-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoPG_ss.py
559 lines (389 loc) · 18.2 KB
/
coPG_ss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import numpy as np
import torch
import matplotlib.pyplot as plt
#%matplotlib inline
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch import float32
from time import time
from torch.distributions import Normal
from train_dqn import main, evaluate, load_models
import gym
import make_env
from multiagent.environment import MultiAgentEnv
import multiagent.scenarios as scenarios
from copg_optim import CoPG
import random
gridsize = 15
def_pos = []
defender_rewards = []
poacher_rewards = []
opt_allocations = []
def_pos = []
poacher_pos = []
def_visits = []
poacher_visits = []
class Config(object):
def __init__(self):
self.save_model = False
self.dtype = float32
self.dtype_long = torch.long
self.debug = False
self.true_embeddings = True
self.embed_lr = 1e-4
self.reduced_action_dim = 10
self.buffer_size = 20
self.initial_phase_epochs = 1000
self.device = 'cuda'
self.emb_flag = 'exec'
self.TIS = False #Importance sampling
self.emb_lambda = 1.0
self.save_after = 50000
self.restore = False
self.max_episodes = 10000
self.initial_phase_epochs = 500
self.feature_dim = [256]
self.actor_lr = 1e-3
self.critic_lr = 1e-2
self.state_lr = 1e-3
self.gauss_variance = -1
self.fourier_order = 0
class Config_poacher(object):
def __init__(self):
self.save_model = False
self.dtype = float32
self.dtype_long = torch.long
self.debug = False
self.true_embeddings = True #True for pre-trained embeddings
self.embed_lr = 1e-4
self.reduced_action_dim = 2 #Embedding size
self.buffer_size = 20 #Supervised memory size for learning embeddings
self.initial_phase_epochs = 1000
self.device = 'cuda'
self.emb_flag = 'exec' #Whether to choose sampled embedding output by algorithm or to use the embedding out of 20k which is at least distance from it
self.TIS = False #Importance sampling
self.emb_lambda = 1.0
self.save_after = 50000
self.restore = False
self.max_episodes = 10000
self.initial_phase_epochs = 500 #For learning embeddings only
self.feature_dim = [32] #Dimensionality of features output by the state feature network. These go as input to the actor and critic
self.actor_lr = 1e-3 #Acor learning rate
self.critic_lr = 1e-2
self.state_lr = 1e-3 #For network that takes state as input and outputs state features
self.gauss_variance = -1
self.fourier_order = 0
self.state_dim = 225*2
self.action_dim = 225
class Action_representation():
def __init__(self,config,embeddins):
#self.state_dim = 225*2 #The dimensionality of state features
#self.action_dim = 10000
self.config = config
embeddings = embeddins
embeddings = np.expand_dims(embeddings, axis=0)
maxi, mini = np.max(embeddings), np.min(embeddings)
embeddings = ((embeddings - mini)/(maxi-mini))*2 - 1 # Normalize to (-1, 1)
self.embeddings = Variable(torch.from_numpy(embeddings).type(self.config.dtype), requires_grad=False)
self.reduced_action_dim = np.shape(embeddings)[2] #Latent dimensionality; Embedding shape : (1, n_actions,latent_dims)
def get_match_scores(self, action):
action = action.unsqueeze(1) #predicted embedding
embeddings = self.embeddings
diff = torch.norm(embeddings - action, p=2, dim=-1)
return diff
def get_best_match(self, action): #action here is the predicted embedding
diff = self.get_match_scores(action)
val, pos = torch.min(diff, dim=1)
return pos.cpu().data.numpy()[0]
def get_match_dist(self, action):
diff = self.get_match_scores(action)
probs = F.softmax(-diff, dim=-1) # probs = F.softmax(1.0/(diff+1e-10), dim=-1)
return probs
def get_embedding(self, action):
# Get the corresponding target embedding
action_emb = self.embeddings[:, action]
return action_emb
class Actor(nn.Module):
def __init__(self, feature_dim, action_dim, varf):
super(Actor, self).__init__()
#self.conv1 = nn.Conv2d(num_inputs,10, 3,padding=1)
self.linear1 = nn.Linear(225, feature_dim)
self.mean = nn.Linear(feature_dim, action_dim)
self.variance = nn.Linear(feature_dim, action_dim)
self.varf = varf
def forward(self, x):
x = Variable(torch.from_numpy(x).float(), requires_grad=False)
#x = F.relu(self.conv1(x))
#x = x.view(-1,4500)
x = F.tanh(self.linear1(x))
mean = F.tanh(self.mean(x))
var = F.sigmoid(self.variance(x)) + self.varf
#var = torch.ones_like(mean, requires_grad=False) * self.varf
return mean, var
def get_action_1(self, state):
mean, var = self.forward(state)
dist = Normal(mean, var)
action = dist.sample()
# action = torch.clamp(action, -1, 1) #DONT DO THIS
return action
def get_log_prob(self, state, action1):
mean, var = self.forward(state)
dist = Normal(mean, var)
#print(mean.size(), var.size(), action1.size())
return dist.log_prob(action1)
class Critic(nn.Module):
def __init__(self, feature_dim):
super(Critic, self).__init__()
self.critic = nn.Sequential(nn.Linear(225, feature_dim),
nn.Tanh(),
nn.Linear(feature_dim, 1))
def forward(self, state):
state = Variable(torch.from_numpy(state).float(), requires_grad=False)
value = self.critic(state)
return value
class CGDAgent(object):
"""Deep Q-learning agent."""
