forked from AeroQuad/AeroQuad
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGyro.h
669 lines (576 loc) · 22 KB
/
Gyro.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
/*
AeroQuad v2.3 - March 2011
www.AeroQuad.com
Copyright (c) 2011 Ted Carancho. All rights reserved.
An Open Source Arduino based multicopter.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
class Gyro {
public:
float gyroFullScaleOutput;
float gyroScaleFactor;
float smoothFactor;
int gyroChannel[3];
float gyroData[3];
#if defined(AeroQuadMega_CHR6DM) || defined(APM_OP_CHR6DM)
float gyroZero[3];
#else
int gyroZero[3];
#endif
int gyroADC[3];
byte rollChannel, pitchChannel, yawChannel;
int sign[3];
float rawHeading, gyroHeading;
//unsigned long currentTime, previousTime; // AKA - Changed to remove HONKS time smoothing
// ************ Correct for gyro drift by FabQuad **************
// ************ http://aeroquad.com/entry.php?4- **************
//int lastReceiverYaw, receiverYaw;
//long yawAge;
//int positiveGyroYawCount;
//int negativeGyroYawCount;
//int zeroGyroYawCount;
Gyro(void){
sign[ROLL] = 1;
sign[PITCH] = 1;
sign[YAW] = 1;
}
// The following function calls must be defined in any new subclasses
virtual void initialize(byte rollChannel, byte pitchChannel, byte yawChannel) {
this->_initialize(rollChannel, pitchChannel, yawChannel);
}
virtual void measure(void);
virtual void calibrate(void);
virtual void autoZero(void){};
virtual const int getFlightData(byte);
// The following functions are common between all Gyro subclasses
void _initialize(byte rollChannel, byte pitchChannel, byte yawChannel) {
gyroChannel[ROLL] = rollChannel;
gyroChannel[PITCH] = pitchChannel;
gyroChannel[ZAXIS] = yawChannel;
gyroZero[ROLL] = readFloat(GYRO_ROLL_ZERO_ADR);
gyroZero[PITCH] = readFloat(GYRO_PITCH_ZERO_ADR);
gyroZero[ZAXIS] = readFloat(GYRO_YAW_ZERO_ADR);
smoothFactor = readFloat(GYROSMOOTH_ADR);
//previousTime = micros();
}
// returns the raw ADC value from the gyro, with sign change if needed, not smoothed or scaled to SI units
const int getRaw(byte axis) {
return gyroADC[axis] * sign[axis];
}
// returns the smoothed and scaled to SI units value of the Gyro with sign change if needed
// centered on zero radians +/-
const float getData(byte axis) {
return gyroData[axis] * sign[axis];
}
// inverts, if needed the sign on the specific axis
const int invert(byte axis) {
sign[axis] = -sign[axis];
return sign[axis];
}
const int getZero(byte axis) {
return gyroZero[axis];
}
void setZero(byte axis, int value) {
gyroZero[axis] = value;
}
// returns the scale factor used for SI units on the gyro
const float getScaleFactor() {
return gyroScaleFactor;
}
// returns the smooth factor used on the gyro
const float getSmoothFactor(void) {
return smoothFactor;
}
void setSmoothFactor(float value) {
smoothFactor = value;
}
/* AKA commented out, not used and not correct based upon SI unit conversion
const float rateDegPerSec(byte axis) {
return ((gyroADC[axis] * sign[axis])) * gyroScaleFactor;
}
const float rateRadPerSec(byte axis) {
return radians(rateDegPerSec(axis));
}
*/
// returns gyro based heading as +/- PI in radians
const float getHeading(void) {
div_t integerDivide;
integerDivide = div(rawHeading, 2*PI);
