-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmin-domino-rotation-equal-row.js
59 lines (49 loc) · 1.77 KB
/
min-domino-rotation-equal-row.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
// 1007. Minimum Domino Rotations For Equal Row
// In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the ith domino.
// (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)
// We may rotate the ith domino, so that A[i] and B[i] swap values.
// Return the minimum number of rotations so that all the values in A are the same,
// or all the values in B are the same.
// If it cannot be done, return -1.
// Example 1:
// Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
// Output: 2
// Explanation:
// The first figure represents the dominoes as given by A and B: before we do any rotations.
// If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2,
// as indicated by the second figure.
// Example 2:
// Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
// Output: -1
// Explanation:
// In this case, it is not possible to rotate the dominoes to make one row of values equal.
// Constraints:
// 2 <= A.length == B.length <= 2 * 104
// 1 <= A[i], B[i] <= 6
/**
* @param {number[]} A
* @param {number[]} B
* @description time,space complexity is O(n), O(1)
* @return {number}
*/
var minDominoRotations = function(A, B) {
let res = Math.min(equalRowChecker(A,B,A[0]),
equalRowChecker(A,B,B[0]),
equalRowChecker(B,A,B[0]),
equalRowChecker(B,A,A[0]))
if(res == Infinity) return -1
return res
function equalRowChecker(A,B,v){
let count = 0
for(let i = 0; i < A.length; i++){
if(!(A[i] == v || B[i] == v)){
count = Infinity
break
}
if(A[i] != v && B[i] == v){
count++
}
}
return count
}
};