def __init__(self,config_d, config_p, embeddings_d, embeddings_p, feature_dim_d, action_dim_d, feature_dim_p, action_dim_p):
"""Set parameters, initialize network."""
self.actor_d = Actor(feature_dim_d, action_dim_d, 1e-2) #4e-1
self.actor_p = Actor(feature_dim_p, action_dim_p, 1e-2)
self.critic = Critic(feature_dim_d)
self.action_rep_d = Action_representation(config_d,embeddings_d)
self.action_rep_p = Action_representation(config_p,embeddings_p)
self.optim_actor = CoPG(self.actor_d.parameters(),self.actor_p.parameters(), lr =4e-5)
self.optim_critic = torch.optim.Adam(self.critic.parameters(), lr=1e-2)
self.ep_rewards1 = []
self.ep_rewards2 = []
self.ep_states = []
self.ep_actions1 = []
self.ep_actions2 = []
self.ep_exec_action_embs1 = []
self.ep_chosen_action_embs1 = []
self.ep_exec_action_embs2 = []
self.ep_chosen_action_embs2 = []
self.atype = config_d.dtype
self.config_d = config_d
self.config_p = config_p
def get_action_d(self, state):
state = np.float32(state)
if len(state.shape) == 1:
state = np.expand_dims(state, 0)
chosen_action_emb = self.actor_d.get_action_1(state)
action = self.action_rep_d.get_best_match(chosen_action_emb)
exec_action_emb = self.action_rep_d.get_embedding(action).cpu().view(-1).data.numpy()
chosen_action_emb = chosen_action_emb.cpu().view(-1).data.numpy()
return action, (exec_action_emb, chosen_action_emb)
def get_action_p(self, state):
state = np.float32(state)
if len(state.shape) == 1:
state = np.expand_dims(state, 0)
chosen_action_emb = self.actor_p.get_action_1(state)
action = self.action_rep_p.get_best_match(chosen_action_emb)
exec_action_emb = self.action_rep_p.get_embedding(action).cpu().view(-1).data.numpy()
chosen_action_emb = chosen_action_emb.cpu().view(-1).data.numpy()
return action, (exec_action_emb, chosen_action_emb)
def update(self, s, a1, a2, a_emb1, a_emb2, r1, r2):
# Store the episode history
for i in range(len(s)):
self.ep_rewards1.append(r1[i])
self.ep_rewards2.append(r2[i])
self.ep_states.append(s[i])
self.ep_actions1.append(int(a1[i]))
self.ep_actions2.append(int(a2[i]))
self.ep_exec_action_embs1.append(a_emb1[i][0])
self.ep_chosen_action_embs1.append(a_emb1[i][1])
self.ep_exec_action_embs2.append(a_emb2[i][0])
self.ep_chosen_action_embs2.append(a_emb2[i][1])
self.optimize(np.float32(self.ep_states), np.float32(self.ep_actions1), np.float32(self.ep_actions2), np.float32(self.ep_exec_action_embs1), np.float32(self.ep_chosen_action_embs1),
np.float32(self.ep_exec_action_embs2), np.float32(self.ep_chosen_action_embs2), np.float32(self.ep_rewards1), np.float32(self.ep_rewards2))
# Reset the episode history
self.ep_rewards1 = []
self.ep_rewards2 = []
self.ep_states = []
self.ep_actions1 = []
self.ep_actions2 = []
self.ep_exec_action_embs1 = []
self.ep_chosen_action_embs1 = []
self.ep_exec_action_embs2 = []
self.ep_chosen_action_embs2 = []
'''def check_nan(self):
# Check for nan periodically
self.ctr += 1
if self.ctr == self.nan_check_fequency:
self.ctr = 0
# Note: nan != nan #https://github.com/pytorch/pytorch/issues/4767
for name, param in self.named_parameters():
if (param != param).any():
raise ValueError(name + ": Weights have become nan... Exiting.")'''