gyroHeading = rawHeading + (integerDivide.quot * -(2*PI));
if (gyroHeading > PI) gyroHeading -= (2*PI);
if (gyroHeading < -PI) gyroHeading += (2*PI);
return gyroHeading;
}
/* AKA commeted out as not used
const float getRawHeading(void) {
return rawHeading;
}
void setStartHeading(float value) {
// since a relative heading, get starting absolute heading from compass class
rawHeading = value;
}
*/
/*
void setReceiverYaw(int value) {
receiverYaw = value;
}
*/
};
/******************************************************/
/****************** AeroQuad_v1 Gyro ******************/
/******************************************************/
#if defined(AeroQuad_v1) || defined(AeroQuad_v1_IDG) || defined(AeroQuadMega_v1)
class Gyro_AeroQuad_v1 : public Gyro {
public:
Gyro_AeroQuad_v1() : Gyro() {
}
void initialize(void) {
analogReference(EXTERNAL);
// Configure gyro auto zero pins
pinMode (AZPIN, OUTPUT);
digitalWrite(AZPIN, LOW);
delay(1);
// rollChannel = 4
// pitchChannel = 3
// yawChannel = 5
this->_initialize(4,3,5);
gyroFullScaleOutput = 500.0; // IDG/IXZ500 full scale output = +/- 500 deg/sec
gyroScaleFactor = radians((aref/1024.0) / 0.002); // IDG/IXZ500 sensitivity = 2mV/(deg/sec)
}
void measure(void) {
for (byte axis = ROLL; axis < LASTAXIS; axis++) {
if (axis == PITCH)
gyroADC[axis] = analogRead(gyroChannel[axis]) - gyroZero[axis];
else
gyroADC[axis] = gyroZero[axis] - analogRead(gyroChannel[axis]);
gyroData[axis] = filterSmooth(gyroADC[axis] * gyroScaleFactor, gyroData[axis], smoothFactor);
}
}
const int getFlightData(byte axis) {
return getRaw(axis);
}
void calibrate() {
autoZero();
writeFloat(gyroZero[ROLL], GYRO_ROLL_ZERO_ADR);
writeFloat(gyroZero[PITCH], GYRO_PITCH_ZERO_ADR);
writeFloat(gyroZero[YAW], GYRO_YAW_ZERO_ADR);
}
void autoZero() {
int findZero[FINDZERO];
digitalWrite(AZPIN, HIGH);
delayMicroseconds(750);
digitalWrite(AZPIN, LOW);
delay(8);
for (byte calAxis = ROLL; calAxis < LASTAXIS; calAxis++) {
for (int i=0; i<FINDZERO; i++)
findZero[i] = analogRead(gyroChannel[calAxis]);
gyroZero[calAxis] = findMedian(findZero, FINDZERO);
}
}
};
#endif
/******************************************************/
/****************** AeroQuad_v2 Gyro ******************/
/******************************************************/
#if defined(AeroQuad_v18) || defined(AeroQuadMega_v2)
/*
10kOhm pull-ups on I2C lines.
VDD & VIO = 3.3V
SDA -> A4 (PC4)
SCL -> A5 (PC5)
INT -> D2 (PB2) (or no connection, not used here)
CLK -> GND
*/
class Gyro_AeroQuadMega_v2 : public Gyro {
private:
int gyroAddress;
long int previousGyroTime;
int gyroLastADC;
public:
Gyro_AeroQuadMega_v2() : Gyro() {
gyroAddress = 0x69;
gyroFullScaleOutput = 2000.0; // ITG3200 full scale output = +/- 2000 deg/sec
gyroScaleFactor = radians(1.0 / 14.375); // ITG3200 14.375 LSBs per °/sec
/*
lastReceiverYaw=0;
yawAge=0;
positiveGyroYawCount=1;
negativeGyroYawCount=1;
zeroGyroYawCount=1;
*/
previousGyroTime = micros();
}
void initialize(void) {
this->_initialize(0,1,2);
gyroLastADC = 0; // initalize for rawHeading, may be able to be removed in the future
// Check if gyro is connected
if (readWhoI2C(gyroAddress) != gyroAddress)
Serial.println("Gyro not found!");
// Thanks to SwiftingSpeed for updates on these settings
