forked from kimiya66/master-thesis-autonomous-parking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaneuver.py
177 lines (153 loc) · 7.39 KB
/
maneuver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/python
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import glob
import os
import sys
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
pass
import carla
import argparse
import math
import random
import time
import struct, binascii
import config
import parkingTest
import numpy
def parking(t,vehicle):
#print('*****parking control*****');
#print('time before calling calculate_maneuverTime func:', config.T)
#+++++++++++++++++calculate maneuver-time and phi_max++++++++++++++++++++++++++++
angle=steeringAngle(t);
v=velocity(t);
print('steer angle = ', angle,'velocity function:',v);
#physics_control=vehicle.get_physics_control()
#vehicle.set_simulate_physics(enabled=True);
velo = vehicle.get_velocity().y;
control=vehicle.get_control();
throttle = control.throttle;
brake = control.brake;
if velo < abs(v):
print('throttle:',throttle,'control.throttle:',control.throttle);
throttle = throttle + 0.5;
else:
brake = brake + 0.5;
print('brake value:',control.brake);
#print('throttle=',throttle,'brake=',brake);
vehicle.apply_control(carla.VehicleControl(throttle=v, manual_gear_shift=True, gear=0,steer=angle,reverse=True));
#print('vehicle speed of vx:',vehicle.get_velocity().x,'vy:',vehicle.get_velocity().y,'vz:',vehicle.get_velocity().z);
# print(vehicle.get_speed_limit());
print('steer:',control.steer);
#..............calculation of steeringAngl at each time of maneuver..............
def steeringAngle(t):
#print('phi_max which is used here:', config.phi_max);
result=config.phi_max * config.sideOfParking * _A(t);
#print('A(t)= ', _A(t));
#print('phi value:', result);
return result;
#..............calculation of velocity at each time of maneuver....................
def velocity(t):
#print('v_max=',config.v_max,'direction=',config.direction,'B func result:',_B(t));
for type_error in _B(t):
result = config.v_max * config.direction * type_error;
#print('result of multiply:',result);
return result;
#...............calculation of _A and _B functions to control phi and v...............
def _A(t):
#print('what we have as T in A(t): ', config.T);
#print('T value at the moment: ', config.T, 'value for T-start:', config.T_star);
t_prime = (config.T - config.T_star)/2;
#print('t_prime=',t_prime,'t value = ',t);
result = 0; #output of the function
if 0 <= t < t_prime:
result = 1;
elif t_prime <= t <= config.T-t_prime:
result = math.cos((math.pi*(t-t_prime))/config.T_star)
elif config.T-t_prime < t <= config.T:
result = -1;
return result;
def _B(t):
# print('what we have as T in B(t): ', config.T);
result = 0,5*(1-math.cos((4*math.pi*t)/config.T));
return result;
#.....................calculation of T (whole time of parking maneuver)................
def calculate_maneuverTime(vehicle):
x=vehicle.get_location().x;
y=vehicle.get_location().y;
orientAngl=vehicle.get_transform().rotation.yaw;
ts=0;
cond = True;
while cond:
for ts in numpy.arange(0,config.T,config.sampling_period):
s_angle = steeringAngle(ts);
#print('s_angle value:',s_angle);
velo = velocity(ts);
if(s_angle == 0):
orientAngl_lastStep = orientAngl;
orientAngl = orientAngl;
x = x + (velo * config.sampling_period * math.cos(orientAngl));
y = y + (velo * config.sampling_period * math.sin(orientAngl));
#print('x,y in if-clause:',x,y);
else:
orientAngl_lastStep = orientAngl;
orientAngl = orientAngl + (((velo * config.sampling_period)/config.vehicle_length)*math.sin(s_angle));
x = x + ((config.vehicle_length / math.tan(s_angle)) * (math.sin(orientAngl) - math.sin(orientAngl_lastStep)));
y = y - ((config.vehicle_length / math.tan(s_angle)) * (math.cos(orientAngl) - math.cos(orientAngl_lastStep)));
#print('x,y in else clause:',x,y);
cond=longitudinal_condition(vehicle.get_location().x,x,vehicle.get_location().y,y,vehicle.get_transform().rotation.yaw);
print('longitudinal cond:', cond);
config.T += config.sampling_period;
print('T calc values',config.T);
config.T -= config.sampling_period;
#.....................calculation of phi_max ..................................................
def calculate_max_steeringAng(vehicle):
x=vehicle.get_location().x;
y=vehicle.get_location().y;
orientAngl=vehicle.get_transform().rotation.yaw;
ts=0;
cond = False;
#print('+++++++++phi_max calculation++++++++++++++++');
#print('T_max first value:',config.T);
while not cond:
config.phi_max -= 0.0872665
#print('config.phi_max value:',config.phi_max);
#print('value of T_max in phi_max calculation:',config.T);
for ts in numpy.arange(0,config.T,config.sampling_period):
s_angle = steeringAngle(ts);
velo = velocity(ts);
if(s_angle == 0):
orientAngl_lastStep = orientAngl;
orientAngl = orientAngl;
#print('orientationAngl for the last step:',orientAngl_lastStep,'orientAngl for this step:',orientAngl)
x = x + (velo * config.sampling_period * math.cos(orientAngl));
y = y + (velo * config.sampling_period * math.sin(orientAngl));
else:
orientAngl_lastStep = orientAngl;
orientAngl = orientAngl + (((velo * config.sampling_period)/config.vehicle_length)*math.sin(s_angle));
x = x + ((config.vehicle_length / math.tan(s_angle)) * (math.sin(orientAngl) - math.sin(orientAngl_lastStep)));
y = y - ((config.vehicle_length / math.tan(s_angle)) * (math.cos(orientAngl) - math.cos(orientAngl_lastStep)));
cond=lateral_condition(vehicle.get_location().x,x,vehicle.get_location().y,y,vehicle.get_transform().rotation.yaw);
print('max steeringAngle from calculation:',config.phi_max);
#............limitation for calculating time.........................
def longitudinal_condition(x0,xT,y0,yT,orientAngl):
x = math.fabs(((xT-x0)*math.cos(orientAngl))+((yT-y0)*math.sin(orientAngl)));
print('value of lon calc:', x);
cond = x < config.parkingLength;
print('longitudinal condition result',cond);
return cond;
#.............condition to calculate phi_max............................
def lateral_condition(x0,xT,y0,yT,orientAngl):
x = math.fabs(((x0-xT)*math.sin(orientAngl))+((yT-y0)*math.cos(orientAngl)));
print('value of lat calc:', x);
cond = x < config.parkingWidth;
#print('lateral condition result:',cond);
return cond;