From 08303044c81c2785f824793ee90ff2872311ce3a Mon Sep 17 00:00:00 2001 From: Gabe Goodhart Date: Tue, 17 Sep 2024 00:44:58 -0600 Subject: [PATCH] llama : support IBM Granite architecture (#9412) * feat(gguf-py): Add Granite model and params to gguf-py Branch: GraniteLM Signed-off-by: Gabe Goodhart * feat(convert_hf_to_gguf): Add registration and param setup for Granite Branch: GraniteLM Signed-off-by: Gabe Goodhart * feat(llama.cpp): Add config parsing for Granite multiplier params Branch: GraniteLM Signed-off-by: Gabe Goodhart * feat(llama.cpp): First pass at full port of granite deviations from llama Something is still not working right since the results are mostly terrible, but on occasion it's producing relevant results at this point, so _something_ is working. Branch: GraniteLM Signed-off-by: Gabe Goodhart * fix(llama.cpp): Determine granite language 3b instruct by vocab size Branch: GraniteLM Signed-off-by: Gabe Goodhart * fix(convert_hf_to_gguf): Use LlamaModel as base for GraniteModel The defaults in LlamaModel are needed for Granite as well Branch: GraniteLM Signed-off-by: Gabe Goodhart * fix(llama.cpp): Switch Granite param names to use _scale for consistency Other scalar multipliers are called *_scale, so this provides a more consistent naming convention. Branch: GraniteLM Signed-off-by: Gabe Goodhart * fix(convert_hf_to_gguf/gguf-py): _multiplier -> _scale The transformers names with _multiplier will now be converted to the _scale equivalent during conversion. Branch: GraniteLM Signed-off-by: Gabe Goodhart * fix(llama.cpp): Use separate switch clause for granite in llm_load_hparams Branch: GraniteLM Signed-off-by: Gabe Goodhart --------- Signed-off-by: Gabe Goodhart --- convert_hf_to_gguf.py | 30 ++++++++++++++ gguf-py/gguf/constants.py | 18 +++++++++ gguf-py/gguf/gguf_writer.py | 9 +++++ src/llama.cpp | 79 ++++++++++++++++++++++++++++++++++++- 4 files changed, 135 insertions(+), 1 deletion(-) diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index c7e6ae0caae0e..ff4c9226faedb 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -4080,6 +4080,36 @@ def prepare_tensors(self): super().prepare_tensors() +@Model.register("GraniteForCausalLM") +class GraniteModel(LlamaModel): + """Conversion for IBM's GraniteForCausalLM""" + model_arch = gguf.MODEL_ARCH.GRANITE + + def set_gguf_parameters(self): + """Granite uses standard llama parameters with the following differences: + + - No head_dim support + - New multiplier params: + - attention_scale + - embedding_scale + - residual_scale + - logits_scaling + """ + if head_dim := self.hparams.pop("head_dim", None): + logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim) + super().set_gguf_parameters() + # NOTE: Convert _multiplier params to _scale params for naming + # consistency + if attention_scale := self.hparams.get("attention_multiplier"): + self.gguf_writer.add_attention_scale(attention_scale) + if embedding_scale := self.hparams.get("embedding_multiplier"): + self.gguf_writer.add_embedding_scale(embedding_scale) + if residual_scale := self.hparams.get("residual_multiplier"): + self.gguf_writer.add_residual_scale(residual_scale) + if logits_scaling := self.hparams.get("logits_scaling"): + self.gguf_writer.add_logit_scale(logits_scaling) + + ###### CONVERSION LOGIC ###### # tree of lazy tensors diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index 0d88649d84834..b36a60d497abd 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -97,6 +97,8 @@ class LLM: RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers" TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim" TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim" + RESIDUAL_SCALE = "{arch}.residual_scale" + EMBEDDING_SCALE = "{arch}.embedding_scale" class Attention: HEAD_COUNT = "{arch}.attention.head_count" @@ -112,6 +114,7 @@ class Attention: KV_LORA_RANK = "{arch}.attention.kv_lora_rank" REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count" SLIDING_WINDOW = "{arch}.attention.sliding_window" + SCALE = "{arch}.attention.scale" class Rope: DIMENSION_COUNT = "{arch}.rope.dimension_count" @@ -231,6 +234,7 @@ class MODEL_ARCH(IntEnum): JAIS = auto() NEMOTRON = auto() EXAONE = auto() + GRANITE = auto() class MODEL_TENSOR(IntEnum): @@ -387,6 +391,7 @@ class MODEL_TENSOR(IntEnum): MODEL_ARCH.JAIS: "jais", MODEL_ARCH.NEMOTRON: "nemotron", MODEL_ARCH.EXAONE: "exaone", + MODEL_ARCH.GRANITE: "granite", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -1224,6 +1229,19 @@ class MODEL_TENSOR(IntEnum): MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.GRANITE: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], # TODO } diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index 3c95c26730f7a..bd059b45c64d0 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -679,6 +679,12 @@ def add_time_mix_extra_dim(self, dim: int) -> None: def add_time_decay_extra_dim(self, dim: int) -> None: self.add_uint32(Keys.LLM.TIME_DECAY_EXTRA_DIM.format(arch=self.arch), dim) + def add_residual_scale(self, value: float) -> None: + self.add_float32(Keys.LLM.RESIDUAL_SCALE.format(arch=self.arch), value) + + def add_embedding_scale(self, value: float) -> None: + self.add_float32(Keys.LLM.EMBEDDING_SCALE.format(arch=self.arch), value) + def add_wkv_head_size(self, size: int) -> None: self.add_uint32(Keys.WKV.HEAD_SIZE.format(arch=self.arch), size) @@ -703,6 +709,9 @@ def add_relative_attn_buckets_count(self, value: int) -> None: def add_sliding_window(self, value: int) -> None: self.add_uint32(Keys.Attention.SLIDING_WINDOW.format(arch=self.arch), value) + def add_attention_scale(self, value: float) -> None: + self.add_float32(Keys.Attention.SCALE.format(arch=self.arch), value) + def add_pooling_type(self, value: PoolingType) -> None: self.add_uint32(Keys.LLM.POOLING_TYPE.format(arch=self.arch), value.value) diff --git a/src/llama.cpp b/src/llama.cpp index cf697f280904d..2dcd4a740e4f9 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -214,6 +214,7 @@ enum llm_arch { LLM_ARCH_NEMOTRON, LLM_ARCH_EXAONE, LLM_ARCH_RWKV6, + LLM_ARCH_GRANITE, LLM_ARCH_UNKNOWN, }; @@ -264,6 +265,7 @@ static const std::map LLM_ARCH_NAMES = { { LLM_ARCH_NEMOTRON, "nemotron" }, { LLM_ARCH_EXAONE, "exaone" }, { LLM_ARCH_RWKV6, "rwkv6" }, + { LLM_ARCH_GRANITE, "granite" }, { LLM_ARCH_UNKNOWN, "(unknown)" }, }; @@ -303,6 +305,8 @@ enum llm_kv { LLM_KV_RESCALE_EVERY_N_LAYERS, LLM_KV_TIME_MIX_EXTRA_DIM, LLM_KV_TIME_DECAY_EXTRA_DIM, + LLM_KV_RESIDUAL_SCALE, + LLM_KV_EMBEDDING_SCALE, LLM_KV_ATTENTION_HEAD_COUNT, LLM_KV_ATTENTION_HEAD_COUNT_KV, @@ -317,6 +321,7 @@ enum llm_kv { LLM_KV_ATTENTION_KV_LORA_RANK, LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, LLM_KV_ATTENTION_SLIDING_WINDOW, + LLM_KV_ATTENTION_SCALE, LLM_KV_ROPE_DIMENSION_COUNT, LLM_KV_ROPE_FREQ_BASE, @@ -407,6 +412,8 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_RESCALE_EVERY_N_LAYERS, "%s.rescale_every_n_layers" }, { LLM_KV_TIME_MIX_EXTRA_DIM, "%s.time_mix_extra_dim" }, { LLM_KV_TIME_DECAY_EXTRA_DIM, "%s.time_decay_extra_dim" }, + { LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" }, + { LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" }, { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, @@ -421,6 +428,7 @@ static const std::map LLM_KV_NAMES = { { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" }, { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count" }, { LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" }, + { LLM_KV_ATTENTION_SCALE, "%s.attention.scale" }, { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, @@ -1454,6 +1462,22 @@ static const std::map> LLM_TENSOR_NA { LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "blk.