// http://aeroquad.com/showthread.php?991-AeroQuad-Flight-Software-v2.0&p=11207&viewfull=1#post11207
updateRegisterI2C(gyroAddress, 0x3E, 0x80); // send a reset to the device
updateRegisterI2C(gyroAddress, 0x16, 0x1D); // 10Hz low pass filter
updateRegisterI2C(gyroAddress, 0x3E, 0x01); // use internal oscillator
}
void measure(void) {
sendByteI2C(gyroAddress, 0x1D);
Wire.requestFrom(gyroAddress, 6);
for (byte axis = ROLL; axis < LASTAXIS; axis++) {
if (axis == ROLL)
gyroADC[axis] = ((Wire.receive() << 8) | Wire.receive()) - gyroZero[axis];
else
gyroADC[axis] = gyroZero[axis] - ((Wire.receive() << 8) | Wire.receive());
gyroData[axis] = filterSmooth((float)gyroADC[axis] * gyroScaleFactor, gyroData[axis], smoothFactor);
}
//calculateHeading();
// gyroLastADC can maybe replaced with Zero, but will leave as is for now
// this provides a small guard band for the gyro on Yaw before it increments or decrements the rawHeading
long int currentGyroTime = micros();
if ((gyroADC[YAW] - gyroLastADC) > 3 || (gyroADC[YAW] - gyroLastADC) < -3) {
//Serial.print(gyroADC[YAW]);
//Serial.print(",");
//Serial.print(rawHeading);
//Serial.print(",");
//Serial.print(currentGyroTime - previousGyroTime);
//Serial.print(",");
rawHeading += gyroADC[YAW] * gyroScaleFactor * ((currentGyroTime - previousGyroTime) / 1000000.0);
//Serial.print(rawHeading);
//Serial.println();
}
previousGyroTime = currentGyroTime;
//gyroLastADC = gyroADC[YAW];
/*
// ************ Correct for gyro drift by FabQuad **************
// ************ http://aeroquad.com/entry.php?4- **************
// Modified FabQuad's approach to use yaw transmitter command instead of checking accelerometer
if (abs(lastReceiverYaw - receiverYaw) < 15) {
yawAge++;
if (yawAge >= 4) { // if gyro was the same long enough, we can assume that there is no (fast) rotation
if (gyroData[YAW] < 0) {
negativeGyroYawCount++; // if gyro still indicates negative rotation, that's additional signal that gyroZero is too low
}
else if (gyroData[YAW] > 0) {
positiveGyroYawCount++; // additional signal that gyroZero is too high
}
else {
zeroGyroYawCount++; // additional signal that gyroZero is correct
}
yawAge = 0;
if (zeroGyroYawCount + negativeGyroYawCount + positiveGyroYawCount > 50) {
if (3*negativeGyroYawCount >= 4*(zeroGyroYawCount+positiveGyroYawCount))
gyroZero[YAW]--; // enough signals the gyroZero is too low
if (3*positiveGyroYawCount >= 4*(zeroGyroYawCount+negativeGyroYawCount))
gyroZero[YAW]++; // enough signals the gyroZero is too high
zeroGyroYawCount=0;
negativeGyroYawCount=0;
positiveGyroYawCount=0;
}
}
}
else { // gyro different, restart
lastReceiverYaw = receiverYaw;
yawAge = 0;
}
*/
}
// returns raw ADC data from the Gyro centered on zero +/- values
const int getFlightData(byte axis) {
//int reducedData = getRaw(axis) >> 3;
//if ((reducedData < 5) && (reducedData > -5)) reducedData = 0;
if (axis == PITCH)
return -(getRaw(axis) >> 3);
else
return (getRaw(axis) >> 3);
}
void calibrate() {
autoZero();
writeFloat(gyroZero[ROLL], GYRO_ROLL_ZERO_ADR);
writeFloat(gyroZero[PITCH], GYRO_PITCH_ZERO_ADR);
writeFloat(gyroZero[YAW], GYRO_YAW_ZERO_ADR);
}
void autoZero() {
int findZero[FINDZERO];
for (byte calAxis = ROLL; calAxis < LASTAXIS; calAxis++) {
for (int i=0; i<FINDZERO; i++) {
