ4YNG4bRo0ejpqYGu3fvhqGhIUJCQuDj44O1a9cy6+d3796F/8Jt4DoNQV15Cd5sC20QbbF/Sz0nGjAZqu17fxDHVwglw4Y4Pq5mQ2ak1jW+fxdaie8vhFwuh56eHhMA265dO7x48QJffPEFpFIp7OzssG3bNkY12LdvXybo2dLSEomJiRAIBDhw4AD279+P9+/fw87ODlKpFJcvX2a+RyKRICUlBRcvXsTp06fx5MkTKCkpoba2liE6IgKHw0HPnj3h5+eHwMDAJsHpfwZ8Q2uMjNiNmy8rwULD2kUjSFoHHk8JfdoZYHLvtgpxS40W25s3b7Bz506sWrUKpqam2Lx5M9q0afllIJFIcObMGYwePRpVVVUQiUTo2rUrrl27htzcXGZdtKamBra2thCLxcjIyGDCFiIiIrB+/XrU1tbCzs4OeXl50NHRQWFhIUQiEbZu3QonJycYGxsrkHBhYSGCgoJw8+ZN7Ny5E8OHDwcAhIWFoW3btjAzM8OiRYuQlZUFCwsLHDp0CHv27MGWLVuYsAMejwepVAoulwt1dXUY+c9Dhei3HKm/Jz55XQ0K9kyD/vDl4GrqN0t8AFD95AqK49Yp7NPV1UVtbS2zHgw0xHWqq6u3aAkpKyvj9OnTqK+vR01NDYqKisDn89GxY0eEhISgc+fOCm26dOnCuEcnTZrExEqWlZUhODgYe/fuRWlpKZPI+WFeGbZezcSV50XNPCsS8Pl8eNrpYVKvhmfl0aNH2LRpE44dO4Yvv/wSXC4X27dvB5/PZxJrr1q1CgYGBpg/fz68vb0/O6tQZWUllixZgpiYGCxfvhzJycnYu3cvunfvjgMHDmD+/PlISUnB/v374eLSEH7w/GU+Bmy9A2L/+ZWhVlXnvwutxPeJ+JSEtDdu3ECfPn0UkuWamJigrq4OUVFRCAwMxNu3b5m0UADg5OSE2NhYxpV57949+Pn5ITg4GD169EBdXR2srKywYcMGZGVl4dSpU3jw4AFYLBYkEglDdBwOB6ampujRowe++uor9OvXD3PmzEFSUhIuXrz4SaEMnwI2m4309HTomlji2P083Hr2Grlv3kGFx8K7F6lgv7yDyqJ8fP/99wgICFBQFd6/fx/379/HuHHjUF9fj6ioKKxevZrJnvFhaaUPceTIESxcuBBcLhf5+fnQ09NDbm4uhg8fjqCgIPTt2xdcLpcht6qqKmRkZODGjRsICgpCVVUVdu3ahTFjxkAul2PRokX44YcfMHnyZMY6JCJGRCMUCvHTTz/h66+/hqmpKS5cuIDY2FgAQHx8PJYuXYq8vDy8ffsWISEh8PDwYNylGzduZF7UH8LU1BRavvNQrvLbms/vie/9pZ/B5qtAs3tDcdWWiM9AVoQ768YqVK54/fo11NTUGsRIHA7mz5+Ps2fP4tKlS9DW1lZo3+jG3LdvH7KysgAA7u7uWL9+PVxdFcMLPsTWrVsxefJkJrXa1q1bcfPmTSxfvhyHDh2CtrY2Dh8+DH9/f4V2JVV1OHY/D3cy8nH+8q8IGOyDYzs3ImHLEjhYWzT5nuLiYkRHR2PLli2wsrLCtGnTMGTIECZ04ujRo1i5ciXYbDbmz58Pf3//Jsm//wipqamYOHEi+Hw+wsPDMXXqVJSVlWH79u0QCoUIDw/HtGnTmPjN8b/cwcX0tx9NWt4SWCy0xvH9y9BKfH+AtNdln5yQ9rvQYUhMTGzSx8WLF6Gnp4f+/fvj7du3YLFY8PLywqRJk3DkyBGcOXMGPXr0wKhRozBo0CAIBAI8ffoUZ8+eRWxsLG7dusVYcY3uM6FQCDs7OwwYMADBwcFo165dk+8lIkydOhX379/H+fPn/5KSKhwOh1EQAg0utnv37iExMRHTp09HamoqLly4gEWLFkEsFmPp0qXw9fVtcWaem5uL8PBwvHjxAtu2bVNI9Nx4DY6OjigpKYG+vj7Gjx+PTZs2YdWqVXj58iUOHDiA7OxsfPXVVwgMDETHjh3Rrl07JpVZTU0NVq9eje++a6iYXllZCW1tbQwfPhz+/v54+/YtCgsLkZubi6ysLKSnp6OkpIQpEcThcBirjYiaZHnh8XhQUlICn8+HUCjE27dvoaamxhTHBQAjIyNERUXher0l4h//FvLxe+LL3zUVssoSphCuvKYCbL4y1N0CoOEWwLQzp3e4vmosFi9ejPj4eDx//hxVVVVN7tucOXOQmJiIS5cugcfjKZCdqqoq+vTpg7lz56KqqgohISF48OABdHV1m/xGcrkcM2fOxKZNmwAAAQEBOHz4cJPzrKys0KFDB5w8ebLZ33rbtm2YNGkSnj17xtQqNDIyavZcoMFLcOLECWzatAlv3rzB5MmTMW7cOGhpaYGIcObMGURGRqKkpARz5sxBcHDwZ1U/l8lk+Omnn7BkyRKEhoaivLwc0dHRcHFxwc8//4zp06ejrq6uIfyBq/WnBV6tmVv+fWglvo9g/61cRCY8++Mg4/9b09LIvoTbMWubOf7bWs+gQYNgZmaGI0eOwMLCAsHBwfjqq69QVVWF+Ph4HD16FCkpKc1WKejatSuzzvf7itMtQS6XIywsDM+ePcPZs2ehoqLyWffg9+DxeDh79iz69u2LtLQ0dO7cGTKZDMuXL8eyZctQXl7OSNHPnDmDxYsXAwCWLVuGgQMHtkiAjesvPXr0wNq1a5mqEXFxcZgyZQrU1NQgkUiwdOlSzJs3D2vXrsW7d+9QWFiIrKwsPHz4ENnZ2ZBKpRAIBCgvL2fG25hS7EPSYrPZ4HK5DGk1tpHL5ejYsSMMDQ2hoqKC+vp63Lp1C5WVlSgpKQERgc/nw9XVFdXV1ejTpw/mz5/PWNT29vZwcnLCgQMH4OLigvT0dBgaGsLIyAjdxn+PY89qIZbUN5sIQF5XDXwwxoK930KrzzgIrZx/E1JIJXh/fT8EOb9i6tSp8PDwQLt27Zj79SEqKyvRv39/3L9/H3V1dVBTU2PI7veW3dy5c/H48WPExcUp/EZXr17FsGHDUFlZiaioKLx//x7Lly9XcKk2IiwsDMeOHUNxsaLwphEuLi64d+8e+vTpg0ePHuHhw4fNjrs53LlzB5s2bUJ8fDxGjBiB8PBwtGvXDkSEa9euYcWKFXj69Cm+++47jBs37rOe84KCAnz77bdISUnB7NmzERkZiXfv3mHDhg0Qi8VYuXIl1q5dC7ZNT6w4+/Sz4i8bBV6tuTr/XWglvhbQQHqf95BDKkHlr3thXJONR48eKRxydXVFeXk5JBIJRo0ahf79++PRo0eIiYlBSkqKgmuMzWbDyMgIvXv3RmBgIPr164elS5eioKAAO3bs+OxrkcvlGDt2LF69eoX4+PhPquPXEhrXIIcOHYoePXrg119/BdCgvNPX10dMTIxCTkUiwsmTJ7Fo0SJwOBwEBwfDxMQEhYWFKCwsRHFxMd6/f4/S0lKUlpYiJycHZWVljLjgwyKijWisyaekpASBQAChUAgVFRWoqalBKpUiLS2NITkul4uIiAh069YNRUVF8Pf3x4ULF+Dl5cX0d//+fUbVunbtWgWrQSKRwMfHB5cuXYKXlxcOHjyI1atX4/r16+DxeHj27Blqamqgr68PJycnJiWdjo4OvL290bt3b1y9ehUXLlzAtt37wR+2BqU3DrWYCOBDNOfqJKkEhT9PxPKFc/DmzRvcvHkTDx8+RIcOHdC9e3c4OzvjwYMHOH78OLKysqCiogI9PT0IBAIkJye36PKur69Ht27dMGrUKISHh6OqqgpDhw5FYmIiBgwYgKNHj0JFRQVyuRzKyspYsmQJE2LTiOTkZHh4eCA/P78JoT1+/BhdunRBbW0tlJWVweVykZmZ2ayF+TEUFBRg+/bt+Omnn+Do6Ihp06ZhwIABYLPZuHv3LlauXImkpCSEh4dj8uTJnzxBBIDz589j0qRJ6NSpE1O42MHBAVFRUQgPD4ednR36hC3FxmuvIK6XfVzgBUDAUxR4teLfg1biawaNcWuvT6xqsWp0c5nYuRp64JAMeXtnQvI2U6FPZWVlTJs2DZcvX8aDBw8UiI7H48Ha2hqDBw/G119/DRsbmyZjKikpgbW1NR49evTRQqstQSaTISQkBCUlJTh58iQTA/cpqKmpwevXr/HmzRt4e3tj6NCh4HK5TYp1NpIQm81GXV0dJBIJpFJps8HcQqEQqqqqjGpQTU0NGhoa0NLSglwuR3JyMurr61FdXQ1tbW1oa2sjISEBtra2yMrKarJuBQDl5eVwdXVFRkYGvL29MW3aNAQEBDDVyp8/fw5bW1vcvHkTQAMp79ixAwsXLsSWLVvw1VdfKfR37NgxjBkzBlwuF5aWlpg1axYCAwPx8uVLuLi44Ny5cwgKCsKTJ0/w4sULpKam4vvvvweHw2GUtR8iOjoaO19wkM/SAYv9JyqCkRzVL26iLz8Hjx8/Rk5ODpydneHo6Ij09HTcu3ePcbE2ujL9/f3RvXt3rFu3Dvfu3cP58+ehrq7ebPdZWVlwc3PD2LFjsWHDBqirq+P48eNNVJSN1RB+b9nJZDIIhUJERUVh8uTJCscCAwNx+PBh5llgs9koLCxs9nf8FIjFYhw+fBgbN25EdXU1pk6ditGjR0NNTQ3p6elYtWoV4uPjMX78eHz77befbFnW1tYiMjIS27dvxzff4itTQwAAIABJREFUfIOYmBi8fv2aqdl39OhRLN7wM+7VauPK8yJIpfWQ4bf1RQGXjXqpFNJXadgU9iWGeLSGL/wb0Up8zWDCvrsN9bYKm68azVXXbTETO+RyiLNu493xyBb7V1ZWhpOTE4KCghAUFNTii+j3mDlzJuRyebNldFpCWVkZ8vLymDyYUVFRqK6uhoeHB8rLy1FWVoaKigqmqkFtbS1DWjKZTEFA0bjeJRAIoKqqCrlczrhkdXV1weVyoaysDH9/f+jr60NfXx9GRkYwNjaGgYEBOBwOZDIZDh8+jO+//x6GhoaIiIhotpqEXC6HnZ0dMjMzIRQKcfLkSTx79gw3b97EgQMHmpxfV1cHT09P3L59m8lgwmKxIJVK4eDggMzMTEilUqipqcHT0xNDhw7F2bNn8eTJExw7dkxhslFWVoYvv/wSycnJGDVqFHbt2oW4uDisW7eOqbLu4OCAbdu2YeDAgcjKymLiMcPCwuDo6IiYmBjcuHEDwG+FdOvq6vAeatAPWgkW9/PVffJ6Mb7IP4+zMT+hurqaidnMz88Hh8MBi8ViqpObmZlBKpUiKysLSUlJ4HA4UFZWhlwux759++Dq6tpEEJKRkcEIdaZNm4b169c3cWcCQEVFBbS0tHD48GEEBAQoHHNycoKamhquX7+usH/48OF4/vw50tLS0LVrV9y5cwdv3779j5XGRISkpCRs3LgRV65cwejRozFlyhRYWVkhNzcXa9aswcGDBxEYGIhZs2YxtQT/CE+fPkVYWBiqq6vRqVMn7Nq1CzY2Nli4cCHmzJmDgIAAzFq4FHFPinAx5Qlu3X8IJ3s7fNndCQGdTBB//BDmzJmDU6dOfVQw1Ir/DlqJ73corqpDt1WXmxSY/LBqtLyuusVM7DxtU5BUgrwtYyCvrVDo4/z58+jbt2+zL5PfQy6X4/3798jLy0N+fj4KCgqQmZmJqKgoDBkyhIm7qqioQFVVFaqrqyEWi1FXV8dUkf6whA6HwwGPxwOfz0dtbS0TCK6hoQFNTU1oaWkx2e719fVhYGAAIyMjplJC45hFIhHmzJmDOXPmAABWr16NoqIirFmzBpcuXcL333/PuD8/BqlUipiYGCxbtgxWVlZYtmwZ3N3dmeNJSUnw9fWFhoYGYzWyWCzs3bu3iQBGLpcjICAAcXFxTFHUD1/q79+/h7a2Nng8HlJTU3Hq1CmsWLEC9fX1CAgIwOjRo+Hp6Qkul4vNmzdj5syZ0NHRQVxcHDp16sSM19LSEvHx8XB0dMS8efPAZrNx584dTJkyBYMHDwYRYfTo0bh16xbev3+P8vJySKVSdO/eHRs3bsSXX36JuXPnolDdFvvTawDOpwsx5PVi4P5xiB8noqamBjU1NQoClcbcr+np6UxFiuTkZLx79w6urq6wtbUFj8dDXFwc3rx5Ax6Ph27dusHDwwPu7u7Yu3cvfvnlFzg4OMDKygq6urr46aefWhzPgAEDkJmZicxMRc/GsmXLsGrVKlRVVTW7ntu4Ruzr64uCgoK/RHDViJcvX2LLli3YtWsXunfvjmnTpqFXr17Mel10dDQGDRqEOXPmNCsG+z2ICHv37sWcOXPg4+ODGzduIDs7G7NmzUJmZiaePXuGmJgYdOjQAU+fPmVSvG3cuBFKSkqIj4/H119/jX379mHAgKZ5SVvxXwS1QgHbrmaSzcIEMp8bT+Zz40nVyYdYXD4BICX9NmQ64yipOQ8iVSdv5hzzufHE0zEjHd95ZD43nixmx1LbQWHE5ze0a/xMnDiRgoKCyMfHh7p160YdOnQgKysrMjAwIE1NTRIKhcTlconFYjFtWCwW8Xg8UlZWJi0tLeZfJycn6tGjBw0ePJjGjBlDM2fOpB9++IF2795NCQkJlJaWRiUlJSSTyZpco1gsJh8fHxo+fDjV19d/1v3R09OjRYsWMdvLli2jBQsWEBFRSUkJqampNfudLUEikVB0dDSZmZnRgAEDKCUlhYiIvLy8SF1dnTQ1NenZs2e0detWUlJSIh8fH8rOzlboY+rUqcTj8cjY2Jhqa2ubfEe/fv1IT0+POnToQHw+n7S0tGjnzp1UUFBAGzZsoC5dupCOjg6JRCJis9n03XffNTvWiIgImjBhAhERJSUlkaOjI33//fc0a9YsOnnyJLm5uZGuri55enpSbW0tOTo6EofDoXPnzpGenh4dOXKEiIhkMhkZeAwjm4VnyHzOaYXnqMlnzmkym3mMVDt6EwBSVVUla2trEolEdOLEiT+8v4WFhXT69GmaN28e9ezZk1RUVEhTU5P09PRowoQJ5OnpSWw2mwCQtbU1zZ07l44cOULm5uZ0/PjxFvvNysoiFotFd+/eVdifnZ1NbDabnj9/3mw7gUBABw8eJKFQSNXV1X84/j+Dqqoq2rZtG7Vr144cHBwoOjqaampqqLS0lJYvX056eno0dOhQunPnzif1V1RURKGhoWRsbExBQUHE4XCoTZs2tHr1atLR0aG1a9eSTCaj8vJyGjJkCHXt2pXevHlDREQ3btwgPT092r9//99yra34c2glvt9h2qH7TV4+ZrNPkX7QKtLwGEVms06SSgcvUncLUDiHb9yOtH2mM9vaA2cokB4AMjY2JhsbG3J2dqbevXuTn58fjR07lmbPnk1r1qyhX375hS5evEhPnjyh8vLyZseXlZVF2traVFZW9h9dZ21tLXl5eVFwcDBJpdJPbmdsbEwzZsxgthcsWEDLli1jts3MzCgjI+Ozx1NXV0dbt24lY2Nj8vDwIFVVVbKysqJvvvmGiIi+/vprWrFiBa1cuZK0tbVpxYoVVFdXR6tWrSIej0cikajZe5aUlEQsFosuXrxIEyZMID6fTwKBgDIzM5lz5s2bR2w2m3R0dMjS0pLatGlDixYtomfPnin0VVBQQJqamlRaWkpSqZS0tbVp4sSJJBQKydnZmY4ePUq//PILjRw5koiIEhISyMzMjHR1dSkhIYHp5+7du2Rra0s3n78hg2GLyXrBGbL9YLJlPjeeLOecJLNZsaTjN4+UDNqSmpoaqaqqkpGREfn4+FBISAgZGBiQr68vlZSUfPJ9lkgklJKSQs7OzsTj8RomdEpK5OXlRV9//TWFhIRQz549SVlZmTgcDgUHB9OBAwfo1atXTfpydHQkNze3JvvV1NSYyVBzxzZv3kxKSkrNTlL+Ssjlcjp//jz5+PiQrq4uzZs3j16/fk1VVVW0YcMGMjExoX79+tHVq1dJLpf/YX/Xrl2jdu3akaenJ9nZ2RGbzaawsDDq1q0b9e7dm169ekUymYwiIiLI2NiYkpKSiIjo0aNHZGJiQhs2bPhbr7cVn45W4vsdvt6T0uLsW7XjANLqO+H/LD4fRYtP15yx+MznxlPIz8m0fv16MjQ0JFVVVWKz2Z/1gvoYRo0aRStXrvyP+6murqZevXpRaGjoJ1tpFhYWNHHiRGb7u+++o1WrVjHbgwcPpqNHj/7pMdXW1pK9vT1j6V65coXKyspIU1OT3r17R0REOTk5NHDgQDIyMiIOh0MqKir09u3bZvszNDQkd3d36tSpEwUEBFBpaSk5OzuTUCikU6dOkbGxMfF4PIqKiiKihpfl3bt36dtvvyVDQ0Pq1KkTrVu3jvLy8oiIaMSIEbR69WqKiooiZWVlsra2JoFAwLzEz507R15eXkRE9MMPPxCXy6WrV68qjCkyMpLCw8PJ3t6eeDweFVeKaeOFdPJcsJcsQn4g7YEzSN11KBlaWBMA8vHxYcaWk5NDJ06coEWLFtGAAQNIRUWFWCwWOTg40PTp02nv3r308OFDkkgkLd7jlStXEpfLJaFQSJ07d6bMzEw6duwYzZgxg9zc3EhZWZmcnJzI3t6e9PT0yMvLi7S1tcnc3JyCgoJo+/bt9PjxY7p8+TKxWCzGumlEnz59yMHBodnv1tbWpmXLlhGXy/3oGP9qvHjxgqZOnUpaWlo0fPhwSk5OJrFYTD///DNZW1uTu7s7xcXF/SEB1tXV0YoVK0hbW5sGDx5MPB6PTE1Nadq0aaSrq0uHDh0iooZJj56eHm3ZsoXkcjnl5uaSra0tzZs375NIthV/L1qJ73dozuJjiK9DP1JzHkSiAVOIb9yO2W864xixuHwyGr+N2Tf9UCoRNbi1EhISKCgoiGpqav6SMT5+/Jj09fX/EldRZWUldevWjcLCwj7pD9LGxoaCg4OZ7SlTptDGjRuZ7SVLltD8+fP/9HgePXrEWDb9+vUjfX196tSpE/Xv31/hvAsXLhCHwyEA5Ofnx5Dih1i6dClxOBzS0dGhjRs3MtdXX19POjo6BIAcHR1bnJBIpVJKTEyk0NBQ0tLSou7du1PXrl2Jw+FQQEAALV++nL788ktycnKiGzduEFGDNefk5EQHDhwgTU1NcnV1bdJv9+7dycPDgwAQh8Ohtm3bEovFIjU1NfL19aXbt29TaWkpKSkpEQBatGgRVVRUtHjPjh07Rnp6etSlSxcaOnQo2djYMFbouHHjaMuWLZScnEy3bt0ic3Nz4nA4tGTJEpJKpRQUFEReXl4Kz2ZtbS3duHGDVq1aRbq6uqSqqkoGBgbk5eVFAQEB5O3tTRYWFiQSiUggEFD79u0pOTmZ6urqiIjo559/Ji6X2+xkqtFjwGKxPsvT8FehrKyMoqKiyMrKijp37kz79++nmpoaOnz4MDk6OlKHDh3o4MGDfzi2rKwsGjBgANna2jLW3/Dhw8na2ppGjRpFZWVllJGRQQ4ODjRmzBiqra2loqIi6ty5M40dO/azlxha8dfiT2iq//+GnYE6+Fw2ZNVlqE6/BrmkFiSXoTb7HqqfXoPAoiOUbdwhKX6J6mc3QFIJym8cBE/PAjxtUwANkmY7w4ZFezabDW9vb+zfv/8/ip/7EO3bt4e7uzt27Wq+Bt7nQFVVFQkJCUhNTcX06dObxMz9Ho3imEbU1dUppBrr2LEjUlNT//R4li1bBqlUivr6ehw/fhwZGRkoKCjA7du3mWoVDx48wKBBgwA0iGCsrKxgb2+P6OhoRoVaVFSEpUuXQlVVFXFxcQgPDweLxcKlS5eYArc2NjZ49uwZCgoKmh0Lh8NBnz59sGTJEgQGBuLBgwfIz8+HXC5HQUEBjI2Nce3aNbi6ujIKTh0dHeTm5mLWrFlYvHhxk8wk2dnZuHHjBiMAkslkaN++PW7duoWKigrExsaiS5cuCAkJgUQiwaVLl5CTkwMbGxts27aNqXDxIfz9/fHixQvY29sjNTUVO3bsQGFhITZt2oSOHTvizp07GDhwINzc3PDu3TsMGTIEKioquHz5MtauXQttbW0MHTqUqYggEAjQtWtXzJ49G6mpqVBWVsbmzZsxZswY6OvrM4kDLCwsYGNjgydPnmDs2LEQiUTo1asXnj59CplMhkuXLjUZq0AgQFlZGZPQ4Z+GhoYGpk+fjhcvXmDhwoXYtWsX2rRpg+fPn+P8+fNYuXIlNm/eDDs7O0RHRzdJPdcIKysrJCQkICIiAhUVFejWrRtiY2NRWVmJuro6ODo6Ij8/Hzdv3kRtbS26d++OmpoaXL58Ga9fv0ZAQECT8lWt+Afx32befxuKKsVkszCBTMJjiG9qTyy+CrGUhMTTNSfRgCmMRac3YjlxRSbE4ioR39SejMN2MsdsFiZQcaX4bx1nSkoKmZmZMbPs/xSNLsDvvvvuo5afi4sLDRw4kNkOCQmh3bt3M9u5ublkaGj4p8bw4sULUlZWJj09Pdq+fTsREd25c4csLS2ptLSUIiIiSEtLixEAXb58mWn74MEDcnNzI3d3d7pw4QJpaGgQn8+noqIiImqwYnx8fIjFYtGgQYOotraWZDIZeXh4EJ/Pp0ePHjUZz+PHjykkJIREIhF99913jLtz/fr15OTkRH369CEul0v29vbUtWtXkkqlFBkZSSwWizIyMmjv3r00atQoqqyspO+//57atm3bZN1XKBQy/TYiPj6eACisk927d488PT3J1taWYmNjW/yN4uLiyMjIiKZPn041NTV05MgRUlVVJTU1NTp8+DA9ePCAdu/eTeHh4dSjRw9SV1cnY2NjMjQ0pLZt29KRI0coNzdXof+TJ0+ShYUFlZaWMvuqqqroypUrFBkZSVwulwQCAZmamlLPnj2pX79+xOVyicPhUMeOHWnq1Kl0+PBhys/PJwcHB/L39yc2m/25j8ffhocPH9K4ceNIU1OTxowZQ6mpqXT9+nUaMGAAGRsb0/r166mqqqrF9mVlZTRlyhTS09MjGxsbYrFYjLdi7ty5JBaLae3atWRgYECXL1+muro6GjlyJHl4eCjc01b8c2glvmYw/pc7ZDHvI0q7j3ws5sXTxH2fphb7T+Hl5UW7du36y/orKSkhR0fHFoUJRETdunUjT09PZnv48OF04MABZlsul5OWllaLa24fQ1BQECkpKZGVlRXjCho/fjytWLGCiBrUdSKRiACQmpoajR8/nnJzc5n2MpmMpk+fzqhiL1y4QEREMTExJBQKSSQS0ZUrV5p8b69evUhJSYlSUxvc08nJyTR48GDS19enyMhIev/+vcL5lZWVJBKJ6NWrV7RgwQJycXEhLpdLKioqpKWlRTwej96+fUs+Pj6krq6u4Mb08/OjGTNmEIfDYVS/jUpWogbFLZfLJSsrqybjlMvllJCQQPb29tS9e3e6efNms/exuLiYhgwZQnw+n1gsFo0aNapF15pMJqPMzEw6ePAg2drakp6eHunr65OWlhZ5enrSzJkzad++fTRixAgaNmxYs4Q7d+5cUlZWpvT0dNq9ezeNHz+euW4nJyfq3bs3de7cmZmMGBoaEofDoadPn/6r1ruKiopoxYoVZGJiQj169KDjx4/T7du3KSAggHR1dWnZsmVNnoUPkZKSQk5OTvTFF18Qn88nkUhE3bp1IycnJ0pPT6fExEQyMDCgdevWkVQqpfDwcOrQoQPl5+f/g1fZCqJW4msWD16Vkt2is3+K+OwWnaW01//MLO7KlStkY2Pzl66VFBYWUvv27RWUmh+iT58+1LVrV2bb19e3iey9d+/edO7cuc/63pcvX5JQKCQNDQ2KjY0lIqKKigrS1NSk/Px8qq6uJgsLCwJA27dvp5KSEpo/fz6JRCKaNGkSvXr1ipYuXUoGBgakrq5ORkZGZGxszFhZY8eO/aiAp9F669SpE1lYWNCWLVs+uiY7depUWrhwIT1+/JjMzMxIRUWFLC0tyd3dnbHmOBwOmZubM8Qml8vJ3Nyc1q9fTxwOh2pqaujq1askFv/mHbCzsyMOh/PR9VupVEo7d+4kY2NjGjZsmIJCVS6X0/z584nD4ZCuri6JRCKaP3++wne0BIlEQr6+vjRkyBB6+fIlJSQkUGRkJA0bNozatGlDLBaLLC0taeLEibR9+3a6ffs21dTUUF1dHfF4PPrxxx+Zvs6dO0csFotOnz5NixcvZsJTBAIBI8gxMDAgbW1t8vX1pXXr1tHt27f/UcFLS5BIJHTo0CFyd3cnc3NzWr16Nd26dYvGjBlDIpGIZs2a1SJZ1dfX04YNG0gkEpGFhQWxWCzq0qULiUQi2rx5M+Xk5FCnTp1oxIgRVFlZSZGRkWRpaUkvXrz4h6/yfxutxNcC9t3MIbtFCZ9Jegm072bOPzZGuVxOXbt2pcOHD/+l/b59+5ZsbW3phx9+aHLsyy+/JGdnZ2bb29ub4uPjFc6ZMWPGZ6tOQ0NDicfjkYuLC2MF7Nixg/z8/Ki+vp46depEACgiIkKhXWFhIU2ePJm4XC4ZGRlRaGgoKSkpUWRkJHE4HOJyudSzZ0/Kyclp9nvr6+spJiaGOnToQKqqqsThcCg5OfkPx5uenk4GBgb07t07UlJSYqxMNTU1UldXpyVLllCXLl1IRUWFXFxcKCoqiq5fv04mJibk4uLSbBhAREQEAfhkVWxVVRUtX76cRCIRhYeH07lz58jQ0JB4PB6tWbOGiBpCMAYPHkwdOnSgBw8e/GGfdXV1NHjwYPLz82tCQjdv3iQNDQ1asGABjRkzhhwdHRlxi7m5OampqdGlS5fo/fv3VF9fTxwOh44dO8a0l0ql1Lt3b0aNa21tTerq6uTg4EAuLi5kYWFBKioq5OnpSUuWLKGLFy9SZWXlJ92LvwspKSkUFBREmpqaFBYWRomJiYw69JtvvmkSU9qI169f09ChQ8nAwID4fD6pq6uTra0tDRgwgLKzs2n06NHk4OBAmZmZFB0dTYaGhk1iIlvx96GV+D6CBvI7+4duT4t5DZbeP0l6jYiPjydHR8e/3GX05s0batu2La1fv15h/7Bhw8je3p7Z9vT0pIsXLyqcs2/fPvrqq68++bsKCgqIz+eTsrIyo44kIurcuTOdOXOGvL0bgrenTJnSpO2NGzfI1NSUpkyZQuPGjSMAJBAIiMPh0KJFi6iuro4iIyNJW1ubVq5cyayJ1tTU0JYtW8jCwoJ69OhBCQkJJJfLaeDAgcTlcunWrVstjrdxzU4gEDBJBvT09GjIkCFERNS3b186f/48zZgxg1atWkUXLlyg0aNHk1AoJAMDA2KxWIzsvRE5OTkEgPr16/fJ960RL1++ZKxhS0tLKigoUDgul8tpz549pKurS8uXL/9DRaFYLKaBAwdSQEBAk3O3bNlCnTp1YixIsVhM9+7dow0bNhAA+uKLL0hVVZXMzc1JRUWF7Ozs6PTp0/T69WuSy+UUEhJCbdu2JVVVVSJqmLicOnWK5s6dSz169CAVFRUyNzcnR0dHatu2LQkEAnJ2dqbp06fT8ePH/5QL/a9Afn4+LV68mPT19alfv34UExNDc+fOJZFIRMHBwfTkyZNm28XFxZGZmRkZGRkRi8UiOzs70tXVpRMnTtDmzZtJT0+Pzp49S7GxsaSrq0uJiYn/8JX9b6KV+P4Aaa9LaeK+O2SzMKFJkLHtwgSyWZhAE/fd+cfcm7+HXC4nR0dHOnPmzF/e96tXr8jS0pI2b97M7AsJCSEbGxtmu1u3bnT9+nWFdo8ePVI454/wzTffEIfDIW9vb2ZfamoqmZmZMWQWEBCg0EYul9P69etJT0+PTp8+TTKZjIyMjAgAiUQi0tTUpLlz51JxcTERNcjPvb29ydbWlsaOHUv6+vo0ePBgBaJtxODBg4nL5TIByESkIFBhsVikqqpKGhoapK6uTqdOnSJHR0dq164dETXE+sXExNDEiRNp69atTB/9+vWjbt26EYfDIXV1dfL396cTJ06QWCwmTU1Nhgw+B7t27SKhUEhaWloUHR1Nfn5+ZGpqSnv37m3i2n316hV5eXlR586dKT09/aP9isVi8vb2bpLdRy6X05AhQ2jmzJlN2nh4eNAXX3xBMpmMnj9/Tt7e3iQUCqlfv36kq6tLOjo6ZGpqSqqqqiQUCunp06dN3PQSiYTu3LlDGzdupBEjRpCpqSlpaGiQra0t2djYkIqKCrVt25ZCQ0Np165dlJGR8Y+uE9bW1tKePXvIycmJbGxsaPXq1bRkyRLS09MjX19fhfXaRlRVVdHs2bMZV6+ysjLp6+vTuHHj6Pz582RkZESRkZF05coV0tXVZTL8tOLvQyvxfSKKK8W0/VomTT+USqF7Umj6oVTafi3zb1dvfgoOHz5MXbt2/VteANnZ2WRmZkY7duwgIqKwsDAyNzdnjjs7O9Pt27cV2tTX15OysvInuamKi4uJz+cTn89XSHM1adIk8vT0JADUs2dPhTZlZWU0dOhQcnFxoezsbLpz5w5paWkRAJozZw4RNVhBEyZMIJFIRIsWLaL09HSaOXMmqaiokLKyMvn6+jKKz+bg5+dHHA6HxowZoxBn5+fnR5cvX6YePXrQyJEjycjIiFJSUpjMKiUlJUxsY1BQEP3yyy9E1GBhqqqqkpmZGQUEBND79+8pOjqaevfuzWRQ2bVr1yev1+bm5pK9vT2TPeTDdr/++iu5ublRx44dm1jjcrmctm7dStra2rRu3bqPrnvW1tZSv379KDAwUKH/oqIiMjExabKO++jRI2KxWAypNm6XlpaSXC6nvLw8GjFiBCkrKxOPxyNLS0tSUVEhd3d3mjRpEkVHR9Pdu3ebrEfm5eXR0aNH6dtvvyVXV1dGQdq2bVvS1NQkHR0d8vf3pw0bNtC9e/f+kRg5uVxO169fJ39/fxKJRDRlyhRavHgxmZqaUt++feny5ctN/h4fPnxI7u7uJBKJiMVikbGxMVlZWdGpU6fIzc2N/Pz8KCkpiYyMjGjLli1/+zX8L6OV+P4/gFQqJWtr6yYZQv4qZGRkkImJCe3Zs4dmzpxJRkZGzDF7e3tKS0tr0sbFxaVZa+r3mDZtGrHZbBo9ejSzr6qqilRUVAgAtW/fXuEFkpqaSm3atKFJkyZRVVUVBQYGEgDicrkKFmMjEhMTGYm5m5sbPX78mCoqKmj69Omkp6dHP//8s8LLv9Gya9OmDSNS6d69OzOTLy4uJhcXFwoLCyOZTEbLli2jiRMn0uDBg6l9+/YUFxdH8+fPp/DwcOrVqxdFR0dTVVUVnT9/npydnQmAgrV17tw5AkC9evUiJycnMjIyohkzZtC9e/eancjIZDIKDw8nNptNdnZ2CsKWDyGXy+no0aPUpk0b6t+/f5PfKDMzkwmkz8rKavH3qampob59+9KoUaMUyO/y5ctkaGjYJHGAra0t9erVixmDQCCgTZs2McejoqJITU2NdHR0iKghjObKlSu0fv16Cg4OJnt7exIIBNShQwcaPXo0RUVF0dWrVxVS9NXW1lJSUhKtWbOG/Pz8SEdHhzQ1NcnS0pL09PRIWVmZ+vbtS8uWLaMrV678bTlBG5Gbm0uzZs0ibW1tGjRoEM2aNYusra3Jzc2NTp06pfB8yWQy2rFjB2lqahKfzyclJSVSV1enBQsW0IQJE8jOzo4uXLhAbdq0oSVLlvyrVK//P6GV+P4/wc6dO//U+tCn4unTp2TXZHUTAAAgAElEQVRkZER+fn6kq6vL7Le2tm6S05KoIQzhQxdpcygrK2P++D9cu5k5cyYBIFNTU2b2LpfLaceOHaSjo0MHDhz4f+3dd1gU194H8O/uzhZYWECqBUSKoiJ2JdYIKEaJXSOi1zQEiUZJNAqSq1Gxx/gSsSZWQJMYewnBGuwa0aigiF1EBZQOy5bf+weX0ZVFQEk07vk8D8+9mZ05O7Pu7HfOzCm0d+9eUigUJJfLqV+/fiSVSnV+4E6fPk2DBw8ma2trmj59Op08eZJGjRpF1tbWNGfOHMrPz6dz585Rx44dydPTk8aOHcu3XCyv2Z0+fZr8/f1JJBLR/v376f79+9S8eXP66quv+B+k+/fvk5mZGY0YMYKkUikJhUISCoV8X8PygaptbW2pXr16ZGlpye+jUqkkjuN0atDJyckUERFBTk5O1KRJE5o5cyYfbgcOHCArKyuSSqW0fPnyav27KZVKioqKIhsbG/roo4/o7t27/GtqtZoWLVpElpaWtHz58kp/ZAsLC8nLy4tGjx6tE35hYWH03nvv6fyw7969W2d4vg4dOlCXLl3419evX09GRkZkY2NT6T4XFxfTmTNnaNWqVTR27Fjy9PQkuVxOTk5ONHjwYJo9ezbt2bOHb1mp1Wrpxo0bFBMTQyEhIdSiRQuSSqVUr149srOzI4lEQq1bt6ZJkybR9u3b+dvfte3ZwbE9PDwoODiYWrZsSe7u7hQbG6tTE3348CGNHDmSjI2NCQBZWFhQ27Ztac6cOWRtbc3fTn2+Ns/UDhZ8bwmlUkn29vZ6nzHUlkuXLpGpqSnJ5XJ+mYODg94Wk8uWLaNPPvlEbzmJiYnk6OhIffv2JaFQSF999RX/2oULF/hZCMrHvywoKKD//Oc/1Lx5c/rzzz/Jx8eHBAIBDR48mG7fvk0ikYiioqJIq9VSQkICeXt7k729PS1ZsqRCx+OUlBQaPnw4WVtbU8+ePalRo0Z8AxVXV1c6cuRIhf0dNWoUCYVCqlu3Ls2ePZsPiMzMTJowYQJxHMcPL1Y+00F5mRMmTOBrr+V/Q4cOpQsXLlCzZs1IKBTq7Ryt1WrpxIkTNH78eLK2tiaFQkEAyMvL64WdqSuTk5PDN8YIDw/XGdA7OTmZ2rVrR7169dI7GHX5v8Hz47qWlpZSx44d+XFOy9nY2NDIkSOJqGy80me/L3v27CGxWFzjQQ7UajUlJydTbGwsTZo0iXx8fMjS0pJsbW2pd+/eNHXqVPrpp58oNTWVNBoN5efn08GDB2n27Nnk6+vLz/RR3srS0dGRPv30U9qwYQPdvHmzVmtWzw+O/cEHH1CHDh3IycmJVq5cqXMr98CBA+Tg4EASiYQ4jiMTExMKDw8ne3t7mjx5Mr377rs0ZMiQanVHYaqPBd9bJCoqigYOHPi3vkd4eDgJBALavn07ERHZ2trq7dN0/PhxnW4Pz1q2bJlOEJR3x7hz5w5xHEcA+OdvKSkp1Lx5cxo1ahStWLGCZDIZWVlZ8Q1POnToQI6OjvTzzz9TmzZtqFmzZrRu3Tq9I9o8fxuT4ziSSqUUGhpKt27dopEjR5KDgwN/bOVSUlL4vmfljYh+//13+vXXX/VOIVXeMd3Y2Ji2bt2qE3xjx44ljuP444yNjX3h5x0VFUUSiYTMzMyoV69eZG5uTr169aL169dXOoPHi9y5c4dGjx5Ntra29P333/NdFlQqFc2aNYusra1p/fr1eoMgPz+funbtSoGBgXz4Xb9+naysrOjcuXP8et999x1JJBJSqVT06NEjAsDfTj116hT/fOtVabVaunPnDu3YsYNmzJhB/fv3JwcHBzI1NaUuXbrQ+PHjac2aNZSUlETFxcWUkpJCa9asoY8//picnJxIKpWStbU1GRsbU506dWjgwIG0dOlSOn/+fK3Vsq5evUrjxo3jBwTw9PSkevXq0aJFi/hn4CUlJTR9+nSd742Xlxd16tSJfH196f3336cePXq81L83ox8LvrdIYWEh2draVtq0ujZs2LCBpFIp2djY0J49e8jc3FzvIM8FBQVkZGSkt0Py4sWLKwzdVX7bRygU0sSJE4mIaNOmTfx8Z61btyahUEghISH8j+6vv/7K3xLV9zyFSDfsnr+NSVT2zLBfv35Uv359io6Opn379lGTJk2oX79+dOvWLTp37hzZ2dnRunXr6NNPPyWhUEhBQUEEgJYsWULbt2/nb1cBIGtra74WaWtrS1evXuUH0zYzM6MDBw6QiYkJH5Rdu3bVOwD11atXydXVlYRCIX355Zd8EBUWFtLmzZupX79+ZGZmRsOGDaPt27fXeOi6pKQk6tmzJ7m6utKWLVv48pOSkqhFixbUv39/vV0H8vLyKgxqHhMTQ02aNOFrohqNhoyNjSkiIoKIiCwsLCgsLIyInnbbcHBwqNH+1kRWVhbt37+fFi5cSAEBAdSsWTMyMjKiVq1a0UcffURRUVGUmJhIt2/fpn379lFERAR16tSJZDIZKRQKUigUZGRkRF26dKHZs2fTH3/88cpTKOXk5NDixYupUaNG5O7uTh07diRLS0uaMWMGf/6kpqZSx44dieM4EgqFpFAoaMCAAeTs7ExDhw6l1q1bv7buHG8bFnxvmblz5/K3mf4O27ZtI6lUSidPniRra2uSSqWV3npzc3Ojv/76q8Lyb775pkLwlQeBmZkZXb16lUJCQsjZ2ZnvnN6oUSNKSUkhIqLc3FyaO3cuP/rHkSNHdGooVYWdPmfOnKE+ffqQg4MDRUdH04wZM8jMzIzkcrlOn7tu3brx+1ven/Hs2bNkZGREAoGA6tSpQ+PHjycrKyuysbHh5/ATCAS0bNkyndpu+bRGx48f50eJUavV9Mknn5BQKKSWLVvqPJN7XlZWFq1cuZK6d+9OlpaWFBgYSIcPH67RRMDx8fHk4eFBnTp14hsjlZSUUFhYGNna2urtTJ+bm8u3xCz/3EeNGqVza3vcuHFkZmZGRES9e/fmP6uCggICQI6OjtXex9pQWFhIJ0+epOXLl9OYMWOoffv2/Oc/bNgwmjt3Lu3Zs4cOHjxIy5cvpyFDhvDPBxUKBYnFYmrevDmFhobS7t27X3qMTbVaTTt27CAvLy+ytramNm3akJmZGX355ZeUnp5OWq2WNmzYwF9MicVi6tatG1laWtLgwYPJxcWF0tLSaOLEieTt7V3Ln5LhYMH3lsnJySFLS8sXttR7Ffv37yeO44io7FkdgEo73Q4fPpzWr19fYXl5eAgEAvLw8NAJPlNTU2rXrh317NmTHB0dSSQS0ezZs4mobESZsLAwsrS0JFdXV5JKpfyVeH5+Pk2fPr1GYafP8ePHqWfPnmRnZ0fGxsbUpk0bcnd3p8TERL6Tdvkfx3F0+/ZtIiK6fPky9e/fn8xsG1CnT6bThM3nyOXjRTQu9gwNm76KJKZ1SKPR8LdZLS0tKS4ujrKyssjMzIxGjx5Nu3btIjMzMzI2NqaNGzfWaL/v3LlD8+fPp5YtW1KDBg1o8uTJlJSUVK1nV2q1mtatW0cNGjSgQYMG8cNnnThxgho3bkz+/v4VavU5OTnUoUMHGj9+PGm1WsrLyyNnZ2e+D1phYSGJRCJav349xcTEkFgspmvXrtHatWv52nB8fHyNjrG2qVQqunjxIm3cuJG++OIL6tGjB5mbm/OT/U6bNo1+/PFHWrlyJU2cOJFatGhBYrGY5HI5cRxHDRo0IH9/f4qNja302eiLlA+OrVAoqGnTpmRiYkJBQUF0/fp1evz4MQ0bNoyEQiEJBAKysLCg+vXrk7e3N397XSKR6G1YxlSNBd9baNq0aRQcHPy3lH369Gl+ZH2VSkVCoZCsra0pMTGxwrqrN2ym4P/7lSZsPkcfrTtNEzafo2UHU8myXkMyNjama9eu8Y1ByhuHlNekBAIBtWrVijIyMigtLY2Cg4PJ3NycQkJC6OjRoyQUCikqKqpWwu5527ZtI3Nzc2rVqhU5OzvTuHHj+GG2bGxsSC6X833vymdbP3/nCQVuOEMu4bvJddoenYEOXMN3k9PUneQffZAkdq7k7e3N3wL+8MMPSSwWk0Ag4BvsvGpDhkuXLlF4eDg5OjpS06ZNafbs2dW6ECoqKuInWR03bhw9evSICgsLacKECVSvXr0KQ9M9efKE2rVrRxMnTiStVkunT58ma2trfuDw8oG+O3TooLd2b2Ji8sY1139+sl8/Pz9q0KABmZmZUffu3Wn8+PE0ffp0+vLLL8nb25vMzc1JIpGQRCIhc3Nz8vHxoaioKLp06VK1a97lg2PXrVuXHBwcyMTEhPz9/enixYt0/Phxsra25htOlX/vyv/KHwvolJdfQssPp+mcd8sPvxl9jt8UAqIqJmBj/nWysrLQuHFjXLp0qcJ8cK8qNTUVbm5u0Gq1KCgogI2NDXbs2IGAgADs3LkTnp6euHA3B9GH03AkNRMAoFRr+e1lnBAqjQY+zexwc89KJGz+Afb29hAKhbh9+za/3vLly+Hp6Yn58+cjISEBQUFB+PzzzyGXy+Hq6ors7Gyo1WqYmJjAx8cHYWFhaN++/SsfX0xMDCZNmoQ9e/agbdu2OHToEL7++mskJycjNzcXWq0Ww4YNQ2BgIEJDQ3Ht2jXM3HQIa5NyUaLW4EVnkwCAgNSYOaAlRno64tSpU+jSpQvUajUAoH79+rh58ybEYvErHwcAEBFOnDiB2NhY/PLLL3BxccGIESMwbNgw2NjYVLpdZmYmZs2ahbi4OHzxxReYOHEiTp8+jY8++gheXl747rvvoFAoAABPnjyBj48PvLy8sGDBAixYsAC7du1CZGQk/P39K53rEAAmTZqEhQsX1sqx/t0yMzNx/vx5JCUl8X937txBs2bN0LhxYxgZGSEjIwMpKSm4d+8eRCIRgLK5M319feHn54d27dpBIpFU+h4qlQpbt27F4sWLkZqaCrVajS5duiAiIgK7d+/G/PnzK8yXKZVKkZ+fD7FYXOV5RwDebWKNkO4uaGlvXvsf0r8IC763VGhoKEQiERYtWlSr5T58+BB2dnYgImRnZ8PV1RWPHz/G3r178emnn2LuL0cxLz616hAQANpSJTobP0Dab+tw5swZndfNzMwgl8sRGhqKESNGYNWqVYiJicH169cBAN7e3pg7d26thF25FStWYPbs2fj999/RrFkzfnlOTg7q1q3LT9QqEAjQqlUrbNy4EXFn7mJLmgZKTfXfx0gsxNh36uLLfu2hVqshlUohlUqRl5eHXbt2wc/Pr9aOqZxKpcL+/fsRGxuL3bt345133kFAQAD69+8PU1NTvdtcu3YN4eHhOHnyJGbNmoUBAwbgq6++Qnx8PNauXQsvLy8AwOPHj+Ht7Q1fX19ERkaiTZs2uHTpEj8p8LOMjY1RVFQEAEhPT6/1C7N/UkFBAf766y8+CM+fP4/k5GTY29vDwcEBWq0W6enpuHPnDtRqNbRaLRo2bIhu3bph0KBB6N69O38B8bwzZ87g22+/xc6dOyESidC8eXMkJSWhtLS0wro//PADpM29Ebn3SrXOOxknwrQ+bhjp6VhLn8S/Dwu+t9S9e/fg4eGBa9euwdLSstbKLSkpgZGRETQaDR48eIC2bdvyV/U/HLmKbw/cQLGq4g9epdSlyD28Fjlnd4HjOBARNBoNOI7D5MmT8fPPP+PGjRswMTGBl5cX9u/fj379+iEuLq7WjgkAFixYgBUrVmD//v1wcnLSeS06OhoTJkyAiYkJVCoVioqKIJVKYdbIA+aDZyB9+0KU3LoAraoEIrkFFJ6DYdrSF8r0K8hJjEHpgzRAIITMoQUsegaBM6kDUilhevpHfNivB1xdXWFnZwdbW1s0bNgQAoGgVo/teYWFhdi5cyfi4uKQmJiI9957DyNGjICvr6/eGsmJEycwadIkFBQUYMGCBdBqtQgMDMTAgQMxb948yOVyZGdnw8vLC2KxGJcuXeJnLhcKhdBqtfz/BgYGYvXq1ZDJZG/lDOQqlQopKSk6NcOkpCTI5XLY2NiguLgYmZmZyMvLAwBYWVmhbdu2GDhwIPz8/FC3bl2d8jIyMrB06VJERUWhoKCgwvuJxWKsPJiMBb9fq9F5ZyQWYlqfpgYbfiz43mKBgYGoV68evvnmm1otVyAQoLCwEA8fPkSPHj1w69YtXLibA98x4XhyPgGlmbcgb9odVn6h/DaFKYnIORoLTX42OFMrmHf/D4wbv1NWnkaFx798DWnhQ2RnZ/M1BWNjY/j6+vK3MceMGYPY2Fg8efLkhbeMaoKIEBERgW3btiEhIQH169evsE5RURGuXr0KrVYLrVYLjUYDlUqF9TekOHA1E8pHtyG2qAcBJ4Yq+y4exIXBZugMaAtzoFWVwKhRG0AoxOPfV0BT8Bi2H8yEAIBvc1usGNmuVo7jZWVlZWHLli2IjY1FSkoKhgwZgoCAAHTu3BlCoZBfj4iwfft2TJkyBY6OjoiIiMDq1atx8uRJrF+/Hp06dcLYsWOxceNGKJVK/rOyt7fH3bt3YWJigoKCAixduhRTp06FQqFAenr6azzyf45Wq8XNmzd1aoZ//vknCgsLoVAoUFxcjLy8PGi1WsjlcjRv3hy9evXCBx98gGbNmkEgEKBv377Yu3cvTE1NUVRUBLFYDIFAAAvnVjDpH1HpxRdpVMjauRDKjDRo8h7B1n8OZA09AABGYhF+GuMJjwaGd9uTBd9bLC0tDe+88w5u3LhR6e2slyEQCJCeno68vDz0798fV69exZiNZ7F9+zYAAhTfPAdSlfLBp87PQvryT2EzOAIyp7Yovn4WWdvnof7YHyGSm4O0Wqhv/Yn7P+sGdFBQEFasWAEAuH37NpycnLBmzRqMHj26Vo5Dq9ViwoQJOHbsGOLj42FtbV3tbbMKlOg8/6DOcxQAUGXfw8O4MFj4jIG8aVed15QP0vAwLgwOX/wCAJByQhyf4gVLE+mrH0wtuH37NjZt2oS4uDjk5ubC398fI0aMgIeHB7+OSqXC6tWrMXPmTPj6+qJTp06YMWMGunXrhp07d0IoFMLOzg4ymQwpKSngOA6RkZGYOXMm+g0LgNzdG8n3c1Cg1ODdzh3hZqfA0LYN3pjP4J/08OFDPgzPnTuHU6dOISMjAzKZDEqlEiqVChzHoVGjRrhx4wY0Gg0EAgGGDBmC+/fv49SpU2j8ySIU1XGp9OJLYt0Q+ef2QmLngqzt82DVbzIffAIB4Nvs9V98vQ7c694B5u/j4uKCnj17YsWKFZg8eXKtlSsQCJCbm4vS0lJIpVJkFShxJDUTxo07ASj7gdeosvj1NfnZEMrkMHIuO8GMXdpDIJZCnZMBkdwcAqEQ0kZtMHVGJMSaEly4cAFXr15FZmYmX8b777+PJk2a1FroqdVqfPrpp0hLS8OhQ4dgZmZWo+23/HlP57+z45eh8OIBkFoJia0zf6zPUt69DLGVA//fAgBbzt1DUDfnlzqG2tawYUNMnToVU6dOxcWLFxEXF4f3338fCoUCI0aMgL+/PxwdHRESEoKRI0diwYIFCA8Px5AhQ7B27VqoVCpIJBJ07doVp06dwtixY3Hnzh30Gh6I3wrscUajgOCxAErOGOCA7efvQ8Y9wHf7Uw2y0YWtrS169+6N3r1788vy8vJw4cIFnD9/HidPnkRiYiLS0tL4Ri1EhF9++QWWlpb4eec+TDlWCtIQJNYNnylZAAEEUD/JgNTOBYr2/csWP1ODLysLOHQ1E9kFSoO78GDB95YLCwuDr68vxo0bByMjo1opUygUIi8vDwKBAFKptEIIPE9i5wKxpT2Krp2CkXM7FKedhoATQ2zd6Ok6YjEce3ygNwRiY2Nx+fJlpKam1sr+K5VKBAQEID8/H/Hx8ZDL5TUu48qDPJ3anqVvCOr0DIIy/QpK7lyEQKTbMrP00U3kHtsE68ER/LIStRZXMvJf/kD+Ri1atMDcuXMRGRmJ48ePIzY2Fu3bt0eTJk0QEBCAoUOHYvbs2QgODoa7uztUKhUAoLS0FDExMThw4ACCgoLgNWY6hq8+iRK16f9+vHVvMJX87zP8Pfkh/kjNMvhGFwqFAl27dkXXrl0xfvx4AMDWrVsxePBgnfWys7Px9Y+7IWjqi/LPtDoXX8970y6+/inCqldh/s1atGiB9u3bY+3atbVWZnnwKZVKSKXSCiHwPIFQBLm7F7J2LsSdhQORtXMR6viOg1Ai49epLATUajWCgoIwatQoODu/+slZVFSE/v37Q6vVYufOnS8VegCQV6KusEwgFEFm3xya/CzkJ+3ll6ue3Mejn6fDwmcMZPbuz5Wjeqn3/6cIhUJ06dIFy5cvR3p6OqZOnYrExES4uLjAz88PCQkJKCoqglAohEwmg0gkgkajwcyZMzFh6RYceGyGYtWLWxoCZbWPYpUGkXtTEHPy1j9ybP8W5S0569evj9DQUBw9ehQqlQo+Q0dXuPiy/+Jn2AbMh1HjdypcfOnzJl98/Z1Yjc8AhIWFYfjw4QgMDKyVPmLP1/j0hcCzim+dR86htbAdMRcSO2eUPkhD5pZZ4IZ9A4nt0xaU+kLgk08+gUAgwA8//PDK+52bmws/Pz84OTnhxx9/BMe9/NdfIXvBtlot1E/KWrqqcx/h4aYImHUeDhN3Lz3l1E6fvX+CRCKBn58f/Pz8UFBQgB07dmDRokV8bY+IEBAQgL/++gt5nAW+O3gD9/csRcmt89CWFIAzt4NF99F8TST/QjzyTmyBpvAJpA2awbLPBBSbWiJy7xV4NDA3yEYX+gwdOhS+vr6wsLDQWf6ii6/Cy4eQn7QXinb9qiz/Tb/4+juwGp8B8PT0hLOzc611ARCJRCgoKEBJSQlkMtmLQwBA6cMbkNo3h7SuKwQCIaR1G0NSrwmKb53XWe/5ELh27RpiYmKwatWqVwopoKz1opeXF1q2bIm1a9e+cnludgpIOSE0hTkoTD4CbWkxSKtB8Y0/UZhyBDLHVlDnZ+HhpnCYtvWDaes+FcqQcUK41a29Rkf/JBMTEwQEBOj8GCuVSmzYsAH9+/eHQ+9PoSxVgTO1gt2IebAP/Qnm3UYhc8d8qHMeouT2X8g5sgHWgyNgP3ETOHNbZO0s68xeotZg2eG013VobxyRSFQh9IDqX3xV5d908VVbWI3PQEybNo1vlFA+qsTL4jgO+fn5MDExgVQq/V8IPEBJqQrQasr+SAtSlwJCEaR1XZF3cgtKH96AxNYJpQ+uQ3n3MkzbPA0DfSHQr18/NG/eHP7+/q+0v/fv30fPnj3Rv39/REZG1ko/uSFtG+C7/amAQID8pH3Ijl8GkBacmQ0svANh7NoROUfjoM55gNyjccg9+vSiw+HLLQDKnswMadPglffldZLL5ejcuTMaN24MNzc3mJiYoJOXLzbFpkIglsG8awC/rrFLB3BmtlA+SEPp/SswduvCN8ow6zQc6dGjoXqSAbFFXYNtdFET5eddUe5jlNy+ACOXDhBwEpTcOo/ClCOw6vcVAIDUKpQ/ByStuuy8FJV1h/g3X3y9ChZ8BqJHjx4wNzfH9u3bKzworymO41BQUMA/4ysPgdxjm5F7bBO/XuHlQzDr7A/zrgEw6+KPzG1zoSnKgchIAbN3hpb1b/uf50Ng7dq1SE1NxY0bN15pX2/evAkfHx8EBgZi6tSpr1TWszLv3oDw4RWILFxgFzBP7zrmXUbAvMsIva8JBECPJtb/+h/2Xbt2VVi24sh1vetqCp9A9TgdEmsHlN6/At0Hf2X/X5V5G2KLugbb6KImqnPxBQDpq4KgyXsEAHj0038BAPWDfwRnbvtWXHy9DBZ8BkIgECA8PBwzZszAoEGDXqnWw3EcCgsL+eCzMpGie2NrJGgCdK7wn6Vo+z4Ubd+vZN90Q6C0tBTjxo1DYGAgGjZsqHeb6khOTuY7wIeEhLx0Oc8qLi5GZGQkVq5ciaDwOdjyhENJTUaq+R8ZJ0LIuy61sk9vGn2NnUijRtbORTBp4Q2xpT1kTm2RtWMBTFu/B86iHnKPbQYgAKnLRnwx1EYXNcGfdynaSi++AKBByBq9y9+Wi6+XwZ7xGRA/Pz+o1WrEx8e/UjlisVgn+ADgs3ddIONe7hbq8yEwevRocByHZcuWvfQ+njt3Dt7e3pgzZ06thV58fDzc3d2RlpaGCxcuYHZoICL6NIWRuGanUdlwUW5vbeON5xtdEGmRtftbQMShTs9gAICRYyuYdxmBzG1zkL78E3BmNhBIjSAytXymHMNrdFFTtXneGRIWfAZEKBQiLCwMc+bMeaVyJBIJioqKdIKvpb05pvVxe+UQSE5Oxk8//YQ1a9boDJlVE0ePHkXv3r2xbNkyjBo16qXKeFZGRgaGDx+OkJAQREdHY/PmzfzgyiM9HTGtT1MYiUWoqhItEJQNE/W2j5H4bKMLIkL23ihoCnNgPTAcAtHT10zb+qF+0GrYfx4D4yadAa0GYmvHZ8oxvEYXNVVb552hYcFnYIYOHYr79+8jMTHxpcvQF3xADUMA+kNgwIABaNOmzUs/h/z9998xcOBAxMTEYODAgS9VRjmNRoPo6Gh4eHjAxcUFly5d0hllo9xIT0f8NMYTvs1sIeWEkHG6p5WME0LKCeHbzBY/jfF8q0MPeNriFQAex0dDlX0XNkP+C6H46XeF1KUozbwFIoI69xGy930P03b9IJKZAPh3t3j9p7GLr5pjz/gMDMdxmDJlCubMmYN9+/a9VBmVBR9QdhJ6NDDHssNpOHQ1EwI8HZ0DAEQo68zcy70eQt510bniXL58Oa5fv64zL19NbN26FWPHjsX27dvRuXPnlyqjXFJSEoKCgmBkZIQjR47oTFOkj0cDc6wY2Q7ZBUpsOXcPVzLykVeigkImhltdUwxpYzjjUZY3ulDnPkLB+d8AkRj3vn9a867T+zMYO7dH1s5FUOdkQCAxgkkLH5h3HcmvY6iNLl5WVedd+Xx8PZpYVzOGgPkAAA5SSURBVDjvDBEbpNoAKZVKODs7Y+fOnWjTpk3VGzynffv2sLGxQatWrSCTyfD111/rXe/5EDCVcdj6YxRiZ3+Orh1a66xbUlICCwsLBAYGIioqqsb7tGHDBkyZMgV79+5F69atq96gEvn5+fjvf/+LuLg4zJs3Dx9++OHfPk3Q22jMxrNISHlY5Ygt+hjy4Mm1gV18VY3V+AyQVCrFpEmTMGfOHGzZsqXG28tkMpSUlECpVMLcvPIrR0sTqU5z9D179uBkXkqF0AOAgIAAGBkZYcmSJTXen+joaMybNw8HDx5E06ZNa7w98HTanQkTJsDb2xuXL1+GlZXVS5XFlDW6SLyWhWJVDWbo/R9DbnRRG54/75iK2DM+AxUYGIjExESkpKTUeNtng+/5W50vsmrVKgQGBlZYfv78eWzbtg0bNmyocYOWuXPnYvHixfjjjz9eOvRu376Nfv36Ydq0adi4cSPWrl3LQu8VsUYXzJuMBZ+Bksvl+PzzzzF//vwab1s+X1hNgi89PR2JiYn44IMPKrw2cOBAdOjQAX5+ftXeByJCWFgYYmJikJiYiEaNGlW90XNUKhUWLlyItm3bwtPTE+fPn0f37t1rXA6jH2t0wbyp2K1OA/bZZ5/B2dkZt27dgqOjY7W3MzIyqnHwrV27FsOGDYOJiYnO8v/7v//D3bt3cerUqWq/v1arxfjx43Hq1CkcOXLkpWpnJ06cQFBQEOrVq4dTp07VyswPTEWs0QXzJmLBZ8DMzc0xZswYLFy4ENHR0dXeztjYuEbBp9Vq8cMPP2Dr1q06y4uKijBlyhSEhobCxsamWu+tVqvx8ccf49atWzh48CAUCkW19xsAnjx5gqlTp2L37t1YvHgxhg0bxhqv/M1Yi1fmTcOCz8CFhobCzc0NX3/9Nezs7Kq1jbGxMUpLS6sdfAkJCbC0tKzQgvSDDz6AiYlJtW+3KpVK+Pv7o7i4GL/99huMjY2rtR1Qdms0Li4OkyZNwuDBg5GcnFzjWdeZV8MaXTBvChZ8Bs7GxgYjR47E4sWLsWDBgmptI5fLoVKpqh18q1atwpgxY3SWnTlzBnv27EF8fHy1GrQUFhZi4MCBUCgU2LFjByQSSbX2FQBSU1MREhKC7Oxs7NixAx06dKj2tgzDvH1Y4xYGkyZNwg8//IDHjx9Xa/2aBN+DBw9w8ODBClMLDR48GJ07d0bPnj2rfL+cnBz4+vqifv362Lx5c7VDr6SkBN988w06deqEvn374syZMyz0GIZhwccADg4OGDBgAJYuXVqt9eVyOdRqNUpKSqoMvnXr1mHw4ME6z+IWLFiAjIwMbNu2rcr3yszMRI8ePdC2bdsazZp+8OBBtGzZEhcuXEBSUhJCQ0NfefJZhmHeDiz4GADA1KlTsXTpUhQUFFS5romJCdRqNZRKJWQyWaXrlTdqebbvXl5eHiIiIjB16tQqW2Peu3cP3bp1g5+fH5YsWVKtW6KPHj3CqFGj8PHHH2PRokXYunUr7O3tq9yOYRjDwYKPAQA0btwYPXr0wMqVK6tc19TUlA++F9X4Dh06BLlcrnN7cejQobCwsMCsWbNe+B7Xr19Ht27d8NFHH2HWrFlVtrzUarVYvXo13N3dUbduXVy+fBnvv69//j+GYQwbu/fD8MLCwtC3b1989tlnL6zJmZqaQqvVVhl8q1evxpgxY/jQOn78OBISEnD48OEX7sfly5fh6+uLiIgIBAcHV7nfFy9eRHBwMLRaLfbv3w8PD48qt2EYxnCxGh/Da9WqFVq3bo1169a9cD1TU1NoNJoXBl9mZiZ+++03BAQ8nZF9yJAhePfdd9GtW7dKyz579iy8vb0xf/78KkOvsLAQU6ZMgbe3N/7zn//g2LFjLPQYhqkSCz5GR3h4OObPnw+1Wl3pOgqFosoa34YNGzBgwAB+EOuZM2ciKyurQif2Z/3xxx/o06cPVq5cqROY+uzevRvNmzdHeno6Ll68iKCgoJeeuJZhGANDDPOc7t2708aNGyt9PTU1lQQCAZmbm1N2dnaF17VaLTVu3JiOHj1KRERPnjwhjuNo1qxZlZa5b98+srKyooSEhBfu2927d2nQoEHk6upa5boMwzD6sEtkpoJp06Zh7ty50Gq1el83MzMDEVVa4/vjjz/AcRw6deoEoGwQahsbG0REROgtb8uWLRg9ejR27NgBHx8fveuo1WosWbIErVq1QosWLfDXX39Vui7DMMyLsMYtTAU+Pj4wNjbGjh07MHDgwAqvl/fJqyz4Vq9ejcDAQAgEAhw+fBhHjhzBsWPH9L7XunXrEB4ejvj4eLRq1UrvOmfOnEFwcDDMzc1x7NgxNGnS5BWOjmEYQ8dmYGf02rZtG+bMmYPTp0/r7UogEAggEokqPAt8/PgxnJyccP36ddSpUwd2dnZo3bo1fvvttwplREVFYdGiRUhISNAbZrm5uYiIiMCWLVuwcOFCBAQEsAGlGYZ5ZexWJ6NX//79UVRUhISEhErX0Td02MaNG9G3b19YWloiIiICOTk5FWZ5JyJERkbi+++/R2JiYoXQIyL8/PPPaNasGZRKJS5fvoyRI0ey0GMYpna81ieMzBtt48aN1L17d51le/fupSVLlhAAkkqlNHPmTFIqlXT9+nXSarXUrFkzOnz4MGVmZpJIJKIFCxbobK/Vamny5Mnk7u5O9+/fr/Ce169fp969e5O7uzvfOIZhGKY2seBjKqVSqahhw4YUFhZGjRo1om3btlGXLl1IJBIRAAJAderUoRMnThAAatiwIZmamtKdO3eoc+fOZG9vr1OeWq2moKAgat++PWVlZem8plQqKTIykiwtLWn+/PlUWlr6Tx4qwzAGhDVuYfTSarVYsWIFsrKysGDBAohEIjx58gSLFi2Cl5cXioqKAIAfc1Mul+P27dsAyga9BoDTp0/z5alUKnz44YdIT0/H/v37dQatTkxMRHBwMBo1aoSzZ8/WaDZ4hmGYmmLP+Bi9Hj9+jPDwcBQXF0Oj0YDjOHAch44dO6J79+4Ayhq4BAcHw8bGBqWlpTrbC4VCBAUFISMjAyUlJRgyZAhycnKwb98+PvSysrLw8ccfY8SIEZg1axZ27drFQo9hmL8dCz5GLysrK1y8eBFubm4Qi8VQKpUQi8UAgCVLlgAom57I1NSUH8JMKBTyDVAkEgkePXqErKws+Pn5QSqVYtu2bTAyMgIRYd26dXB3d4dCoUBycjIGDRrEGq8wDPOPYMHHVKphw4Y4d+4chg4dCo1Gg+zsbABlMznY2NjAxsYGQFnNj+M4uLq6goggFosxceJEnD17FkFBQWjYsCE2bdoEiUSClJQU9OjRA9HR0di7dy+WLFkCU1PT13mYDMMYGNaPj6mWuXPnYtCgQbCs74gtf97D9sOnUawWoLV7E7jZKeBhUoipoeNw5swZ/Pnnn7CyskKvXr3Qo0cPfPvtt1AqlYiMjMTKlSsxffp0jB07FiKR6HUfFsMwBogFH1MtF+7mIPpwGo6kZgIAlOqnw5nJOCEIgPTxdSwJfA+ulhL4+PjA398f06dPR0JCAkJCQtCmTRssWbIE9erVe01HwTAMw4KPqYaYk7cQufcKStQavOjbIhAAUpEQJSfiMP69VhgxYgRCQ0Nx+vRpREdH47333vvndpphGKYS7Bkf80JloZeCYtWLQw8AiIAStRYSz+FI1drCw8MDTk5OuHTpEgs9hmHeGKzGx1Tqwt0cDFv+B9L3LEXJrfPQlhSAM7eDRffRMHJuB2X6FeQkxqD0QRogEELm0AIWPYPAmdSBkNRY3MceA7q1ed2HwTAMo4PV+JhKRR9OQ0mpCpypFexGzIN96E8w7zYKmTvmQ53zENqSApi06o36Y9egfsgaCCRGyN5T1tWBhBx+u6N/WiOGYZjXiQUfo1dWgRJHUjMhEMtg3jUAnLktBAIhjF06gDOzhfJBGoyc20Hu1gVCqTGEYhlM2/pBmZ4CoOy256GrmcguUL7mI2EYhtHFgo/Ra8uf9/Qu1xQ+gepxOiTWDhVeU969DLHV0+UCAFvO6S+HYRjmdWHBx+h15UGeTpcFACCNGlk7F8GkhTfElvY6r5U+uoncY5tg0eMjflmJWosrGfn/yP4yDMNUFws+Rq+8Et0JZom0yNr9LSDiUKdnsM5rqif38ejn6bDwGQOZvftz5aj+9n1lGIapCRZ8jF4K2dOJO4gI2XujoCnMgfXAcAhET19T5z7Cw00RMOs8HCbuXnrKEf8j+8swDFNdLPgYvdzsFJByZV+Px/HRUGXfhc2Q/0IolvLrqPOz8HBTOEzb+sG0dZ8KZcg4IdzqsnE4GYZ5s7B+fIxeWQVKdJ5/EIXZD5C+/GNAJIZA+HRszTq9P4P6SQZyj8ZBIJbpbOvw5RYAgJQT4vgUL1iaSMEwDPOmYMHHVGrMxrNISHlY5Ygt+ggEgG8zW6wY2a72d4xhGOYVsFudTKU+e9cFMu7lZlCQcSKEvOtSy3vEMAzz6ljwMZVqaW+OaX3cYCSu2dfESCzEtD5u8Ghg/jftGcMwzMvjql6FMWQjPR0BoNqzM8g4Eab1ceO3YxiGedOwZ3xMtfx1LwfLDqfh0NVMCFDWOb1c+Xx8PZpYI+RdF1bTYxjmjcaCj6mR7AIltpy7hysZ+cgrUUEhE8OtrimGtGnAWm8yDPOvwIKPYRiGMSiscQvDMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUFjwMQzDMAaFBR/DMAxjUP4foaVEj+xh2dYAAAAASUVORK5CYII=\n" }, "metadata": {} } @@ -1655,13 +1660,15 @@ "metagraph = {\n", " \"nodeTypes\": {\n", " \"v0\": {\n", - " \"x\": \"features\", # 1) you can specify a string value for attribute renaming\n", + " \"x\": \"features\", # 1) You can specify a string value if you want to rename your PyG data when stored in ArangoDB\n", " \"y\": y_tensor_to_2_column_dataframe, # 2) you can specify a function for user-defined handling, as long as the function returns a Pandas DataFrame\n", " },\n", + " # 3) You can specify set of strings if you want to preserve the same PyG attribute names for the node/edge type\n", + " \"v1\": {\"x\"} # this is equivalent to {\"x\": \"x\"}\n", " },\n", " \"edgeTypes\": {\n", " (\"v0\", \"e0\", \"v0\"): {\n", - " # 3) you can specify a list of strings for tensor dissasembly (if you know the number of node/edge features in advance)\n", + " # 4) You can specify a list of strings for tensor dissasembly (if you know the number of node/edge features in advance)\n", " \"edge_attr\": [ \"a\", \"b\"] \n", " },\n", " },\n", @@ -1718,41 +1725,42 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 68, "metadata": { + "id": "sIivCVx98P5l", "colab": { "base_uri": "https://localhost:8080/", - "height": 369, + "height": 0, "referenced_widgets": [ - "cffeac3ff04947a5908350aeaabde50a", - "77595acabfb146b4914c1bed976c5e23", - "2095380cc1b54509b6329344176d2df5", - "4b827c2c2b894258b3881bbea539b4d9", - "ce898b0944a144e792b172a767529ff1", - "78fa874ce05f4cea930327d55628994f", - "39ccf406adeb499986adcc4a884e3bfe", - "4cca9c11663d4fe8ae16d9cfbf0d1109", - "4cbc551850be4dba80ff4b8e69320b11", - "3a36643c0d2d4dab8a2f14d2a6a860b3", - "9bb7ff7ef8ce492999bc9b44a0212d3d", - "2cd5aea3a1a64684b9d1b26b5f01afa9", - "36f6d033fad045c591e5f4123771fcae", - "4c508a0ed44646e28196995585bfbf45", - "b7dae7113a92401abdbaf696c9020df1", - "bddc9225b2b944fd92608085b28051f9", - "6e0c87d033bc437db8310646688e0715", - "2d7add69526d40729c71c9935acbdf1f" + "714a7be3e00645fdaca7dcbd21ca9179", + "ec35b445877e4b4e81c7f802f5e48af8", + "ec7df783e47e48bc8ca7fef8306e6d4a", + "c61bb508ecce462681b100e2accec39d", + "cb45fc426196400896bdfc4bde0e5f10", + "eed69c6ae5f44bdd933e2f19b2463d9c", + "158c2742ad24456ca5624cf2f114164b", + "33eb80d239054ece8d63003c27ca24cc", + "34f31f31f3194bf68fe6d24fa3fde240", + "3f04dc0e36af4939840e3e631b893563", + "264dad2dfd9b4fd39db604551b1b618c", + "75239b8626be425694f715cb9a9bbeba", + "dbf964ca8fcc48fc97470376127b8750", + "f2ae992c8f734a2b9c530619744ea9f4", + "9f49a58caf264d92b5cf3f3529abb402", + "018f347dfe1b4421a08b0b6eaf82d521", + "a6a9f74e58464e36ad31fa367eb3a4bc", + "47d17e38a48948e789085d3f7325e7ba" ] }, - "id": "sIivCVx98P5l", - "outputId": "513e4e4a-d9d8-49b2-a30d-2c260e580604" + "outputId": "be696b5f-158c-4f7b-e17c-ad276a39689f" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:08 +0000] [58] [INFO] - adbpyg_adapter: Instantiated ADBPyG_Adapter with database 'TUTc7mc78w0qlchle9za0opmc'\n" + "[2022/08/05 20:43:12 +0000] [58] [INFO] - adbpyg_adapter: Instantiated ADBPyG_Adapter with database 'TUT6uidw6608c3fel9fgotpk5'\n", + "INFO:adbpyg_adapter:Instantiated ADBPyG_Adapter with database 'TUT6uidw6608c3fel9fgotpk5'\n" ] }, { @@ -1764,7 +1772,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "cffeac3ff04947a5908350aeaabde50a" + "model_id": "714a7be3e00645fdaca7dcbd21ca9179" } }, "metadata": {} @@ -1803,7 +1811,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "2095380cc1b54509b6329344176d2df5" + "model_id": "ec7df783e47e48bc8ca7fef8306e6d4a" } }, "metadata": {} @@ -1842,7 +1850,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "ce898b0944a144e792b172a767529ff1" + "model_id": "cb45fc426196400896bdfc4bde0e5f10" } }, "metadata": {} @@ -1881,7 +1889,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "39ccf406adeb499986adcc4a884e3bfe" + "model_id": "158c2742ad24456ca5624cf2f114164b" } }, "metadata": {} @@ -1920,7 +1928,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "4cbc551850be4dba80ff4b8e69320b11" + "model_id": "34f31f31f3194bf68fe6d24fa3fde240" } }, "metadata": {} @@ -1959,7 +1967,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "9bb7ff7ef8ce492999bc9b44a0212d3d" + "model_id": "264dad2dfd9b4fd39db604551b1b618c" } }, "metadata": {} @@ -1998,7 +2006,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "36f6d033fad045c591e5f4123771fcae" + "model_id": "dbf964ca8fcc48fc97470376127b8750" } }, "metadata": {} @@ -2037,7 +2045,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "b7dae7113a92401abdbaf696c9020df1" + "model_id": "9f49a58caf264d92b5cf3f3529abb402" } }, "metadata": {} @@ -2076,7 +2084,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "6e0c87d033bc437db8310646688e0715" + "model_id": "a6a9f74e58464e36ad31fa367eb3a4bc" } }, "metadata": {} @@ -2110,7 +2118,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:10 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHetero' Graph\n" + "[2022/08/05 20:43:19 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHetero' Graph\n", + "INFO:adbpyg_adapter:Created ArangoDB 'FakeHetero' Graph\n" ] }, { @@ -2120,12 +2129,12 @@ "\n", "--------------------\n", "URL: https://tutorials.arangodb.cloud:8529\n", - "Username: TUTy0d4nq3jcidztw4rf5nyy\n", - "Password: TUTg7njua0hhwpfr1u2m2b2zc\n", - "Database: TUTc7mc78w0qlchle9za0opmc\n", + "Username: TUTctbabijgogsqfi4r0hj59\n", + "Password: TUTkpfg3sjmx88qu3aoi90ucs\n", + "Database: TUT6uidw6608c3fel9fgotpk5\n", "--------------------\n", "\n", - "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUTc7mc78w0qlchle9za0opmc/_admin/aardvark/index.html#graph/FakeHetero\n", + "View the created graph here: https://tutorials.arangodb.cloud:8529/_db/TUT6uidw6608c3fel9fgotpk5/_admin/aardvark/index.html#graph/FakeHetero\n", "\n" ] } @@ -2193,26 +2202,26 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 69, "metadata": { + "id": "rnMe3iMz2K7j", "colab": { "base_uri": "https://localhost:8080/", - "height": 132, + "height": 149, "referenced_widgets": [ - "80705c0267214e318e6c9a12f5af9b87", - "1800491f79fe4e5c8a0cb785002cef74", - "a907d3a40f2b442b804395785b636697", - "337dfac7b38741dc8417db3c29014341", - "5adab504db3f4d06a06255b94410d0bc", - "dcd23d57c8f745f5ad43fe6a133eccca", - "c7d64fc24a864e0182f323194490eae0", - "0fec576b174e4a90b6cab25493cdf433", - "c099dfd1c898452c9b547541abe0e567", - "08db545aeef5430caedef484bb3ae79d" + "4922daf8615047d29465a9c441e07b1f", + "90d8a576796648e2beac23b69a160454", + "8167f1f9d4b947a8adbf059b29350f10", + "addca8b01ebc4dc487bbfb15adff2ce7", + "388159003b5d44ba803a41a95c8ca24e", + "ebc52ecc3f5b4e0f897cc24f2a622575", + "72829f78a8fc47318b110736e737a96e", + "7111a348b2d84339b50fe05d17cd96da", + "cd997a98990b4d19a9301c2309ebb480", + "dd1e97aa95a8422cbba3641b68ce9c0f" ] }, - "id": "rnMe3iMz2K7j", - "outputId": "0a244b72-4dbe-4a73-9f97-333ebacf6319" + "outputId": "5a806949-e36e-4704-ea29-82c986b2f3f8" }, "outputs": [ { @@ -2224,7 +2233,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "80705c0267214e318e6c9a12f5af9b87" + "model_id": "4922daf8615047d29465a9c441e07b1f" } }, "metadata": {} @@ -2263,7 +2272,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "a907d3a40f2b442b804395785b636697" + "model_id": "8167f1f9d4b947a8adbf059b29350f10" } }, "metadata": {} @@ -2302,7 +2311,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "5adab504db3f4d06a06255b94410d0bc" + "model_id": "388159003b5d44ba803a41a95c8ca24e" } }, "metadata": {} @@ -2341,7 +2350,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c7d64fc24a864e0182f323194490eae0" + "model_id": "72829f78a8fc47318b110736e737a96e" } }, "metadata": {} @@ -2380,7 +2389,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c099dfd1c898452c9b547541abe0e567" + "model_id": "cd997a98990b4d19a9301c2309ebb480" } }, "metadata": {} @@ -2414,7 +2423,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:10 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHetero' Graph\n" + "[2022/08/05 20:43:21 +0000] [58] [INFO] - adbpyg_adapter: Created ArangoDB 'FakeHetero' Graph\n", + "INFO:adbpyg_adapter:Created ArangoDB 'FakeHetero' Graph\n" ] }, { @@ -2425,7 +2435,7 @@ ] }, "metadata": {}, - "execution_count": 15 + "execution_count": 69 } ], "source": [ @@ -2439,7 +2449,8 @@ " num_classes=3, # number of unique label values\n", ")[0]\n", "\n", - "adbpyg_adapter.pyg_to_arangodb(\"FakeHetero\", data, overwrite_graph=True, overwrite=True)" + "db.delete_graph(\"FakeHetero\", drop_collections=True, ignore_missing=True)\n", + "adbpyg_adapter.pyg_to_arangodb(\"FakeHetero\", data)" ] }, { @@ -2470,22 +2481,22 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 70, "metadata": { + "id": "zZ-Hu3lLVHgd", "colab": { "base_uri": "https://localhost:8080/", - "height": 204, + "height": 0, "referenced_widgets": [ - "f4d5152abdba488a87ee19d2128bf0e9", - "8041fa3535f2421d8993a19e91c17c86", - "84be276659b0454aa79915206d471f28", - "a2f1e9442bae44908c174bbfd32e68f9", - "3932a0a2a9154c6596c1304038fe136a", - "2cf12ae8ccbc4f3cb7d0e3099d125ad6" + "66c1b4f417da4b4f80f925297bdc72d0", + "e1a1624c92f74441aac6eed39993151a", + "1e6a2b2decaa4576b278135b70d5aff6", + "dc8a841de9d646fa8c9417190566277b", + "74070c7b1fac4325b6d8286933cc2415", + "d44c2a791c5c407d854044d10dcf02a3" ] }, - "id": "zZ-Hu3lLVHgd", - "outputId": "415c430f-8f6e-40c4-cf81-b6a2376aea54" + "outputId": "22bbf77b-e688-4ee8-a644-a7a6a57dcc59" }, "outputs": [ { @@ -2497,7 +2508,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "f4d5152abdba488a87ee19d2128bf0e9" + "model_id": "66c1b4f417da4b4f80f925297bdc72d0" } }, "metadata": {} @@ -2536,7 +2547,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "84be276659b0454aa79915206d471f28" + "model_id": "1e6a2b2decaa4576b278135b70d5aff6" } }, "metadata": {} @@ -2575,7 +2586,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "3932a0a2a9154c6596c1304038fe136a" + "model_id": "74070c7b1fac4325b6d8286933cc2415" } }, "metadata": {} @@ -2609,7 +2620,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:10 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'FakeHetero' Graph\n" + "[2022/08/05 20:43:22 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'FakeHetero' Graph\n", + "INFO:adbpyg_adapter:Created PyG 'FakeHetero' Graph\n" ] }, { @@ -2621,7 +2633,9 @@ "HeteroData(\n", " \u001b[1mv0\u001b[0m={},\n", " \u001b[1mv1\u001b[0m={},\n", - " \u001b[1m(v0, e0, v0)\u001b[0m={ edge_index=[2, 146] }\n", + " \u001b[1m(v0, e0, v1)\u001b[0m={ edge_index=[2, 167] },\n", + " \u001b[1m(v1, e0, v0)\u001b[0m={ edge_index=[2, 139] },\n", + " \u001b[1m(v1, e0, v1)\u001b[0m={ edge_index=[2, 128] }\n", ")\n" ] } @@ -2661,7 +2675,7 @@ "* [PyG FakeHeteroDataset](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.FakeHeteroDataset)\n", "\n", "API\n", - "* `adbdpyg_adapter.adapter.arangodb_collections_to_pyg()`\n", + "* `adbpyg_adapter.adapter.arangodb_collections_to_pyg()`\n", "\n", "Notes\n", "* The `name` parameter is purely for documentation purposes in this case.\n", @@ -2671,22 +2685,22 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 71, "metadata": { + "id": "i4XOpdRLUNlJ", "colab": { "base_uri": "https://localhost:8080/", - "height": 204, + "height": 0, "referenced_widgets": [ - "55c147b5cde34f2ea7b92a14b7242bf2", - "f176e59fd1e94be6b417dd9978e2460e", - "3204f675348140abafe13f5ecf77693a", - "b67d2d79eafb448fbf26628375284912", - "a7947b961ac344bd89d9373e2e5639b7", - "a8e3ade05f8d4a789c78c760056332f1" + "c0064b8964294d7889cb7135a49c04e6", + "db8e29e8d5f549a0ba645c874101da7e", + "8a9a77b49d6942caad56e50d46b9d2ff", + "eee5da1382ca4c668307c8ac05dc51bc", + "1b568c3e862440a09ce125a51617e597", + "f0de2feb8e3c46b097789f8b3551013d" ] }, - "id": "i4XOpdRLUNlJ", - "outputId": "99421bba-a32f-4530-afdd-1c628a5a80d1" + "outputId": "9231c69c-2ef1-487b-e8e6-d04ca8de974f" }, "outputs": [ { @@ -2698,7 +2712,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "55c147b5cde34f2ea7b92a14b7242bf2" + "model_id": "c0064b8964294d7889cb7135a49c04e6" } }, "metadata": {} @@ -2737,7 +2751,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "3204f675348140abafe13f5ecf77693a" + "model_id": "8a9a77b49d6942caad56e50d46b9d2ff" } }, "metadata": {} @@ -2776,7 +2790,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "a7947b961ac344bd89d9373e2e5639b7" + "model_id": "1b568c3e862440a09ce125a51617e597" } }, "metadata": {} @@ -2810,7 +2824,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:10 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'FakeHetero' Graph\n" + "[2022/08/05 20:43:23 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'FakeHetero' Graph\n", + "INFO:adbpyg_adapter:Created PyG 'FakeHetero' Graph\n" ] }, { @@ -2820,9 +2835,11 @@ "\n", "--------------------\n", "HeteroData(\n", - " \u001b[1mv1\u001b[0m={},\n", " \u001b[1mv0\u001b[0m={},\n", - " \u001b[1m(v0, e0, v0)\u001b[0m={ edge_index=[2, 146] }\n", + " \u001b[1mv1\u001b[0m={},\n", + " \u001b[1m(v0, e0, v1)\u001b[0m={ edge_index=[2, 167] },\n", + " \u001b[1m(v1, e0, v0)\u001b[0m={ edge_index=[2, 139] },\n", + " \u001b[1m(v1, e0, v1)\u001b[0m={ edge_index=[2, 128] }\n", ")\n" ] } @@ -2859,7 +2876,7 @@ "* [PyG FakeHeteroDataset](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.FakeHeteroDataset)\n", "\n", "API\n", - "* `adbdpyg_adapter.adapter.arangodb_to_pyg()`\n", + "* `adbpyg_adapter.adapter.arangodb_to_pyg()`\n", "\n", "Notes\n", "* The `name` parameter is purely for documentation purposes in this case.