%d.channel_mix_receptance" }, }, }, + { + LLM_ARCH_GRANITE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -2372,6 +2396,11 @@ struct llama_hparams { float f_max_alibi_bias = 0.0f; float f_logit_scale = 0.0f; + // Additional scale factors (Granite) + float f_residual_scale = 0.0f; + float f_embedding_scale = 0.0f; + float f_attention_scale = 0.0f; + bool causal_attn = true; bool use_alibi = false; bool attn_soft_cap = false; @@ -2434,6 +2463,9 @@ struct llama_hparams { if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true; if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true; + if (!is_float_close(this->f_residual_scale, other.f_residual_scale, EPSILON)) return true; + if (!is_float_close(this->f_embedding_scale, other.f_embedding_scale, EPSILON)) return true; + if (!is_float_close(this->f_attention_scale, other.f_attention_scale, EPSILON)) return true; return false; } @@ -6019,6 +6051,20 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_GRANITE: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); + ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale); + ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale); + ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_3B; break; + // Add additional layer/vocab/etc checks here for other model sizes + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -6717,6 +6763,12 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp); LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp); } + + if (model.arch == LLM_ARCH_GRANITE) { + LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale); + LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale); + LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale); + } } // Returns false if cancelled by progress_callback @@ -6889,6 +6941,7 @@ static bool llm_load_tensors( case LLM_ARCH_LLAMA: case LLM_ARCH_REFACT: case LLM_ARCH_MINICPM: + case LLM_ARCH_GRANITE: { model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); @@ -8872,6 +8925,11 @@ static struct ggml_tensor * llm_build_inp_embd( ggml_set_input(lctx.inp_embd); } + // For Granite architecture + if (hparams.f_embedding_scale != 0.0f) { + inpL = ggml_scale(ctx, inpL, hparams.f_embedding_scale); + } + cb(inpL, "inp_embd", -1); return inpL; @@ -10150,6 +10208,7 @@ struct llm_build_context { // KQ_mask (mask for 1 head, it will be broadcasted to all heads) struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale; for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; @@ -10202,7 +10261,7 @@ struct llm_build_context { cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il); } if (il == n_layer - 1) { @@ -10213,6 +10272,11 @@ struct llm_build_context { inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); } + // For Granite architecture + if (hparams.f_residual_scale) { + cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); + } + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); cb(ffn_inp, "ffn_inp", il); @@ -10249,6 +10313,11 @@ struct llm_build_context { cb(cur, "ffn_moe_out", il); } + // For Granite architecture + if (hparams.f_residual_scale) { + cur = ggml_scale(ctx0, cur, hparams.f_residual_scale); + } + cur = ggml_add(ctx0, cur, ffn_inp); cb(cur, "ffn_out", il); @@ -10268,6 +10337,12 @@ struct llm_build_context { // lm_head cur = llm_build_lora_mm(lctx, ctx0, model.output, cur); + + // For Granite architecture + if (hparams.f_logit_scale) { + cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale); + } + cb(cur, "result_output", -1); ggml_build_forward_expand(gf, cur); @@ -15793,6 +15868,7 @@ static struct ggml_cgraph * llama_build_graph( switch (model.arch) { case LLM_ARCH_LLAMA: + case LLM_ARCH_GRANITE: { result = llm.build_llama(); } break; @@ -19094,6 +19170,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) { case LLM_ARCH_ARCTIC: case LLM_ARCH_DEEPSEEK2: case LLM_ARCH_CHATGLM: + case LLM_ARCH_GRANITE: return LLAMA_ROPE_TYPE_NORM; // the pairs of head values are offset by n_rot/2