sendByteI2C(gyroAddress, (calAxis * 2) + 0x1D);
findZero[i] = readWordI2C(gyroAddress);
delay(10);
}
gyroZero[calAxis] = findMedian(findZero, FINDZERO);
}
}
};
#endif
/******************************************************/
/**************** ArduCopter Gyro *********************/
/******************************************************/
#ifdef ArduCopter
class Gyro_ArduCopter : public Gyro {
private:
int rawADC;
public:
Gyro_ArduCopter() : Gyro() {
gyroScaleFactor = radians((3.3/4096) / 0.002); // IDG/IXZ500 sensitivity = 2mV/(deg/sec)
gyroFullScaleOutput = 500.0; // IDG/IXZ500 full scale output = +/- 500 deg/sec
}
void initialize(void) {
// old AQ way
// rollChannel = 1
// pitchChannel = 2
// yawChannel = 0
// revised in 2.3 way
// rollChannel = 0
// pitchChannel = 1
// yawChannel = 2
this->_initialize(0, 1, 2);
initialize_ArduCopter_ADC(); // this is needed for both gyros and accels, done once in this class
smoothFactor = readFloat(GYROSMOOTH_ADR);
}
void measure(void) {
for (byte axis = ROLL; axis < LASTAXIS; axis++) {
rawADC = analogRead_ArduCopter_ADC(gyroChannel[axis]);
if (rawADC > 500) // Check if good measurement
if (axis == ROLL)
gyroADC[axis] = rawADC - gyroZero[axis];
else
gyroADC[axis] = gyroZero[axis] - rawADC;
gyroData[axis] = filterSmooth(gyroADC[axis] * gyroScaleFactor, gyroData[axis], smoothFactor);
}
}
const int getFlightData(byte axis) {
if (axis == PITCH)
return -getRaw(axis);
else
return getRaw(axis);
}
void calibrate() {
autoZero();
writeFloat(gyroZero[ROLL], GYRO_ROLL_ZERO_ADR);
writeFloat(gyroZero[PITCH], GYRO_PITCH_ZERO_ADR);
writeFloat(gyroZero[YAW], GYRO_YAW_ZERO_ADR);
}
void autoZero() {
int findZero[FINDZERO];
for (byte calAxis = ROLL; calAxis < LASTAXIS; calAxis++) {
for (int i=0; i<FINDZERO; i++) {
findZero[i] = analogRead_ArduCopter_ADC(gyroChannel[calAxis]);
delay(10);
}
gyroZero[calAxis] = findMedian(findZero, FINDZERO);
}
}
};
#endif
/******************************************************/
/********************** Wii Gyro **********************/
/******************************************************/
#if defined(AeroQuad_Wii) || defined(AeroQuadMega_Wii)
class Gyro_Wii : public Gyro {
private:
public:
Gyro_Wii() : Gyro() {
// 0.5mV/º/s, 0.2mV/ADC step => 0.2/3.33 = around 0.069565217391304
// @see http://invensense.com/mems/gyro/documents/PS-IDG-0650B-00-05.pdf and
// @see http://invensense.com/mems/gyro/documents/ps-isz-0650b-00-05.pdf
gyroFullScaleOutput = 2000;
gyroScaleFactor = radians(0.06201166);
}
void initialize(void) {
Init_Gyro_Acc(); // defined in DataAquisition.h
smoothFactor = readFloat(GYROSMOOTH_ADR);
gyroZero[ROLL] = readFloat(GYRO_ROLL_ZERO_ADR);
gyroZero[PITCH] = readFloat(GYRO_PITCH_ZERO_ADR);
gyroZero[ZAXIS] = readFloat(GYRO_YAW_ZERO_ADR);
}
void measure(void) {
updateControls(); // defined in DataAcquisition.h
for (byte axis = ROLL; axis < LASTAXIS; axis++) {
gyroADC[axis] = NWMP_gyro[axis] - gyroZero[axis];
gyroData[axis] = filterSmooth(gyroADC[axis] * gyroScaleFactor, gyroData[axis], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
//gyroADC[PITCH] = NWMP_gyro[PITCH] - gyroZero[PITCH];
//gyroData[PITCH] = filterSmooth(gyroADC[PITCH] * gyroScaleFactor, gyroData[PITCH], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