\n", @@ -2868,22 +2885,22 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 72, "metadata": { + "id": "7Kz8lXXq23Yk", "colab": { "base_uri": "https://localhost:8080/", - "height": 308, + "height": 0, "referenced_widgets": [ - "b357c2f2baab4114bd1bd4b3310df49b", - "9218cf36037d4cb399f96c7a7239fb48", - "f2dcd259d6194579a7614ad9049d85e3", - "db211cfea06d4f2d9c86d37a72572647", - "fba9ffd3fa4e477a89aeecd65497e632", - "3068369f86f34750b74fe949ba781135" + "fed6a69c94fd4e29873dbf2910429aab", + "6bc124c865bc41288c32657f63f5b70a", + "e5389b0c229347ee8554eec423d2e90b", + "8bed661d9bd84dd59aee0428795a7c78", + "2391c3d4ee8d4b93a16bca7dcd6bba5b", + "acc43f4ad30a4c22ac944cf16abcaea2" ] }, - "id": "7Kz8lXXq23Yk", - "outputId": "c3df857f-687c-4166-a2b9-6f3a8ceb0c50" + "outputId": "273ff907-8c8d-4674-de34-2dd64e1be998" }, "outputs": [ { @@ -2895,7 +2912,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "b357c2f2baab4114bd1bd4b3310df49b" + "model_id": "fed6a69c94fd4e29873dbf2910429aab" } }, "metadata": {} @@ -2934,7 +2951,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "f2dcd259d6194579a7614ad9049d85e3" + "model_id": "e5389b0c229347ee8554eec423d2e90b" } }, "metadata": {} @@ -2973,7 +2990,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "fba9ffd3fa4e477a89aeecd65497e632" + "model_id": "2391c3d4ee8d4b93a16bca7dcd6bba5b" } }, "metadata": {} @@ -3007,7 +3024,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:11 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'FakeHetero' Graph\n" + "[2022/08/05 20:43:23 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'FakeHetero' Graph\n", + "INFO:adbpyg_adapter:Created PyG 'FakeHetero' Graph\n" ] }, { @@ -3018,13 +3036,21 @@ "--------------------\n", "HeteroData(\n", " \u001b[1mv0\u001b[0m={\n", - " x=[19, 2],\n", - " y=[19]\n", + " x=[21, 3],\n", + " y=[21]\n", " },\n", - " \u001b[1mv1\u001b[0m={ x=[16, 2] },\n", - " \u001b[1m(v0, e0, v0)\u001b[0m={\n", - " edge_index=[2, 146],\n", - " edge_attr=[146, 2]\n", + " \u001b[1mv1\u001b[0m={ v1_x=[17, 2] },\n", + " \u001b[1m(v0, e0, v1)\u001b[0m={\n", + " edge_index=[2, 167],\n", + " edge_attr=[167, 2]\n", + " },\n", + " \u001b[1m(v1, e0, v0)\u001b[0m={\n", + " edge_index=[2, 139],\n", + " edge_attr=[139, 2]\n", + " },\n", + " \u001b[1m(v1, e0, v1)\u001b[0m={\n", + " edge_index=[2, 128],\n", + " edge_attr=[128, 2]\n", " }\n", ")\n" ] @@ -3035,12 +3061,12 @@ "# meaning the data is already formatted to PyG data standards\n", "metagraph_v1 = {\n", " \"vertexCollections\": {\n", - " # we instruct the adapter to create the \"x\" and \"y\" tensor data from the \"x\" and \"y\" ArangoDB attributes\n", - " \"v0\": { \"x\": \"x\", \"y\": \"y\"}, \n", - " \"v1\": {\"x\": \"x\"},\n", + " # Move the \"x\" & \"y\" ArangoDB attributes to PyG as \"x\" & \"y\" Tensors\n", + " \"v0\": {\"x\", \"y\"}, # equivalent to {\"x\": \"x\", \"y\": \"y\"}\n", + " \"v1\": {\"v1_x\": \"x\"},\n", " },\n", " \"edgeCollections\": {\n", - " \"e0\": {\"edge_attr\": \"edge_attr\"},\n", + " \"e0\": {\"edge_attr\"},\n", " },\n", "}\n", "\n", @@ -3070,32 +3096,32 @@ "Data\n", "* [ArangoDB IMDB Movie Dataset](https://www.arangodb.com/docs/stable/arangosearch-example-datasets.html#imdb-movie-dataset)\n", "\n", - "Package methods used\n", - "* `adbdpyg_adapter.adapter.arangodb_to_pyg()`\n", + "API\n", + "* `adbpyg_adapter.adapter.arangodb_to_pyg()`\n", "\n", - "Important notes\n", + "Notes\n", "* The `name` parameter is purely for documentation purposes in this case.\n", "* The `metagraph` parameter is an object defining vertex & edge collections to import to PyG, along with collection-level specifications to indicate which ArangoDB attributes will become PyG features/labels. In this example, we rely on user-defined encoders to build PyG-ready tensors (i.e feature matrices) from ArangoDB attributes. See https://pytorch-geometric.readthedocs.io/en/latest/notes/load_csv.html for an example on using encoders with PyG." ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 73, "metadata": { + "id": "cKqLoawE3WR7", "colab": { "base_uri": "https://localhost:8080/", - "height": 308, + "height": 0, "referenced_widgets": [ - "7bd200e7a282443e99192c037ab5b785", - "169d352244f64770be37ab6a9d590fd0", - "11de3ded59754924b3b4fb302166aa33", - "2d2ac5eac0794cfbad2afe8c7fd19038", - "f74cd12dc6424e48b5da720e0791b3cc", - "04a8254d64ec4c18b78e659ab11d9854" + "95456f5a0df54201a586656c19132787", + "5b2fbe556b944874a4f2c9f1fc07a48a", + "f0d5e111ab9d42dbbeb9627ed40ba7d3", + "853242b120ab498989fb8f1814b72932", + "7a8168caca92415ea5520b8f57e23a6e", + "bde1822630d245b0ba7b86ec103286b4" ] }, - "id": "cKqLoawE3WR7", - "outputId": "69c72d35-0849-4894-a9a1-c9cfe467dae0" + "outputId": "8e976515-d008-45a1-b9d6-117e0a126bce" }, "outputs": [ { @@ -3107,7 +3133,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "7bd200e7a282443e99192c037ab5b785" + "model_id": "95456f5a0df54201a586656c19132787" } }, "metadata": {} @@ -3146,7 +3172,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "11de3ded59754924b3b4fb302166aa33" + "model_id": "f0d5e111ab9d42dbbeb9627ed40ba7d3" } }, "metadata": {} @@ -3185,7 +3211,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "f74cd12dc6424e48b5da720e0791b3cc" + "model_id": "7a8168caca92415ea5520b8f57e23a6e" } }, "metadata": {} @@ -3219,7 +3245,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:13 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'IMDB' Graph\n" + "[2022/08/05 20:43:35 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'IMDB' Graph\n", + "INFO:adbpyg_adapter:Created PyG 'IMDB' Graph\n" ] }, { @@ -3294,7 +3321,7 @@ "* [PyG FakeHeteroDataset](https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html#torch_geometric.datasets.FakeHeteroDataset)\n", "\n", "API\n", - "* `adbdpyg_adapter.adapter.arangodb_to_pyg()`\n", + "* `adbpyg_adapter.adapter.arangodb_to_pyg()`\n", "\n", "Notes\n", "* The `name` parameter is purely for documentation purposes in this case.\n", @@ -3303,22 +3330,22 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 74, "metadata": { + "id": "t-lNli3d4bY0", "colab": { "base_uri": "https://localhost:8080/", - "height": 308, + "height": 464, "referenced_widgets": [ - "042f17a59bf54029a24d4225646baf25", - "e754b8a7abf743e789be806e07cb7ab5", - "8d61ec190e8841f5af9bdb5965852f98", - "988be53b262e4533b7bd512d71c38fd7", - "062aa762efef4ab8bff3370e71eaa6c3", - "6cdc85e3c6ac4242af26128cd8ae4cd2" + "542623ff57ba4c73b66a2f6ef18f1e10", + "a102b8b43b8b44c9b866fe7431db1cf0", + "f211757853a74f20834e56ba1e5affbd", + "8895563ef1ff4962af3923e815869902", + "93526a2428e04e938eda042fc568988b", + "12d001b7d25c4e72ac8b0660181d9a4d" ] }, - "id": "t-lNli3d4bY0", - "outputId": "015d9842-b9cf-431c-c6be-8b105d5ba2ae" + "outputId": "c9dc216d-aa08-4cd5-e22e-50f0ad75839e" }, "outputs": [ { @@ -3330,7 +3357,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "042f17a59bf54029a24d4225646baf25" + "model_id": "542623ff57ba4c73b66a2f6ef18f1e10" } }, "metadata": {} @@ -3369,7 +3396,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "8d61ec190e8841f5af9bdb5965852f98" + "model_id": "f211757853a74f20834e56ba1e5affbd" } }, "metadata": {} @@ -3408,7 +3435,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "062aa762efef4ab8bff3370e71eaa6c3" + "model_id": "93526a2428e04e938eda042fc568988b" } }, "metadata": {} @@ -3442,7 +3469,8 @@ "output_type": "stream", "name": "stderr", "text": [ - "[2022/07/29 22:42:13 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'FakeHetero' Graph\n" + "[2022/08/05 20:43:36 +0000] [58] [INFO] - adbpyg_adapter: Created PyG 'FakeHetero' Graph\n", + "INFO:adbpyg_adapter:Created PyG 'FakeHetero' Graph\n" ] }, { @@ -3453,13 +3481,21 @@ "--------------------\n", "HeteroData(\n", " \u001b[1mv0\u001b[0m={\n", - " x=[19, 2],\n", - " y=[19]\n", + " x=[21, 3],\n", + " y=[21]\n", " },\n", - " \u001b[1mv1\u001b[0m={ x=[16, 2] },\n", - " \u001b[1m(v0, e0, v0)\u001b[0m={\n", - " edge_index=[2, 146],\n", - " edge_attr=[146, 2]\n", + " \u001b[1mv1\u001b[0m={ x=[17, 2] },\n", + " \u001b[1m(v0, e0, v1)\u001b[0m={\n", + " edge_index=[2, 167],\n", + " edge_attr=[167, 2]\n", + " },\n", + " \u001b[1m(v1, e0, v0)\u001b[0m={\n", + " edge_index=[2, 139],\n", + " edge_attr=[139, 2]\n", + " },\n", + " \u001b[1m(v1, e0, v1)\u001b[0m={\n", + " edge_index=[2, 128],\n", + " edge_attr=[128, 2]\n", " }\n", ")\n" ] @@ -3503,8 +3539,25 @@ ], "metadata": { "colab": { - "collapsed_sections": [], - "name": "ArangoDB_PyG_Adapter.ipynb", + "collapsed_sections": [ + "KS9c-vE5eG89", + "ot1oJqn7m78n", + "Oc__NAd1eG8-", + "7y81WHO8eG8_", + "QfE_tKxneG9A", + "UafSB_3JZNwK", + "gshTlSX_ZZsS", + "CNj1xKhwoJoL", + "5xZBKcKv0Wz0", + "4PzAnhQC8P5c", + "uByvwf9feG9A", + "ZrEDmtqCVD0W", + "RQ4CknYfUEuz", + "qEH6OdSB23Ya", + "0806IB4o3WRz", + "d5ijSCcY4bYs" + ], + "name": "ArangoDB_PyG_Adapter_v1.ipynb", "provenance": [] }, "kernelspec": { @@ -3526,7 +3579,7 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "da972de6ab734efd87a013778dd78a36": { + "ef395ffbd3144330b7555ecafa2e3f6c": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -3539,21 +3592,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_b37ebfd5fb8d42fa8d7ce3278d09aae3", + "layout": "IPY_MODEL_34eb428169264094b747be928b79399e", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: Karate_N (34)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: Karate_N (34) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): Karate_N (34)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): Karate_N (34) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "b37ebfd5fb8d42fa8d7ce3278d09aae3": { + "34eb428169264094b747be928b79399e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3605,7 +3658,7 @@ "width": null } }, - "1fe86f25b74b4a91a4b6f054c1c7bf43": { + "b207c2aea59849e6bd973a4c7543e50d": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -3618,21 +3671,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_cd8afa76ccbe421888c92f1dd6da7dac", + "layout": "IPY_MODEL_a81e4e96acbb4d70ac4b9049c834cb0e", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('Karate_N', 'Karate_E', 'Karate_N') (156)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('Karate_N', 'Karate_E', 'Karate_N') (156) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('Karate_N', 'Karate_E', 'Karate_N') (156)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('Karate_N', 'Karate_E', 'Karate_N') (156) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "cd8afa76ccbe421888c92f1dd6da7dac": { + "a81e4e96acbb4d70ac4b9049c834cb0e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3684,7 +3737,7 @@ "width": null } }, - "b4e7f31985a947149eaa55ebfcbc08d6": { + "1ddf2f5b422441a9870919423b6f7ac4": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -3697,21 +3750,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_8cec30d3ca6e4a4a8d470b4ca91d98d8", + "layout": "IPY_MODEL_e7663e8764454712a9474a09d1d0a7d3", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: FakeHomo_N (25)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: FakeHomo_N (25) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): FakeHomo_N (36)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): FakeHomo_N (36) ▰▰▰▰▰▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "8cec30d3ca6e4a4a8d470b4ca91d98d8": { + "e7663e8764454712a9474a09d1d0a7d3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3763,7 +3816,7 @@ "width": null } }, - "460ce510fadb4e6db542f3d7f4e2c818": { + "01765451e1854b5ba6f7d83600638586": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -3776,21 +3829,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_9001cd5ee75749d99c3e34cbd5c0f8ae", + "layout": "IPY_MODEL_02684995c4504c0cb1c66d1de9af67a3", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('FakeHomo_N', 'FakeHomo_E', 'FakeHomo_N') (346)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('FakeHomo_N', 'FakeHomo_E', 'FakeHomo_N') (346) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('FakeHomo_N', 'FakeHomo_E', 'FakeHomo_N') (556)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('FakeHomo_N', 'FakeHomo_E', 'FakeHomo_N') (556) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "9001cd5ee75749d99c3e34cbd5c0f8ae": { + "02684995c4504c0cb1c66d1de9af67a3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3842,7 +3895,7 @@ "width": null } }, - "72bf653fef2343c59a7c799946321f4c": { + "e306e3842ce347479d1f0322e18eda72": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -3855,21 +3908,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_a0c17be8947245e5a7bad66116ccbdc0", + "layout": "IPY_MODEL_2e7b9cf9087844afbe6cc93894ee765e", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v0 (29)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v0 (29) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v0 (25)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v0 (25) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "a0c17be8947245e5a7bad66116ccbdc0": { + "2e7b9cf9087844afbe6cc93894ee765e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3921,7 +3974,7 @@ "width": null } }, - "77698d23738f4ddfacb2cc5c024cbbac": { + "43f21efd763d455c9185522f1b624b56": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -3934,21 +3987,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_a87f7b724d6e4ed08c29302a0630850f", + "layout": "IPY_MODEL_b7e28eea44914188aac7cbfa2bf204f5", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v1 (27)\u001b[0m \u001b[38;2;58;167;244m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v1 (27) ▰▰▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v1 (33)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v1 (33) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "a87f7b724d6e4ed08c29302a0630850f": { + "b7e28eea44914188aac7cbfa2bf204f5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4000,7 +4053,7 @@ "width": null } }, - "d9896752c5074f4c881f0d05adf2ac6e": { + "8adcf6f8e5c1456ba1805a66306b59b2": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4013,21 +4066,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_65e5245442ef4581bb4fabe69d006f5a", + "layout": "IPY_MODEL_48f7e383ac69422599b992b0af06fbd8", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v2 (27)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v2 (27) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v2 (22)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v2 (22) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "65e5245442ef4581bb4fabe69d006f5a": { + "48f7e383ac69422599b992b0af06fbd8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4079,7 +4132,7 @@ "width": null } }, - "203cf875b0394bbd87f88063d63045e5": { + "30128f23f9ce44c6ab871e993fc2ad99": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4092,21 +4145,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2043b80960744115973d998b6cbc409e", + "layout": "IPY_MODEL_0b44513318a247369e5c954af2d568c1", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v1', 'e0', 'v1') (228)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v1', 'e0', 'v1') (228) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v0', 'e0', 'v2') (203)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v0', 'e0', 'v2') (203) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "2043b80960744115973d998b6cbc409e": { + "0b44513318a247369e5c954af2d568c1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4158,7 +4211,7 @@ "width": null } }, - "41c3562bbb614124927aca7861a55d26": { + "081010354dee4adcaa1844f70906b87c": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4171,21 +4224,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_70cb5a8b8ad84f149da55468f5f714b6", + "layout": "IPY_MODEL_72f6db0ec6204faabed63db525cb5b6d", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v2', 'e0', 'v2') (225)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v2', 'e0', 'v2') (225) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v0', 'e0', 'v1') (213)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v0', 'e0', 'v1') (213) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "70cb5a8b8ad84f149da55468f5f714b6": { + "72f6db0ec6204faabed63db525cb5b6d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4237,7 +4290,7 @@ "width": null } }, - "360991b094ba49678f0c76b8f5cd2ca2": { + "102afc34e75348e6a5873709b4d19fd0": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4250,21 +4303,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_b9b1cf0b5ea44994bff6e6b76011e706", + "layout": "IPY_MODEL_86daeaaa159c43fa84c7ab044e5037ec", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v1', 'e0', 'v2') (218)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v1', 'e0', 'v2') (218) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v2', 'e0', 'v2') (177)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v2', 'e0', 'v2') (177) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "b9b1cf0b5ea44994bff6e6b76011e706": { + "86daeaaa159c43fa84c7ab044e5037ec": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4316,7 +4369,7 @@ "width": null } }, - "1108b7846559471db06495a4ef8ab586": { + "025fed965f7142fda9b97e7ac35b2918": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4329,21 +4382,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_df176a8dd1284ee591f7a9de68ab047b", + "layout": "IPY_MODEL_3e20a90af4594f16a1dbce1f28321d08", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v2', 'e0', 'v1') (219)\u001b[0m \u001b[38;2;58;167;244m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v2', 'e0', 'v1') (219) ▰▰▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v0', 'e0', 'v0') (215)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v0', 'e0', 'v0') (215) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "df176a8dd1284ee591f7a9de68ab047b": { + "3e20a90af4594f16a1dbce1f28321d08": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4395,7 +4448,7 @@ "width": null } }, - "45fd76d940d244fb913fc87027a6dd44": { + "e521d097ab8e4f3e8aa753384fc6668e": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4408,21 +4461,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_42d220c7c5ba4407852625f83dd3fe32", + "layout": "IPY_MODEL_aa751d067797426f9b4a20dd86c75ca0", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v1', 'e0', 'v0') (233)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v1', 'e0', 'v0') (233) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v1', 'e0', 'v2') (262)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v1', 'e0', 'v2') (262) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "42d220c7c5ba4407852625f83dd3fe32": { + "aa751d067797426f9b4a20dd86c75ca0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4474,7 +4527,7 @@ "width": null } }, - "a93252ce32284cd9a2621834848bf0f5": { + "4e063f8333f44dbaaffd45a65dfa7f15": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4487,21 +4540,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_5d074e8f11904169affc47a612a72e45", + "layout": "IPY_MODEL_bd024a9a4f4d4bd9817299c4e6b69b21", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v0', 'e0', 'v2') (250)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v0', 'e0', 'v2') (250) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v2', 'e0', 'v0') (175)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v2', 'e0', 'v0') (175) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "5d074e8f11904169affc47a612a72e45": { + "bd024a9a4f4d4bd9817299c4e6b69b21": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4553,7 +4606,7 @@ "width": null } }, - "c82a9032b090468aa6fa23ac01e054c3": { + "1238bda15cd946ec99e5f20a6fb2f4ab": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4566,21 +4619,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_461bdcf0a59e4935b3b7ea862cdbf15c", + "layout": "IPY_MODEL_53b58ff76beb4ae29d814555952eb623", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v0 (18)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v0 (18) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v0 (15)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v0 (15) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "461bdcf0a59e4935b3b7ea862cdbf15c": { + "53b58ff76beb4ae29d814555952eb623": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4632,7 +4685,7 @@ "width": null } }, - "04f17d90e16246adb44181662237c623": { + "7c5cc29625bc46449219cb2b79e410a5": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4645,21 +4698,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2bdb60e6f9ed4fbd85081741c6e060ce", + "layout": "IPY_MODEL_8a99ea6feb894e9ea71723e275085bfb", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v1 (19)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v1 (19) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v1 (19)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v1 (19) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "2bdb60e6f9ed4fbd85081741c6e060ce": { + "8a99ea6feb894e9ea71723e275085bfb": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4711,7 +4764,7 @@ "width": null } }, - "9d04be0b3cb64054bd706f5ac1a80628": { + "af2ba9e623a4448bbae3f659cb4b8f51": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4724,21 +4777,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_e5ffcb18eb064412bdf23892e8961da5", + "layout": "IPY_MODEL_7c897c9ae80a46bab7051993d610e26a", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v1', 'e0', 'v1') (154)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v1', 'e0', 'v1') (154) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v1', 'e0', 'v0') (142)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v1', 'e0', 'v0') (142) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "e5ffcb18eb064412bdf23892e8961da5": { + "7c897c9ae80a46bab7051993d610e26a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4790,7 +4843,7 @@ "width": null } }, - "1bc7519a45de4685960b8a295ce00ba5": { + "89712a0b84924634b2cf8d951544839a": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4803,21 +4856,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_d43bd7c8f0e0416eaf61003f892e0922", + "layout": "IPY_MODEL_fba4f4ef7b8c46f1ac54c35ffadcc8a2", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v1', 'e0', 'v0') (141)\u001b[0m \u001b[38;2;58;167;244m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v1', 'e0', 'v0') (141) ▰▰▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v0', 'e0', 'v1') (115)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v0', 'e0', 'v1') (115) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "d43bd7c8f0e0416eaf61003f892e0922": { + "fba4f4ef7b8c46f1ac54c35ffadcc8a2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4869,7 +4922,7 @@ "width": null } }, - "38f5887b484e47e7b6ddb9567fa8a12c": { + "de0b2c76a1fa48bf9d886a9a4a5d1aa2": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4882,21 +4935,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_afe3766f0d2640989e3d0d3893f08498", + "layout": "IPY_MODEL_1d556623fe4b4edf875b8df7dd014773", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v0', 'e0', 'v0') (134)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v0', 'e0', 'v0') (134) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v0', 'e0', 'v0') (115)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v0', 'e0', 'v0') (115) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "afe3766f0d2640989e3d0d3893f08498": { + "1d556623fe4b4edf875b8df7dd014773": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4948,7 +5001,7 @@ "width": null } }, - "cffeac3ff04947a5908350aeaabde50a": { + "714a7be3e00645fdaca7dcbd21ca9179": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -4961,21 +5014,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_77595acabfb146b4914c1bed976c5e23", + "layout": "IPY_MODEL_ec35b445877e4b4e81c7f802f5e48af8", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v0 (34)\u001b[0m \u001b[38;2;58;167;244m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v0 (34) ▰▰▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v0 (37)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v0 (37) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "77595acabfb146b4914c1bed976c5e23": { + "ec35b445877e4b4e81c7f802f5e48af8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5027,7 +5080,7 @@ "width": null } }, - "2095380cc1b54509b6329344176d2df5": { + "ec7df783e47e48bc8ca7fef8306e6d4a": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5040,21 +5093,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_4b827c2c2b894258b3881bbea539b4d9", + "layout": "IPY_MODEL_c61bb508ecce462681b100e2accec39d", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v1 (37)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v1 (37) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v1 (36)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v1 (36) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "4b827c2c2b894258b3881bbea539b4d9": { + "c61bb508ecce462681b100e2accec39d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5106,7 +5159,7 @@ "width": null } }, - "ce898b0944a144e792b172a767529ff1": { + "cb45fc426196400896bdfc4bde0e5f10": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5119,21 +5172,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_78fa874ce05f4cea930327d55628994f", + "layout": "IPY_MODEL_eed69c6ae5f44bdd933e2f19b2463d9c", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v2 (24)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v2 (24) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v2 (33)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v2 (33) ▰▰▰▰▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "78fa874ce05f4cea930327d55628994f": { + "eed69c6ae5f44bdd933e2f19b2463d9c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5185,7 +5238,7 @@ "width": null } }, - "39ccf406adeb499986adcc4a884e3bfe": { + "158c2742ad24456ca5624cf2f114164b": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5198,21 +5251,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_4cca9c11663d4fe8ae16d9cfbf0d1109", + "layout": "IPY_MODEL_33eb80d239054ece8d63003c27ca24cc", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v1', 'e0', 'v2') (304)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v1', 'e0', 'v2') (304) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v2', 'e0', 'v0') (290)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v2', 'e0', 'v0') (290) ▰▰▰▰▰▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "4cca9c11663d4fe8ae16d9cfbf0d1109": { + "33eb80d239054ece8d63003c27ca24cc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5264,7 +5317,7 @@ "width": null } }, - "4cbc551850be4dba80ff4b8e69320b11": { + "34f31f31f3194bf68fe6d24fa3fde240": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5277,21 +5330,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_3a36643c0d2d4dab8a2f14d2a6a860b3", + "layout": "IPY_MODEL_3f04dc0e36af4939840e3e631b893563", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v0', 'e0', 'v0') (281)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v0', 'e0', 'v0') (281) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v1', 'e0', 'v0') (317)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v1', 'e0', 'v0') (317) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "3a36643c0d2d4dab8a2f14d2a6a860b3": { + "3f04dc0e36af4939840e3e631b893563": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5343,7 +5396,7 @@ "width": null } }, - "9bb7ff7ef8ce492999bc9b44a0212d3d": { + "264dad2dfd9b4fd39db604551b1b618c": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5356,21 +5409,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2cd5aea3a1a64684b9d1b26b5f01afa9", + "layout": "IPY_MODEL_75239b8626be425694f715cb9a9bbeba", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v0', 'e0', 'v2') (273)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v0', 'e0', 'v2') (273) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v0', 'e0', 'v1') (328)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v0', 'e0', 'v1') (328) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "2cd5aea3a1a64684b9d1b26b5f01afa9": { + "75239b8626be425694f715cb9a9bbeba": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5422,7 +5475,7 @@ "width": null } }, - "36f6d033fad045c591e5f4123771fcae": { + "dbf964ca8fcc48fc97470376127b8750": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5435,21 +5488,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_4c508a0ed44646e28196995585bfbf45", + "layout": "IPY_MODEL_f2ae992c8f734a2b9c530619744ea9f4", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v2', 'e0', 'v1') (206)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v2', 'e0', 'v1') (206) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v1', 'e0', 'v1') (307)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v1', 'e0', 'v1') (307) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "4c508a0ed44646e28196995585bfbf45": { + "f2ae992c8f734a2b9c530619744ea9f4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5501,7 +5554,7 @@ "width": null } }, - "b7dae7113a92401abdbaf696c9020df1": { + "9f49a58caf264d92b5cf3f3529abb402": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5514,21 +5567,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_bddc9225b2b944fd92608085b28051f9", + "layout": "IPY_MODEL_018f347dfe1b4421a08b0b6eaf82d521", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v2', 'e0', 'v0') (213)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v2', 'e0', 'v0') (213) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v1', 'e0', 'v2') (319)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v1', 'e0', 'v2') (319) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "bddc9225b2b944fd92608085b28051f9": { + "018f347dfe1b4421a08b0b6eaf82d521": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5580,7 +5633,7 @@ "width": null } }, - "6e0c87d033bc437db8310646688e0715": { + "a6a9f74e58464e36ad31fa367eb3a4bc": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5593,21 +5646,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2d7add69526d40729c71c9935acbdf1f", + "layout": "IPY_MODEL_47d17e38a48948e789085d3f7325e7ba", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v1', 'e0', 'v1') (325)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v1', 'e0', 'v1') (325) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v0', 'e0', 