def optimize(self, s, a1, a2, exec_a1_emb, chosen_a1_emb, exec_a2_emb, chosen_a2_emb, r1, r2):
r1 = Variable(torch.from_numpy(r1).type(self.config_d.dtype), requires_grad=False).view(-1, 1)
r2 = Variable(torch.from_numpy(r2).type(self.config_d.dtype), requires_grad=False).view(-1, 1)
exec_a1_emb = Variable(torch.from_numpy(exec_a1_emb).type(self.config_d.dtype), requires_grad=False)
chosen_a1_emb = Variable(torch.from_numpy(chosen_a1_emb).type(self.config_d.dtype), requires_grad=False)
exec_a2_emb = Variable(torch.from_numpy(exec_a2_emb).type(self.config_d.dtype), requires_grad=False)
chosen_a2_emb = Variable(torch.from_numpy(chosen_a2_emb).type(self.config_d.dtype), requires_grad=False)
a1_emb = exec_a1_emb if self.config_d.emb_flag == 'exec' else chosen_a1_emb
a2_emb = exec_a2_emb if self.config_d.emb_flag == 'exec' else chosen_a2_emb
# ---------------------- optimize critic ----------------------
val_pred = self.critic.forward(s)
# loss_baseline = F.smooth_l1_loss(val_pred, r1)
loss_critic = F.mse_loss(val_pred, r1)
td_error = (r1 - val_pred).detach().transpose(0,1) #Might need to rescale reward
#print("td errors calculated")
log_probs1_inid = self.actor_d.get_log_prob(s, a1_emb)
log_probs1 = log_probs1_inid.sum(1)
log_probs2_inid = self.actor_p.get_log_prob(s, a2_emb)
log_probs2 = log_probs2_inid.sum(1)
#print(log_probs1.mean(), log_probs2.mean())
#print("log_probs calculated")
#----------------------critic update---------------------------
self.optim_critic.zero_grad()
loss_critic.backward()
#torch.nn.utils.clip_grad_norm_(self.critic.parameters(), 10)
self.optim_critic.step()
#print("critic update done")
#----------------------actor update----------------------------
r1 = r1.transpose(0,1)
#td_error = td_error.to(device)
objective = log_probs1*log_probs2*(td_error)
#print("Objective is")
ob = objective.mean()
#print(ob)
lp1 = log_probs1*(td_error)
lp1=lp1.mean()
lp2 = log_probs2*(td_error)
lp2=lp2.mean()
#print("lp1 and lp2 are", lp1, lp2)
#loss_actor = -1.0 * torch.mean(td_error * self.actor.get_log_prob(s1, a1_emb))
self.optim_actor.zero_grad()
#torch.nn.utils.clip_grad_norm_(self.actor_d.parameters(), 10)
#torch.nn.utils.clip_grad_norm_(self.actor_p.parameters(), 10)
self.optim_actor.step(ob, lp1,lp2)
#print("actor update done")
def main():
def_pos = []
defender_rewards = []
poacher_rewards = []
opt_allocations = []
def_pos = []
poacher_pos = []
def_visits = []
poacher_visits = []
poacher_reward_mean = 0
env = make_env.make_env("simple_tag")
config = Config()
configp = Config_poacher()
agent_d, agent_r = load_models() #LOAD ALL NETWORKS
print("DQNs loaded")
allocations = np.load('actions.npy').reshape((-1,15,15))
d_allocations = []
for i in range(10000):
alloc = []
inits = []
for x in range(15):
for y in range(15):
if(allocations[i][x][y] == 1):
inits.append(np.array([x,y]))
d_allocations.append(inits)
#INDEXING POACHER ACTIONS
p_allocations = []
for i in range(gridsize):
for j in range(gridsize):
p_allocations.append(np.array([i,j]))
print("Allocations loaded", len(d_allocations), len(p_allocations))
defender_embeddings = np.load('action_embeddings.npy')
defender_embeddings = defender_embeddings[:10000]
poacher_embeddings = []
for i in range(gridsize):
for j in range(gridsize):
poacher_embeddings.append([i/14, j/14])
