-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathmodel.py
48 lines (37 loc) · 2.37 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from __future__ import generators, division, absolute_import, with_statement, print_function, unicode_literals
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import tensorflow.contrib.slim as slim
flags = tf.app.flags
FLAGS = flags.FLAGS
def mnist_model(input, reuse=False):
with tf.name_scope("model"):
with tf.variable_scope("conv1") as scope:
net = tf.contrib.layers.conv2d(input, 32, [7, 7], activation_fn=tf.nn.relu, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),scope=scope,reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
with tf.variable_scope("conv2") as scope:
net = tf.contrib.layers.conv2d(net, 64, [5, 5], activation_fn=tf.nn.relu, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),scope=scope,reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
with tf.variable_scope("conv3") as scope:
net = tf.contrib.layers.conv2d(net, 128, [3, 3], activation_fn=tf.nn.relu, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),scope=scope,reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
with tf.variable_scope("conv4") as scope:
net = tf.contrib.layers.conv2d(net, 256, [1, 1], activation_fn=tf.nn.relu, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),scope=scope,reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
with tf.variable_scope("conv5") as scope:
net = tf.contrib.layers.conv2d(net, 2, [1, 1], activation_fn=None, padding='SAME',
weights_initializer=tf.contrib.layers.xavier_initializer_conv2d(),scope=scope,reuse=reuse)
net = tf.contrib.layers.max_pool2d(net, [2, 2], padding='SAME')
net = tf.contrib.layers.flatten(net)
return net
def contrastive_loss(model1, model2, y, margin):
with tf.name_scope("contrastive-loss"):
distance = tf.sqrt(tf.reduce_sum(tf.pow(model1 - model2, 2), 1, keepdims=True))
similarity = y * tf.square(distance) # keep the similar label (1) close to each other
dissimilarity = (1 - y) * tf.square(tf.maximum((margin - distance), 0)) # give penalty to dissimilar label if the distance is bigger than margin
return tf.reduce_mean(dissimilarity + similarity) / 2