//gyroADC[YAW] = NWMP_gyro[YAW] - gyroZero[YAW];
//gyroData[YAW] = filterSmooth(gyroADC[YAW] * gyroScaleFactor, gyroData[YAW], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
}
}
const int getFlightData(byte axis) {
if (axis == PITCH)
return -getRaw(PITCH);
else
return getRaw(axis);
}
void calibrate() {
int findZero[FINDZERO];
for (byte calAxis = ROLL; calAxis < LASTAXIS; calAxis++) {
for (int i=0; i<FINDZERO; i++) {
updateControls();
findZero[i] = NWMP_gyro[calAxis];
}
gyroZero[calAxis] = findMedian(findZero, FINDZERO);
}
writeFloat(gyroZero[ROLL], GYRO_ROLL_ZERO_ADR);
writeFloat(gyroZero[PITCH], GYRO_PITCH_ZERO_ADR);
writeFloat(gyroZero[YAW], GYRO_YAW_ZERO_ADR);
}
};
#endif
/******************************************************/
/********************** CHR6DM Gyro **********************/
/******************************************************/
#if defined(AeroQuadMega_CHR6DM) || defined(APM_OP_CHR6DM)
class Gyro_CHR6DM : public Gyro {
public:
Gyro_CHR6DM() : Gyro() {
gyroFullScaleOutput = 0;
gyroScaleFactor = 0;
}
void initialize(void) {
smoothFactor = readFloat(GYROSMOOTH_ADR);
gyroZero[ROLL] = readFloat(GYRO_ROLL_ZERO_ADR);
gyroZero[PITCH] = readFloat(GYRO_PITCH_ZERO_ADR);
gyroZero[ZAXIS] = readFloat(GYRO_YAW_ZERO_ADR);
initCHR6DM();
}
void measure(void) {
//currentTime = micros();
readCHR6DM();
gyroADC[ROLL] = chr6dm.data.rollRate - gyroZero[ROLL]; //gx yawRate
gyroADC[PITCH] = gyroZero[PITCH] - chr6dm.data.pitchRate; //gy pitchRate
gyroADC[YAW] = chr6dm.data.yawRate - gyroZero[ZAXIS]; //gz rollRate
//gyroData[ROLL] = filterSmoothWithTime(gyroADC[ROLL], gyroData[ROLL], smoothFactor, ((currentTime - previousTime) / 5000.0)); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
//gyroData[PITCH] = filterSmoothWithTime(gyroADC[PITCH], gyroData[PITCH], smoothFactor, ((currentTime - previousTime) / 5000.0)); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
//gyroData[YAW] = filterSmoothWithTime(gyroADC[YAW], gyroData[YAW], smoothFactor, ((currentTime - previousTime) / 5000.0)); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
gyroData[ROLL] = filterSmooth(gyroADC[ROLL], gyroData[ROLL], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
gyroData[PITCH] = filterSmooth(gyroADC[PITCH], gyroData[PITCH], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
gyroData[YAW] = filterSmooth(gyroADC[YAW], gyroData[YAW], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
//previousTime = currentTime;
}
const int getFlightData(byte axis) {
return getRaw(axis);
}
void calibrate() {
float zeroXreads[FINDZERO];
float zeroYreads[FINDZERO];
float zeroZreads[FINDZERO];
for (int i=0; i<FINDZERO; i++) {
readCHR6DM();
zeroXreads[i] = chr6dm.data.rollRate;
zeroYreads[i] = chr6dm.data.pitchRate;
zeroZreads[i] = chr6dm.data.yawRate;
}
gyroZero[XAXIS] = findMedian(zeroXreads, FINDZERO);
gyroZero[YAXIS] = findMedian(zeroYreads, FINDZERO);
gyroZero[ZAXIS] = findMedian(zeroZreads, FINDZERO);
writeFloat(gyroZero[ROLL], GYRO_ROLL_ZERO_ADR);
writeFloat(gyroZero[PITCH], GYRO_PITCH_ZERO_ADR);
writeFloat(gyroZero[YAW], GYRO_YAW_ZERO_ADR);
}
};
#endif
/*************************************************/
/***************** CHR6DM FAKE Gyro **************/
/*************************************************/