'v2') (324)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v0', 'e0', 'v2') (324) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "2d7add69526d40729c71c9935acbdf1f": { + "47d17e38a48948e789085d3f7325e7ba": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5659,7 +5712,7 @@ "width": null } }, - "80705c0267214e318e6c9a12f5af9b87": { + "4922daf8615047d29465a9c441e07b1f": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5672,21 +5725,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_1800491f79fe4e5c8a0cb785002cef74", + "layout": "IPY_MODEL_90d8a576796648e2beac23b69a160454", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v0 (19)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v0 (19) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v0 (21)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v0 (21) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "1800491f79fe4e5c8a0cb785002cef74": { + "90d8a576796648e2beac23b69a160454": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5738,7 +5791,7 @@ "width": null } }, - "a907d3a40f2b442b804395785b636697": { + "8167f1f9d4b947a8adbf059b29350f10": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5751,21 +5804,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_337dfac7b38741dc8417db3c29014341", + "layout": "IPY_MODEL_addca8b01ebc4dc487bbfb15adff2ce7", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: v1 (16)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: v1 (16) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): v1 (17)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): v1 (17) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "337dfac7b38741dc8417db3c29014341": { + "addca8b01ebc4dc487bbfb15adff2ce7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5817,7 +5870,7 @@ "width": null } }, - "5adab504db3f4d06a06255b94410d0bc": { + "388159003b5d44ba803a41a95c8ca24e": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5830,21 +5883,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_dcd23d57c8f745f5ad43fe6a133eccca", + "layout": "IPY_MODEL_ebc52ecc3f5b4e0f897cc24f2a622575", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v1', 'e0', 'v0') (128)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v1', 'e0', 'v0') (128) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v1', 'e0', 'v1') (128)\u001b[0m \u001b[38;2;153;70;2m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v1', 'e0', 'v1') (128) ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "dcd23d57c8f745f5ad43fe6a133eccca": { + "ebc52ecc3f5b4e0f897cc24f2a622575": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5896,7 +5949,7 @@ "width": null } }, - "c7d64fc24a864e0182f323194490eae0": { + "72829f78a8fc47318b110736e737a96e": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5909,21 +5962,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_0fec576b174e4a90b6cab25493cdf433", + "layout": "IPY_MODEL_7111a348b2d84339b50fe05d17cd96da", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v0', 'e0', 'v1') (144)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v0', 'e0', 'v1') (144) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v1', 'e0', 'v0') (139)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v1', 'e0', 'v0') (139) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "0fec576b174e4a90b6cab25493cdf433": { + "7111a348b2d84339b50fe05d17cd96da": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5975,7 +6028,7 @@ "width": null } }, - "c099dfd1c898452c9b547541abe0e567": { + "cd997a98990b4d19a9301c2309ebb480": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -5988,21 +6041,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_08db545aeef5430caedef484bb3ae79d", + "layout": "IPY_MODEL_dd1e97aa95a8422cbba3641b68ce9c0f", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;130;95;225mImport: ('v0', 'e0', 'v0') (146)\u001b[0m \u001b[38;2;58;167;244m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Import: ('v0', 'e0', 'v0') (146) ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;151;196;35m(PyG → ADB): ('v0', 'e0', 'v1') (167)\u001b[0m \u001b[38;2;153;70;2m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(PyG → ADB): ('v0', 'e0', 'v1') (167) ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "08db545aeef5430caedef484bb3ae79d": { + "dd1e97aa95a8422cbba3641b68ce9c0f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6054,7 +6107,7 @@ "width": null } }, - "f4d5152abdba488a87ee19d2128bf0e9": { + "66c1b4f417da4b4f80f925297bdc72d0": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6067,21 +6120,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_8041fa3535f2421d8993a19e91c17c86", + "layout": "IPY_MODEL_e1a1624c92f74441aac6eed39993151a", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: v0\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: v0 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): v0\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): v0 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "8041fa3535f2421d8993a19e91c17c86": { + "e1a1624c92f74441aac6eed39993151a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6133,7 +6186,7 @@ "width": null } }, - "84be276659b0454aa79915206d471f28": { + "1e6a2b2decaa4576b278135b70d5aff6": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6146,21 +6199,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_a2f1e9442bae44908c174bbfd32e68f9", + "layout": "IPY_MODEL_dc8a841de9d646fa8c9417190566277b", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: v1\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: v1 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): v1\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): v1 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "a2f1e9442bae44908c174bbfd32e68f9": { + "dc8a841de9d646fa8c9417190566277b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6212,7 +6265,7 @@ "width": null } }, - "3932a0a2a9154c6596c1304038fe136a": { + "74070c7b1fac4325b6d8286933cc2415": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6225,21 +6278,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2cf12ae8ccbc4f3cb7d0e3099d125ad6", + "layout": "IPY_MODEL_d44c2a791c5c407d854044d10dcf02a3", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: e0\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: e0 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): e0\u001b[0m \u001b[38;2;64;166;245m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): e0 ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "2cf12ae8ccbc4f3cb7d0e3099d125ad6": { + "d44c2a791c5c407d854044d10dcf02a3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6291,7 +6344,7 @@ "width": null } }, - "55c147b5cde34f2ea7b92a14b7242bf2": { + "c0064b8964294d7889cb7135a49c04e6": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6304,21 +6357,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_f176e59fd1e94be6b417dd9978e2460e", + "layout": "IPY_MODEL_db8e29e8d5f549a0ba645c874101da7e", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: v1\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: v1 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): v0\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): v0 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "f176e59fd1e94be6b417dd9978e2460e": { + "db8e29e8d5f549a0ba645c874101da7e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6370,7 +6423,7 @@ "width": null } }, - "3204f675348140abafe13f5ecf77693a": { + "8a9a77b49d6942caad56e50d46b9d2ff": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6383,21 +6436,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_b67d2d79eafb448fbf26628375284912", + "layout": "IPY_MODEL_eee5da1382ca4c668307c8ac05dc51bc", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: v0\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: v0 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): v1\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): v1 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "b67d2d79eafb448fbf26628375284912": { + "eee5da1382ca4c668307c8ac05dc51bc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6449,7 +6502,7 @@ "width": null } }, - "a7947b961ac344bd89d9373e2e5639b7": { + "1b568c3e862440a09ce125a51617e597": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6462,21 +6515,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_a8e3ade05f8d4a789c78c760056332f1", + "layout": "IPY_MODEL_f0de2feb8e3c46b097789f8b3551013d", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: e0\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: e0 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): e0\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): e0 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "a8e3ade05f8d4a789c78c760056332f1": { + "f0de2feb8e3c46b097789f8b3551013d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6528,7 +6581,7 @@ "width": null } }, - "b357c2f2baab4114bd1bd4b3310df49b": { + "fed6a69c94fd4e29873dbf2910429aab": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6541,21 +6594,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_9218cf36037d4cb399f96c7a7239fb48", + "layout": "IPY_MODEL_6bc124c865bc41288c32657f63f5b70a", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: v0\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: v0 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): v0\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): v0 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "9218cf36037d4cb399f96c7a7239fb48": { + "6bc124c865bc41288c32657f63f5b70a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6607,7 +6660,7 @@ "width": null } }, - "f2dcd259d6194579a7614ad9049d85e3": { + "e5389b0c229347ee8554eec423d2e90b": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6620,21 +6673,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_db211cfea06d4f2d9c86d37a72572647", + "layout": "IPY_MODEL_8bed661d9bd84dd59aee0428795a7c78", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: v1\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: v1 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): v1\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): v1 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "db211cfea06d4f2d9c86d37a72572647": { + "8bed661d9bd84dd59aee0428795a7c78": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6686,7 +6739,7 @@ "width": null } }, - "fba9ffd3fa4e477a89aeecd65497e632": { + "2391c3d4ee8d4b93a16bca7dcd6bba5b": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6699,21 +6752,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_3068369f86f34750b74fe949ba781135", + "layout": "IPY_MODEL_acc43f4ad30a4c22ac944cf16abcaea2", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: e0\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: e0 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): e0\u001b[0m \u001b[38;2;64;166;245m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): e0 ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "3068369f86f34750b74fe949ba781135": { + "acc43f4ad30a4c22ac944cf16abcaea2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6765,7 +6818,7 @@ "width": null } }, - "7bd200e7a282443e99192c037ab5b785": { + "95456f5a0df54201a586656c19132787": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6778,21 +6831,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_169d352244f64770be37ab6a9d590fd0", + "layout": "IPY_MODEL_5b2fbe556b944874a4f2c9f1fc07a48a", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: Movies\u001b[0m \u001b[38;2;125;59;4m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: Movies ▰▰▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): Movies\u001b[0m \u001b[38;2;64;166;245m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): Movies ▰▱▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "169d352244f64770be37ab6a9d590fd0": { + "5b2fbe556b944874a4f2c9f1fc07a48a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6844,7 +6897,7 @@ "width": null } }, - "11de3ded59754924b3b4fb302166aa33": { + "f0d5e111ab9d42dbbeb9627ed40ba7d3": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6857,21 +6910,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_2d2ac5eac0794cfbad2afe8c7fd19038", + "layout": "IPY_MODEL_853242b120ab498989fb8f1814b72932", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: Users\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: Users ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): Users\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): Users ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "2d2ac5eac0794cfbad2afe8c7fd19038": { + "853242b120ab498989fb8f1814b72932": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6923,7 +6976,7 @@ "width": null } }, - "f74cd12dc6424e48b5da720e0791b3cc": { + "7a8168caca92415ea5520b8f57e23a6e": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -6936,21 +6989,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_04a8254d64ec4c18b78e659ab11d9854", + "layout": "IPY_MODEL_bde1822630d245b0ba7b86ec103286b4", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: Ratings\u001b[0m \u001b[38;2;125;59;4m▰▰▰▰▱▱▱\u001b[0m \u001b[33m0:00:01\u001b[0m\n", - "text/html": "Export: Ratings ▰▰▰▰▱▱▱ 0:00:01\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): Ratings\u001b[0m \u001b[38;2;64;166;245m▰▰▰▰▰▱▱\u001b[0m \u001b[33m0:00:10\u001b[0m\n", + "text/html": "(ADB → PyG): Ratings ▰▰▰▰▰▱▱ 0:00:10\n\n" }, "metadata": {} } ] } }, - "04a8254d64ec4c18b78e659ab11d9854": { + "bde1822630d245b0ba7b86ec103286b4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7002,7 +7055,7 @@ "width": null } }, - "042f17a59bf54029a24d4225646baf25": { + "542623ff57ba4c73b66a2f6ef18f1e10": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -7015,21 +7068,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_e754b8a7abf743e789be806e07cb7ab5", + "layout": "IPY_MODEL_a102b8b43b8b44c9b866fe7431db1cf0", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: v0\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: v0 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): v0\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): v0 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "e754b8a7abf743e789be806e07cb7ab5": { + "a102b8b43b8b44c9b866fe7431db1cf0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7081,7 +7134,7 @@ "width": null } }, - "8d61ec190e8841f5af9bdb5965852f98": { + "f211757853a74f20834e56ba1e5affbd": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -7094,21 +7147,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_988be53b262e4533b7bd512d71c38fd7", + "layout": "IPY_MODEL_8895563ef1ff4962af3923e815869902", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: v1\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: v1 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): v1\u001b[0m \u001b[38;2;64;166;245m▰▰▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): v1 ▰▰▱▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "988be53b262e4533b7bd512d71c38fd7": { + "8895563ef1ff4962af3923e815869902": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7160,7 +7213,7 @@ "width": null } }, - "062aa762efef4ab8bff3370e71eaa6c3": { + "93526a2428e04e938eda042fc568988b": { "model_module": "@jupyter-widgets/output", "model_name": "OutputModel", "model_module_version": "1.0.0", @@ -7173,21 +7226,21 @@ "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", - "layout": "IPY_MODEL_6cdc85e3c6ac4242af26128cd8ae4cd2", + "layout": "IPY_MODEL_12d001b7d25c4e72ac8b0660181d9a4d", "msg_id": "", "outputs": [ { "output_type": "display_data", "data": { - "text/plain": "\u001b[38;2;151;196;35mExport: e0\u001b[0m \u001b[38;2;125;59;4m▰▱▱▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", - "text/html": "Export: e0 ▰▱▱▱▱▱▱ 0:00:00\n\n" + "text/plain": "\u001b[38;2;137;41;194m(ADB → PyG): e0\u001b[0m \u001b[38;2;64;166;245m▰▰▰▱▱▱▱\u001b[0m \u001b[33m0:00:00\u001b[0m\n", + "text/html": "(ADB → PyG): e0 ▰▰▰▱▱▱▱ 0:00:00\n\n" }, "metadata": {} } ] } }, - "6cdc85e3c6ac4242af26128cd8ae4cd2": { + "12d001b7d25c4e72ac8b0660181d9a4d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", diff --git a/tests/conftest.py b/tests/conftest.py index 89bee46..a59890f 100755 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -2,7 +2,7 @@ import os import subprocess from pathlib import Path -from typing import Any, Callable +from typing import Any, Callable, Dict from arango import ArangoClient from arango.database import StandardDatabase @@ -57,6 +57,22 @@ class NoTimeoutHTTPClient(DefaultHTTPClient): # type: ignore adbpyg_adapter = ADBPyG_Adapter(db, logging_lvl=logging.DEBUG) +def pytest_exception_interact(node: Any, call: Any, report: Any) -> None: + try: + if report.failed: + params: Dict[str, Any] = node.callspec.params + + graph_name = params.get("name") + adapter = params.get("adapter") + if graph_name and adapter: + db: StandardDatabase = adapter.db + db.delete_graph(graph_name, drop_collections=True, ignore_missing=True) + except AttributeError: + print(node) + print(dir(node)) + print("Could not delete graph") + + def arango_restore(con: Json, path_to_data: str) -> None: restore_prefix = "./tools/" if os.getenv("GITHUB_ACTIONS") else "" protocol = "http+ssl://" if "https://" in con["url"] else "tcp://" diff --git a/tests/test_adapter.py b/tests/test_adapter.py index 78cd464..5ababf8 100644 --- a/tests/test_adapter.py +++ b/tests/test_adapter.py @@ -1,8 +1,9 @@ +from collections import defaultdict from typing import Any, Dict, List, Optional, Set, Union import pytest -from arango.graph import Graph as ArangoGraph -from torch import Tensor, long, tensor +from pandas import DataFrame +from torch import Tensor, cat, long, tensor from torch_geometric.data import Data, HeteroData from torch_geometric.data.storage import EdgeStorage, NodeStorage from torch_geometric.typing import EdgeType @@ -10,7 +11,14 @@ from adbpyg_adapter import ADBPyG_Adapter from adbpyg_adapter.encoders import CategoricalEncoder, IdentityEncoder from adbpyg_adapter.exceptions import ADBMetagraphError, PyGMetagraphError -from adbpyg_adapter.typings import ADBMetagraph, PyGMetagraph +from adbpyg_adapter.typings import ( + ADBMap, + ADBMetagraph, + ADBMetagraphValues, + PyGMap, + PyGMetagraph, + PyGMetagraphValues, +) from adbpyg_adapter.utils import validate_adb_metagraph, validate_pyg_metagraph from .conftest import ( @@ -48,11 +56,7 @@ class Bad_ADBPyG_Controller: [ # empty metagraph ({}), # missing required parent key - ( - { - "edgeCollections": {}, - } - ), + ({"edgeCollections": {}}), # empty sub-metagraph ({"vertexCollections": {}}), # bad collection name @@ -77,6 +81,18 @@ class Bad_ADBPyG_Controller: } } ), + # bad collection metagraph 2 + ( + { + "vertexCollections": { + "vcol_a": {"a", "b", 3}, + # other examples include: + # "vcol_a": 1, + # "vcol_a": 'foo', + }, + "edgeCollections": {}, + } + ), # bad meta_key ( { @@ -175,6 +191,8 @@ def test_validate_adb_metagraph(bad_metagraph: Dict[Any, Any]) -> None: } } ), + # bad data type metagraph 2 + ({"nodeTypes": {"ntype_a": {"a", "b", 3}}}), # bad meta_val ( { @@ -228,7 +246,7 @@ def test_validate_pyg_metagraph(bad_metagraph: Dict[Any, Any]) -> None: {"nodeTypes": {"Karate_2_N": {"x": "node_features"}}}, True, False, - {"overwrite": True}, + {}, ), ( adbpyg_adapter, @@ -304,6 +322,15 @@ def test_validate_pyg_metagraph(bad_metagraph: Dict[Any, Any]) -> None: False, {}, ), + ( + adbpyg_adapter, + "FakeHeteroGraph_2", + get_fake_hetero_graph(avg_num_nodes=2), + {"nodeTypes": {"v0": {"x", "y"}, "v2": {"x"}}}, + True, + False, + {}, + ), ( adbpyg_adapter, "SocialGraph", @@ -325,13 +352,19 @@ def test_pyg_to_adb( import_options: Any, ) -> None: db.delete_graph(name, drop_collections=True, ignore_missing=True) - adb_g = adapter.pyg_to_arangodb( + adapter.pyg_to_arangodb( name, pyg_g, metagraph, explicit_metagraph, overwrite_graph, **import_options ) - assert_arangodb_data(name, pyg_g, adb_g, metagraph, explicit_metagraph) + assert_pyg_to_adb(name, pyg_g, metagraph, explicit_metagraph) db.delete_graph(name, drop_collections=True) +def test_pyg_to_adb_ambiguity_error() -> None: + d = Data(edge_index=tensor([[0, 1], [1, 0]])) + with pytest.raises(ValueError): + adbpyg_adapter.pyg_to_arangodb("graph", d) + + def test_pyg_to_arangodb_with_controller() -> None: name = "Karate_3" data = get_karate_graph() @@ -358,7 +391,7 @@ def test_pyg_to_arangodb_with_controller() -> None: "Karate", { "vertexCollections": { - "Karate_N": {"x": "x"}, + "Karate_N": {"x": "x", "y": "y"}, }, "edgeCollections": { "Karate_E": {}, @@ -394,6 +427,21 @@ def test_pyg_to_arangodb_with_controller() -> None: }, get_fake_hetero_graph(avg_num_nodes=2, edge_dim=2), ), + ( + adbpyg_adapter, + "HeterogeneousSimpleMetagraph", + { + "vertexCollections": { + "v0": {"x", "y"}, + "v1": {"x"}, + "v2": {"x"}, + }, + "edgeCollections": { + "e0": {"edge_attr"}, + }, + }, + get_fake_hetero_graph(avg_num_nodes=2, edge_dim=2), + ), ( adbpyg_adapter, "HeterogeneousOverComplicatedMetagraph", @@ -440,7 +488,7 @@ def test_adb_to_pyg( adapter.pyg_to_arangodb(name, pyg_g_old) pyg_g_new = adapter.arangodb_to_pyg(name, metagraph) - assert_pyg_data(pyg_g_new, metagraph) + assert_adb_to_pyg(pyg_g_new, metagraph) if pyg_g_old: db.delete_graph(name, drop_collections=True) @@ -449,7 +497,8 @@ def test_adb_to_pyg( def test_adb_partial_to_pyg() -> None: # Generate a valid pyg_g graph pyg_g = get_fake_hetero_graph(avg_num_nodes=2, edge_dim=2) - while ("v0", "e0", "v0") not in pyg_g.edge_types: + e_t = ("v0", "e0", "v0") + while e_t not in pyg_g.edge_types: pyg_g = get_fake_hetero_graph(avg_num_nodes=2, edge_dim=2) name = "Heterogeneous" @@ -475,10 +524,8 @@ def test_adb_partial_to_pyg() -> None: assert type(pyg_g_new) is Data assert pyg_g["v0"].x.tolist() == pyg_g_new.x.tolist() assert pyg_g["v0"].y.tolist() == pyg_g_new.y.tolist() - assert ( - pyg_g[("v0", "e0", "v0")].edge_index.tolist() == pyg_g_new.edge_index.tolist() - ) - assert pyg_g[("v0", "e0", "v0")].edge_attr.tolist() == pyg_g_new.edge_attr.tolist() + assert pyg_g[e_t].edge_index.tolist() == pyg_g_new.edge_index.tolist() + assert pyg_g[e_t].edge_attr.tolist() == pyg_g_new.edge_attr.tolist() # Case 2: Partial edge collection import keeps the graph heterogeneous metagraph = { @@ -497,7 +544,6 @@ def test_adb_partial_to_pyg() -> None: assert type(pyg_g_new) is HeteroData assert set(pyg_g_new.node_types) == {"v0", "v1"} - assert len(pyg_g_new.edge_types) >= 2 for n_type in pyg_g_new.node_types: for k, v in pyg_g_new[n_type].items(): assert v.tolist() == pyg_g[n_type][k].tolist() @@ -511,7 +557,15 @@ def test_adb_partial_to_pyg() -> None: @pytest.mark.parametrize( "adapter, name, v_cols, e_cols, pyg_g_old", - [(adbpyg_adapter, "SocialGraph", {"user", "game"}, {"plays"}, get_social_graph())], + [ + ( + adbpyg_adapter, + "SocialGraph", + {"user", "game"}, + {"plays", "follows"}, + get_social_graph(), + ) + ], ) def test_adb_collections_to_pyg( adapter: ADBPyG_Adapter, @@ -537,7 +591,7 @@ def test_adb_collections_to_pyg( else: pyg_g_new[v_col].num_nodes = db.collection(v_col).count() - assert_pyg_data( + assert_adb_to_pyg( pyg_g_new, metagraph={ "vertexCollections": {col: {} for col in v_cols}, @@ -562,12 +616,12 @@ def test_adb_graph_to_pyg( db.delete_graph(name, drop_collections=True, ignore_missing=True) adapter.pyg_to_arangodb(name, pyg_g_old) + pyg_g_new = adapter.arangodb_graph_to_pyg(name) + arango_graph = db.graph(name) v_cols = arango_graph.vertex_collections() e_cols = {col["edge_collection"] for col in arango_graph.edge_definitions()} - pyg_g_new = adapter.arangodb_graph_to_pyg(name) - # Manually set the number of nodes (since nodes are feature-less) for v_col in v_cols: if pyg_g_old: @@ -575,7 +629,7 @@ def test_adb_graph_to_pyg( else: pyg_g_new[v_col].num_nodes = db.collection(v_col).count() - assert_pyg_data( + assert_adb_to_pyg( pyg_g_new, metagraph={ "vertexCollections": {col: {} for col in v_cols}, @@ -587,7 +641,7 @@ def test_adb_graph_to_pyg( db.delete_graph(name, drop_collections=True) -def test_full_cycle_imdb() -> None: +def test_full_cycle_imdb_without_preserve_adb_keys() -> None: name = "imdb" db.delete_graph(name, drop_collections=True, ignore_missing=True) arango_restore(con, "tests/data/adb/imdb_dump") @@ -605,7 +659,7 @@ def test_full_cycle_imdb() -> None: adb_to_pyg_metagraph: ADBMetagraph = { "vertexCollections": { "Movies": { - "y": "Comedy", # { "Comedy": IdentityEncoder(dtype=long) } + "y": "Comedy", "x": { "Action": IdentityEncoder(dtype=long), "Drama": IdentityEncoder(dtype=long), @@ -623,258 +677,356 @@ def test_full_cycle_imdb() -> None: } pyg_g = adbpyg_adapter.arangodb_to_pyg(name, adb_to_pyg_metagraph) - assert_pyg_data(pyg_g, adb_to_pyg_metagraph) + assert_adb_to_pyg(pyg_g, adb_to_pyg_metagraph) pyg_to_adb_metagraph: PyGMetagraph = { "nodeTypes": { "Movies": { - "y": "comedy", # ["comedy"] + "y": "comedy", "x": ["action", "drama"], }, - "Users": {"x": udf_users_x_tensor_to_df}, # ["age", "gender"], + "Users": {"x": udf_users_x_tensor_to_df}, }, "edgeTypes": {("Users", "Ratings", "Movies"): {"edge_weight": "rating"}}, } - adb_g = adbpyg_adapter.pyg_to_arangodb( - name, pyg_g, pyg_to_adb_metagraph, overwrite=True + adbpyg_adapter.pyg_to_arangodb(name, pyg_g, pyg_to_adb_metagraph, overwrite=True) + assert_pyg_to_adb(name, pyg_g, pyg_to_adb_metagraph) + + db.delete_graph(name, drop_collections=True) + + +def test_full_cycle_homogeneous_with_preserve_adb_keys() -> None: + d = get_fake_homo_graph(avg_num_nodes=20, num_channels=2) + + # Get Fake Data in ArangoDB + name = "Homogeneous" + db.delete_graph(name, drop_collections=True, ignore_missing=True) + adbpyg_adapter.pyg_to_arangodb(name, d) + + pyg_g = adbpyg_adapter.arangodb_graph_to_pyg(name, preserve_adb_keys=True) + + # Establish ground truth + arango_graph = db.graph(name) + v_cols = arango_graph.vertex_collections() + e_cols = {col["edge_collection"] for col in arango_graph.edge_definitions()} + metagraph: ADBMetagraph = { + "vertexCollections": {col: {} for col in v_cols}, + "edgeCollections": {col: {} for col in e_cols}, + } + assert_adb_to_pyg(pyg_g, metagraph, True) + assert "_v_key" in pyg_g and "_e_key" in pyg_g + + num_nodes = d.num_nodes + pyg_g["_v_key"].append(f"new-vertex-{num_nodes}") + pyg_g.num_nodes = num_nodes + 1 + + adbpyg_adapter.pyg_to_arangodb(name, pyg_g, on_duplicate="update") + assert_pyg_to_adb(name, pyg_g, {}, False) + assert db.collection("Homogeneous_N").get(f"new-vertex-{num_nodes}") is not None + + db.delete_graph(name, drop_collections=True, ignore_missing=True) + + +def test_full_cycle_imdb_with_preserve_adb_keys() -> None: + name = "imdb" + db.delete_graph(name, drop_collections=True, ignore_missing=True) + arango_restore(con, "tests/data/adb/imdb_dump") + db.create_graph( + name, + edge_definitions=[ + { + "edge_collection": "Ratings", + "from_vertex_collections": ["Users"], + "to_vertex_collections": ["Movies"], + }, + ], + ) + + adb_to_pyg_metagraph: ADBMetagraph = { + "vertexCollections": { + "Movies": { + "y": "Comedy", # { "Comedy": IdentityEncoder(dtype=long) } + "x": { + "Action": IdentityEncoder(dtype=long), + "Drama": IdentityEncoder(dtype=long), + # etc.... + }, + }, + "Users": { + "x": { + "Age": IdentityEncoder(dtype=long), + "Gender": CategoricalEncoder(), + } + }, + }, + "edgeCollections": {"Ratings": {"edge_weight": "Rating"}}, + } + + pyg_g = adbpyg_adapter.arangodb_to_pyg( + name, adb_to_pyg_metagraph, preserve_adb_keys=True ) - assert_arangodb_data( - name, pyg_g, adb_g, pyg_to_adb_metagraph, skip_edge_assertion=True + assert_adb_to_pyg(pyg_g, adb_to_pyg_metagraph, True) + + # Add PyG User Node & update the _key property + pyg_g["Users"].x = cat((pyg_g["Users"].x, tensor([[99, 1]])), 0) + pyg_g["Users"]["_key"].append("new-user-944") + + # (coverage testing) Add _id property to Movies + # There's no point in having both _key and _id at the same time, + # but it is possible that a user prefers to have `preserve_adb_keys=False`, + # and build their own _key or _id list. The following line tries to simulate + # that while still adhering to the IMDB graph structure. + pyg_g["Movies"]["_id"] = ["Movies/" + k for k in pyg_g["Movies"]["_key"]] + + pyg_to_adb_metagraph: PyGMetagraph = { + "nodeTypes": { + "Users": {"x": ["Age", "Gender"], "_key": "_key"}, + "Movies": {"_id": "_id"}, + }, + "edgeTypes": {("Users", "Ratings", "Movies"): {"_key": "_key"}}, + } + + adbpyg_adapter.pyg_to_arangodb( + name, + pyg_g, + pyg_to_adb_metagraph, + explicit_metagraph=True, + on_duplicate="update", ) + assert_pyg_to_adb(name, pyg_g, pyg_to_adb_metagraph, True) + + assert db.collection("Users").get("new-user-944") is not None db.delete_graph(name, drop_collections=True) -def assert_arangodb_data( +def assert_pyg_to_adb( name: str, pyg_g: Union[Data, HeteroData], - adb_g: ArangoGraph, metagraph: PyGMetagraph, explicit_metagraph: bool = False, - skip_edge_assertion: bool = False, ) -> None: is_homogeneous = type(pyg_g) is Data + # Maps PyG Node ids to ArangoDB Vertex _keys + pyg_map: PyGMap = defaultdict(dict) + node_types: List[str] edge_types: List[EdgeType] - if metagraph and explicit_metagraph: + explicit_metagraph = metagraph != {} and explicit_metagraph + if explicit_metagraph: node_types = metagraph.get("nodeTypes", {}).keys() # type: ignore edge_types = metagraph.get("edgeTypes", {}).keys() # type: ignore + elif is_homogeneous: - node_types = [name + "_N"] - edge_types = [(name + "_N", name + "_E", name + "_N")] + n_type = name + "_N" + node_types = [n_type] + edge_types = [(n_type, name + "_E", n_type)] + else: node_types = pyg_g.node_types edge_types = pyg_g.edge_types - x: Tensor - y: Tensor - - n_type: str n_meta = metagraph.get("nodeTypes", {}) for n_type in node_types: - meta = n_meta.get(n_type, {}) + node_data = pyg_g if is_homogeneous else pyg_g[n_type] collection = db.collection(n_type) + assert collection.count() == node_data.num_nodes - node_data: NodeStorage = pyg_g if is_homogeneous else pyg_g[n_type] - num_nodes = node_data.num_nodes + df = DataFrame(collection.all()) + pyg_map[n_type] = df["_id"].to_dict() - assert collection.count() == num_nodes + if "_key" in node_data: # preserve_adb_keys = True + assert node_data["_key"] == df["_key"].tolist() - # TODO: Remove str restriction - has_node_feature_matrix = "x" in node_data and type(meta.get("x", "x")) is str - has_node_target_label = ( - num_nodes == len(node_data.get("y", [])) and type(meta.get("y", "y")) is str - ) + meta = n_meta.get(n_type, {}) + assert_pyg_to_adb_meta(df, meta, node_data, explicit_metagraph) - for i in range(num_nodes): - vertex = collection.get(str(i)) - assert vertex - - if has_node_feature_matrix: - meta_val = meta.get("x", "x") - assert meta_val in vertex - - x = node_data.x[i] - assert x.tolist() == vertex[meta_val] - - if has_node_target_label: - meta_val = meta.get("y", "y") - assert meta_val in vertex - - y = node_data.y[i] - y_val: Any - try: - y_val = y.item() - except ValueError: - y_val = y.tolist() - - # TODO: remove this ugly hack - if type(vertex[meta_val]) is list: - assert [y_val] == vertex[meta_val] - else: - assert y_val == vertex[meta_val] - - edge_weight: Tensor - edge_attr: Tensor - e_type: EdgeType e_meta = metagraph.get("edgeTypes", {}) for e_type in edge_types: - meta = e_meta.get(e_type, {}) + edge_data: EdgeStorage = pyg_g if is_homogeneous else pyg_g[e_type] from_col, e_col, to_col = e_type collection = db.collection(e_col) - edge_data: EdgeStorage = pyg_g if is_homogeneous else pyg_g[e_type] - num_edges: int = edge_data.num_edges + df = DataFrame(collection.all()) + df[["from_col", "from_key"]] = df["_from"].str.split("/", 1, True) + df[["to_col", "to_key"]] = df["_to"].str.split("/", 1, True) - # There can be multiple PyG edge types within - # the same ArangoDB edge collection - assert collection.count() >= num_edges + et_df = df[(df["from_col"] == from_col) & (df["to_col"] == to_col)] + assert len(et_df) == edge_data.num_edges - if skip_edge_assertion: - continue + from_nodes = edge_data.edge_index[0].tolist() + to_nodes = edge_data.edge_index[1].tolist() - # TODO: Remove str restriction - has_edge_weight_list = ( - "edge_weight" in edge_data - and type(meta.get("edge_weight", "edge_weight")) is str - ) - has_edge_feature_matrix = ( - "edge_attr" in edge_data and type(meta.get("edge_attr", "edge_attr")) is str - ) - has_edge_target_label = ( - num_edges == len(edge_data.get("y", [])) and type(meta.get("y", "y")) is str - ) + if pyg_map[from_col]: + assert [pyg_map[from_col][n] for n in from_nodes] == et_df["_from"].tolist() - for i, (from_n, to_n) in enumerate(zip(*(edge_data.edge_index.tolist()))): - edge = collection.find( - { - "_from": f"{from_col}/{from_n}", - "_to": f"{to_col}/{to_n}", - } - ).next() + if pyg_map[to_col]: + assert [pyg_map[to_col][n] for n in to_nodes] == et_df["_to"].tolist() - assert edge + if "_key" in edge_data: # preserve_adb_keys = True + assert edge_data["_key"] == et_df["_key"].tolist() - if has_edge_weight_list: - meta_val = meta.get("edge_weight", "edge_weight") - assert meta_val in edge + meta = e_meta.get(e_type, {}) + assert_pyg_to_adb_meta(et_df, meta, edge_data, explicit_metagraph) + + +def assert_pyg_to_adb_meta( + df: DataFrame, + meta: Union[Set[str], Dict[Any, PyGMetagraphValues]], + pyg_data: Union[NodeStorage, EdgeStorage], + explicit_metagraph: bool, +) -> None: + valid_meta: Dict[Any, PyGMetagraphValues] + valid_meta = meta if type(meta) is dict else {m: m for m in meta} + + if explicit_metagraph: + pyg_keys = set(valid_meta.keys()) + else: + pyg_keys = set(k for k, _ in pyg_data.items()) + + for k in pyg_keys: + if k == "edge_index": + continue - edge_weight = edge_data.edge_weight[i] - assert edge_weight.item() == edge[meta_val] + meta_val = valid_meta.get(k, str(k)) + data = pyg_data[k] - if has_edge_feature_matrix: - meta_val = meta.get("edge_attr", "edge_attr") - assert meta_val in edge + if type(data) is list and len(data) == len(df) and type(meta_val) is str: + if meta_val in ["_v_key", "_e_key"]: # Homogeneous situation + meta_val = "_key" - edge_attr = edge_data.edge_attr[i] - assert edge_attr.tolist() == edge[meta_val] + assert meta_val in df + assert df[meta_val].tolist() == data - if has_edge_target_label: - meta_val = meta.get("y", "y") - assert meta_val in edge + if type(data) is Tensor and len(data) == len(df): + if type(meta_val) is str: + assert meta_val in df + assert df[meta_val].tolist() == data.tolist() - y = edge_data.y[i] - try: - y_val = y.item() - except ValueError: - y_val = y.tolist() + if type(meta_val) is list: + assert all([e in df for e in meta_val]) + assert df[meta_val].values.tolist() == data.tolist() - # TODO: remove this ugly hack - if type(edge[meta_val]) is list: - assert [y_val] == edge[meta_val] - else: - assert y_val == edge[meta_val] + if callable(meta_val): + udf_df = meta_val(data) + assert all([column in df for column in udf_df.columns]) + for column in udf_df.columns: + assert df[column].tolist() == udf_df[column].tolist() -def assert_pyg_data(pyg_g: Union[Data, HeteroData], metagraph: ADBMetagraph) -> None: +def assert_adb_to_pyg( + pyg_g: Union[Data, HeteroData], + metagraph: ADBMetagraph, + preserve_adb_keys: bool = False, +) -> None: is_homogeneous = ( len(metagraph["vertexCollections"]) == 1 and len(metagraph["edgeCollections"]) == 1 ) - edge_type_map = dict() - if is_homogeneous: - v_col = list(metagraph["vertexCollections"].keys())[0] - e_col = list(metagraph["edgeCollections"].keys())[0] - edge_type_map[(v_col, e_col, v_col)] = 0 - else: - for edge_type in pyg_g.edge_types: - edge_type_map[edge_type] = 0 - - # Maps ArangoDB IDs to PyG IDs - adb_map = dict() + # Maps ArangoDB Vertex _keys to PyG Node ids + adb_map: ADBMap = defaultdict(dict) - y_val: Any for v_col, meta in metagraph["vertexCollections"].items(): - node_data: NodeStorage = pyg_g if is_homogeneous else pyg_g[v_col] - num_nodes = node_data.num_nodes + node_data: NodeStorage + if is_homogeneous: + node_data = pyg_g + else: + assert v_col in pyg_g.node_types + node_data = pyg_g[v_col] collection = db.collection(v_col) - assert num_nodes == collection.count() - - # TODO: Remove str restriction to introduce Encoder verificiation - has_node_feature_matrix = type(meta.get("x")) is str - has_node_target_label = type(meta.get("y")) is str + assert node_data.num_nodes == collection.count() - for i, doc in enumerate(collection): - adb_map[doc["_id"]] = i + df = DataFrame(collection.all()) + adb_map[v_col] = {adb_id: pyg_id for pyg_id, adb_id in enumerate(df["_key"])} - if has_node_feature_matrix: - x: Tensor = node_data.x[i] - assert [float(num) for num in doc[meta["x"]]] == x.tolist() + if preserve_adb_keys: + k = "_v_key" if is_homogeneous else "_key" + assert k in node_data - if has_node_target_label: - y: Tensor = node_data.y[i] + data = df["_key"].tolist() + assert len(data) == len(node_data[k]) + assert data == node_data[k] - try: - y_val = y.item() - except ValueError: - y_val = y.tolist() - - assert doc[meta["y"]] == y_val + assert_adb_to_pyg_meta(meta, df, node_data) + et_df: DataFrame + v_cols: List[str] = list(metagraph["vertexCollections"].keys()) for e_col, meta in metagraph["edgeCollections"].items(): collection = db.collection(e_col) - collection_count = collection.count() - assert collection_count == pyg_g.num_edges + assert collection.count() <= pyg_g.num_edges - # TODO: Remove str restriction to introduce Encoder verificiation - has_edge_weight_list = type(meta.get("edge_weight")) is str - has_edge_feature_matrix = type(meta.get("edge_attr")) is str - has_edge_target_label = type(meta.get("y")) is str + df = DataFrame(collection.all()) + df[["from_col", "from_key"]] = df["_from"].str.split("/", 1, True) + df[["to_col", "to_key"]] = df["_to"].str.split("/", 1, True) - for edge in collection: - from_adb_col = str(edge["_from"]).split("/")[0] - to_adb_col = str(edge["_to"]).split("/")[0] + for (from_col, to_col), count in ( + df[["from_col", "to_col"]].value_counts().items() + ): + edge_type = (from_col, e_col, to_col) + if from_col not in v_cols or to_col not in v_cols: + continue - edge_type = (from_adb_col, e_col, to_adb_col) - edge_data: EdgeStorage = pyg_g if is_homogeneous else pyg_g[edge_type] + edge_data: EdgeStorage + if is_homogeneous: + edge_data = pyg_g + else: + assert edge_type in pyg_g.edge_types + edge_data = pyg_g[edge_type] - i = edge_type_map[edge_type] - from_pyg_id: Tensor = edge_data.edge_index[0][i] - to_pyg_id: Tensor = edge_data.edge_index[1][i] + assert count == edge_data.num_edges - assert adb_map[edge["_from"]] == from_pyg_id.item() - assert adb_map[edge["_to"]] == to_pyg_id.item() + et_df = df[(df["from_col"] == from_col) & (df["to_col"] == to_col)] + from_nodes = et_df["from_key"].map(adb_map[from_col]).tolist() + to_nodes = et_df["to_key"].map(adb_map[to_col]).tolist() - edge_type_map[edge_type] += 1 + assert from_nodes == edge_data.edge_index[0].tolist() + assert to_nodes == edge_data.edge_index[1].tolist() - if has_edge_weight_list: - assert "edge_weight" in edge_data - assert edge[meta["edge_weight"]] == edge_data.edge_weight[i].item() + if preserve_adb_keys: + k = "_e_key" if is_homogeneous else "_key" + assert k in edge_data - if has_edge_feature_matrix: - assert "edge_attr" in edge_data - assert edge[meta["edge_attr"]] == edge_data.edge_attr[i].tolist() + data = et_df["_key"].tolist() + assert len(data) == len(edge_data[k]) + assert data == edge_data[k] - if has_edge_target_label: - assert "y" in edge_data + assert_adb_to_pyg_meta(meta, et_df, edge_data) - y = edge_data.y[i] - try: - y_val = y.item() - except ValueError: - y_val = y.tolist() - assert edge[meta["y"]] == y_val +def assert_adb_to_pyg_meta( + meta: Union[str, Dict[str, ADBMetagraphValues]], + df: DataFrame, + pyg_data: Union[NodeStorage, EdgeStorage], +) -> None: + valid_meta: Dict[str, ADBMetagraphValues] + valid_meta = meta if type(meta) is dict else {m: m for m in meta} + + for k, v in valid_meta.items(): + assert k in pyg_data + assert type(pyg_data[k]) is Tensor + + t = pyg_data[k].tolist() + if type(v) is str: + data = df[v].tolist() + assert len(data) == len(t) + assert data == t + + if type(v) is dict: + data = [] + for attr, encoder in v.items(): + if encoder is None: + data.append(tensor(df[attr].to_list())) + if callable(encoder): + data.append(encoder(df[attr])) + + cat_data = cat(data, dim=-1).tolist() + assert len(cat_data) == len(t) + assert cat_data == t + + if callable(v): + data = v(df).tolist() + assert len(data) == len(t) + assert data == t
Import: Karate_N (34) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): Karate_N (34) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('Karate_N', 'Karate_E', 'Karate_N') (156) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('Karate_N', 'Karate_E', 'Karate_N') (156) ▰▰▱▱▱▱▱ 0:00:00\n
Import: FakeHomo_N (25) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): FakeHomo_N (36) ▰▰▰▰▰▱▱ 0:00:00\n
Import: ('FakeHomo_N', 'FakeHomo_E', 'FakeHomo_N') (346) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('FakeHomo_N', 'FakeHomo_E', 'FakeHomo_N') (556) ▰▰▱▱▱▱▱ 0:00:00\n
Import: v0 (29) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v0 (25) ▰▰▰▱▱▱▱ 0:00:00\n
Import: v1 (27) ▰▰▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v1 (33) ▰▰▰▱▱▱▱ 0:00:00\n
Import: v2 (27) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v2 (22) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v1', 'e0', 'v1') (228) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v0', 'e0', 'v2') (203) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v2', 'e0', 'v2') (225) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v0', 'e0', 'v1') (213) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v1', 'e0', 'v2') (218) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v2', 'e0', 'v2') (177) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v2', 'e0', 'v1') (219) ▰▰▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v0', 'e0', 'v0') (215) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v1', 'e0', 'v0') (233) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v1', 'e0', 'v2') (262) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v0', 'e0', 'v2') (250) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v2', 'e0', 'v0') (175) ▰▰▱▱▱▱▱ 0:00:00\n
Import: v0 (18) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v0 (15) ▰▰▱▱▱▱▱ 0:00:00\n
Import: v1 (19) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v1 (19) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v1', 'e0', 'v1') (154) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v1', 'e0', 'v0') (142) ▰▰▰▱▱▱▱ 0:00:00\n
Import: ('v1', 'e0', 'v0') (141) ▰▰▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v0', 'e0', 'v1') (115) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v0', 'e0', 'v0') (134) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v0', 'e0', 'v0') (115) ▰▰▱▱▱▱▱ 0:00:00\n
Import: v0 (34) ▰▰▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v0 (37) ▰▰▰▱▱▱▱ 0:00:00\n
Import: v1 (37) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v1 (36) ▰▰▰▱▱▱▱ 0:00:00\n
Import: v2 (24) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v2 (33) ▰▰▰▰▱▱▱ 0:00:00\n
Import: ('v1', 'e0', 'v2') (304) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v2', 'e0', 'v0') (290) ▰▰▰▰▰▱▱ 0:00:00\n
Import: ('v0', 'e0', 'v0') (281) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v1', 'e0', 'v0') (317) ▰▰▰▱▱▱▱ 0:00:00\n
Import: ('v0', 'e0', 'v2') (273) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v0', 'e0', 'v1') (328) ▰▰▰▱▱▱▱ 0:00:00\n
Import: ('v2', 'e0', 'v1') (206) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v1', 'e0', 'v1') (307) ▰▰▰▱▱▱▱ 0:00:00\n
Import: ('v2', 'e0', 'v0') (213) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v1', 'e0', 'v2') (319) ▰▰▰▱▱▱▱ 0:00:00\n
Import: ('v1', 'e0', 'v1') (325) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v0', 'e0', 'v2') (324) ▰▰▰▱▱▱▱ 0:00:00\n
Import: v0 (19) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v0 (21) ▰▰▰▱▱▱▱ 0:00:00\n
Import: v1 (16) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): v1 (17) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v1', 'e0', 'v0') (128) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v1', 'e0', 'v1') (128) ▰▰▰▱▱▱▱ 0:00:00\n
Import: ('v0', 'e0', 'v1') (144) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v1', 'e0', 'v0') (139) ▰▰▱▱▱▱▱ 0:00:00\n
Import: ('v0', 'e0', 'v0') (146) ▰▱▱▱▱▱▱ 0:00:00\n
(PyG → ADB): ('v0', 'e0', 'v1') (167) ▰▰▱▱▱▱▱ 0:00:00\n
Export: v0 ▰▱▱▱▱▱▱ 0:00:00\n
(ADB → PyG): v0 ▰▰▱▱▱▱▱ 0:00:00\n
Export: v1 ▰▱▱▱▱▱▱ 0:00:00\n
(ADB → PyG): v1 ▰▰▱▱▱▱▱ 0:00:00\n
Export: e0 ▰▱▱▱▱▱▱ 0:00:00\n
(ADB → PyG): e0 ▰▰▰▱▱▱▱ 0:00:00\n
(ADB → PyG): e0 ▰▰▱▱▱▱▱ 0:00:00\n
Export: Movies ▰▰▱▱▱▱▱ 0:00:00\n
(ADB → PyG): Movies ▰▱▱▱▱▱▱ 0:00:00\n
Export: Users ▰▱▱▱▱▱▱ 0:00:00\n
(ADB → PyG): Users ▰▰▱▱▱▱▱ 0:00:00\n
Export: Ratings ▰▰▰▰▱▱▱ 0:00:01\n
(ADB → PyG): Ratings ▰▰▰▰▰▱▱ 0:00:10\n