-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathgen_answers.py
94 lines (76 loc) · 3.47 KB
/
gen_answers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import asyncio
import json
import argparse
from typing import List, Dict
from src.generators import OpenRouterGenerator, VLLMGenerator, BaseGenerator
from datasets import load_dataset
from tqdm import tqdm
import time
from os import getenv
async def process_batch(generator: BaseGenerator, batch: List[str], system_prompt: str) -> List[Dict]:
tasks = []
for item in batch:
try:
task = generator.agenerate(item, system_prompt, temperature=0.5)
tasks.append(task)
except:
task = 'error'
tasks.append(task)
results = await asyncio.gather(*tasks)
processed_items = []
for item, result in zip(batch, results):
processed_item = {
'conversations': [
{"from": "human", "value": item},
{"from": "gpt", "value": result}
]
}
processed_items.append(processed_item)
return processed_items
async def process_data(model:str, generator_str: str, file_path: str, batch_size: int, output_file: str):
# Initialize OpenRouterGenerator
generator = (
VLLMGenerator(model=model, base_url=getenv('VLLM_BACKEND') or 'http://localhost:8000/v1')
if generator_str == 'vllm'
else OpenRouterGenerator(model=model))
# Load data
if '.json' not in file_path:
data = load_dataset(file_path)['train'] # Assuming the main split is named 'train'
else:
with open(file_path, 'r') as file:
data = json.load(file)
start_idx = 0
# Calculate total number of batches
total_batches = (len(data) + batch_size - start_idx - 1) // batch_size
instructions = []
for sample in data:
convo = sample['conversations']
if convo[0]['from'] == 'human':
user = convo[0]['value']
else:
user = convo[1]['value']
instructions.append(user)
# Process in batches
all_results = []
with tqdm(total=total_batches, desc="Processing batches") as pbar:
for i in range(0, len(data), batch_size):
batch = instructions[i+start_idx:i+batch_size+start_idx]
processed_batch = await process_batch(generator, batch, "You are a helpful assistant. Answer the question from the user. Give full solution and explaination.")
# Extend results and save
all_results.extend(processed_batch)
# Save and overwrite for each batch
with open(output_file, 'w') as f:
json.dump(all_results, f, indent=2, ensure_ascii=False)
pbar.update(1)
time.sleep(5)
def main():
parser = argparse.ArgumentParser(description="Process data using OpenRouterGenerator")
parser.add_argument("--model", type=str, required=True, help="Model use to evol instructions.")
parser.add_argument("--generator", type=str, required=True, choices=['openrouter', 'vllm'], help="Type of generator to use.")
parser.add_argument("--data_path", required=True, help="Path to the JSON file or Hugging Face dataset repo")
parser.add_argument("--batch_size", type=int, default=10, help="Batch size for processing")
parser.add_argument("--output", default="final_evolved_data.json", help="Output file path")
args = parser.parse_args()
asyncio.run(process_data(args.model, args.generator, args.data_path, args.batch_size, args.output))
if __name__ == "__main__":
main()