#ifdef CHR6DM_FAKE_GYRO
class Gyro_CHR6DM_Fake : public Gyro {
public:
float fakeGyroRoll;
float fakeGyroPitch;
float fakeGyroYaw;
Gyro_CHR6DM_Fake() : Gyro() {
gyroFullScaleOutput = 0;
gyroScaleFactor = 0;
}
void initialize(void) {
smoothFactor = readFloat(GYROSMOOTH_ADR);
gyroZero[ROLL] = readFloat(GYRO_ROLL_ZERO_ADR);
gyroZero[PITCH] = readFloat(GYRO_PITCH_ZERO_ADR);
gyroZero[ZAXIS] = readFloat(GYRO_YAW_ZERO_ADR);
gyroZero[ROLL] = 0;
gyroZero[PITCH] = 0;
gyroZero[ZAXIS] = 0;
}
void measure(void) {
//currentTime = micros();
readFakeValues();
gyroADC[ROLL] = fakeGyroRoll - gyroZero[ROLL]; //gx yawRate
gyroADC[PITCH] = fakeGyroPitch - gyroZero[PITCH]; //gy pitchRate
gyroADC[YAW] = fakeGyroYaw - gyroZero[ZAXIS]; //gz rollRate
//gyroData[ROLL] = filterSmooth(gyroADC[ROLL], gyroData[ROLL], smoothFactor, ((currentTime - previousTime) / 5000.0)); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
//gyroData[PITCH] = filterSmooth(gyroADC[PITCH], gyroData[PITCH], smoothFactor, ((currentTime - previousTime) / 5000.0)); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
//gyroData[YAW] = filterSmooth(gyroADC[YAW], gyroData[YAW], smoothFactor, ((currentTime - previousTime) / 5000.0)); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
gyroData[ROLL] = filterSmooth(gyroADC[ROLL], gyroData[ROLL], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
gyroData[PITCH] = filterSmooth(gyroADC[PITCH], gyroData[PITCH], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
gyroData[YAW] = filterSmooth(gyroADC[YAW], gyroData[YAW], smoothFactor); //expect 5ms = 5000µs = (current-previous) / 5000.0 to get around 1
//previousTime = currentTime;
}
const int getFlightData(byte axis) {
return getRaw(axis);
}
void calibrate() {
float zeroXreads[FINDZERO];
float zeroYreads[FINDZERO];
float zeroZreads[FINDZERO];
for (int i=0; i<FINDZERO; i++) {
readFakeValues();
zeroXreads[i] = fakeGyroRoll;
zeroYreads[i] = fakeGyroPitch;
zeroZreads[i] = fakeGyroYaw;
}
gyroZero[XAXIS] = findMedian(zeroXreads, FINDZERO);
gyroZero[YAXIS] = findMedian(zeroYreads, FINDZERO);
gyroZero[ZAXIS] = findMedian(zeroZreads, FINDZERO);
writeFloat(gyroZero[ROLL], GYRO_ROLL_ZERO_ADR);
writeFloat(gyroZero[PITCH], GYRO_PITCH_ZERO_ADR);
writeFloat(gyroZero[YAW], GYRO_YAW_ZERO_ADR);
}
void readFakeValues(){
if (!syncToHeader()){
return;
}
fakeGyroRoll = readInt();
fakeGyroPitch = readInt();
fakeGyroYaw = readInt();
fakeAccelRoll = readInt();
fakeAccelPitch = readInt();
fakeAccelYaw = readInt();
Serial2.print("fakeGyroRoll=");
Serial2.println(fakeGyroRoll);
Serial2.print("fakeGyroPitch=");
Serial2.println(fakeGyroPitch);
Serial2.print("fakeGyroYaw=");
Serial2.println(fakeGyroYaw);
Serial2.print("fakeAccelRoll=");
Serial2.println(fakeAccelRoll);
Serial2.print("fakeAccelPitch=");
Serial2.println(fakeAccelPitch);
Serial2.print("fakeAccelYaw=");
Serial2.println(fakeAccelYaw);
}
int readInt() {
return word(blockingRead(),blockingRead());
}
int blockingRead() {
int read=-1;
long starttime = millis();
while(read==-1 && (millis()-starttime)<100) {
read = Serial2.read();
}
return read;
}
bool syncToHeader() {
while (Serial2.available()>0){
if (blockingRead()=='a' && blockingRead()=='b' && blockingRead()=='c' ) return true;
}
return false;
}
};
#endif