poacher_embeddings = np.array(poacher_embeddings)
cgdagent = CGDAgent(config, configp, defender_embeddings, poacher_embeddings, 128, 50, 32, 2)
#state = np.zeros((15,15,2))
defender_counts = np.zeros((15,15))
#state[:,:,0] = env.world.animal_densities.copy()
#state[:,:,1] = defender_counts.copy()
state = env.world.animal_densities.copy()
state = state.reshape((225))
poacher_index = []
batch_size = 10
for trial in range(5000):
#print("TRIAL NO:", trial)
d_rewards = []
p_rewards = []
defender_states = []
poacher_states = []
defender_actions = []
poacher_actions = []
defender_action_embed = []
poacher_action_embed = []
#DATA COLLECTION
#alpha = np.random.random()
alpha = 1.0
for episode in range(batch_size):
defender_inits = []
poacher_inits = []
#SAMPLE DEFENDER ALLOCATION
defender_index, extra_info = cgdagent.get_action_d(state)
if(alpha<0.05):
defender_index = np.random.randint(0,len(d_allocations))
extra_info = (defender_embeddings[defender_index], defender_embeddings[defender_index])
defender_inits = d_allocations[defender_index]
defender_actions.append(defender_index)
defender_action_embed.append(extra_info) #change
def_pos.append(defender_inits)
#SAMPLE POACHER ALLOCATION
poacher_state = state.copy()
defender_states.append(state)
poacher_states.append(poacher_state)
poacher_index,p_extra_info = cgdagent.get_action_p(poacher_state)
if(alpha<0.05):
poacher_index = np.random.randint(0,len(p_allocations))
p_extra_info = (poacher_embeddings[poacher_index], poacher_embeddings[poacher_index])
poacher_inits = p_allocations[poacher_index]
poacher_inits = [np.array([poacher_inits[0], poacher_inits[1]])]
poacher_pos.append(poacher_inits)
poacher_actions.append(poacher_index)
poacher_action_embed.append(p_extra_info)
#if(trial>150):
#print(defender_inits)
#print(poacher_inits[0])
#EVALUATE ACTION
reward, d_visits, p_visits = evaluate(defender_inits, poacher_inits, agent_d, agent_r, random = False) #evaluate function here
reward = reward/1000
def_visits.append(d_visits)
poacher_visits.append(p_visits)
poacher_reward = -1 * reward
defender_rewards.append(reward)
poacher_rewards.append(poacher_reward)
d_rewards.append(100+reward)
p_rewards.append(-1*(100+reward))
#UPDATE DEFENDER COUNTS
for item in defender_inits:
defender_counts[int(item[0])][int(item[1])] += 1
#UPDATE STATE
#new_state = np.zeros((15,15,2))
new_state = env.world.animal_densities.copy()
#new_state[:,:,1] = defender_counts.copy()
new_state = new_state.reshape((225))
poacher_new_state = new_state.copy()
state = new_state
#MODEL UPDATION
#print("data collection done")
cgdagent.update(defender_states , defender_actions, poacher_actions, defender_action_embed, poacher_action_embed, d_rewards, p_rewards )
#print("update done")
'''if(trial%10==0 and trial > 0):
plt.plot(defender_rewards)
plt.show()
plt.plot(poacher_rewards)
plt.show()'''
if(len(poacher_rewards) == 5000):
np.save('coPG_results/defender_rewards5.npy', np.array(defender_rewards))
np.save('coPG_results/poacher_rewards5.npy', np.array(poacher_rewards))
np.save('coPG_results/defender_allocations5.npy', np.array(def_pos))
np.save('coPG_results/poacher_allocations5.npy', np.array(poacher_pos))
np.save('coPG_results/defender_visits5.npy', np.array(def_visits))
np.save('coPG_results/poacher_visits5.npy', np.array(poacher_visits))
if __name__ == '__main__':
main()