-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
238 lines (192 loc) · 5.69 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from torch.utils.tensorboard import SummaryWriter
SummaryWriter("fix_seg_fault")
import argparse
import os
import torch
import numpy as np
from pytorch_metric_learning.utils import common_functions as c_f
from pprint import pprint
from src.datasets.image_datasets import Cars196Dataset, SOPDataset, CUB200Dataset, Dogs130Dataset
from src.datasets.text_datasets import WOS134Dataset, News20Dataset
from src.datasets.splits import image_dataset_split_transform, text_dataset_split_transform
from src.models.image_models import convnext_model_provider
from src.models.text_models import distilbert_model_provider, distilbert_tokenizer_provider
from src.pml_providers import loss_provider, sampler_provider
from src.training import get_trainer
from src.inference import eval_model
image_model_list = ['convnext_tiny']
text_model_list = ['bert']
text_dataset_dict = {
'wos134': WOS134Dataset,
'news20': News20Dataset,
}
img_dataset_dict = {
'cars196': Cars196Dataset,
'sop': SOPDataset,
'cub200': CUB200Dataset,
'dogs130': Dogs130Dataset,
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--seed",
type=int,
default=0
)
parser.add_argument(
"--embedding_dim",
required=True,
type=int
)
parser.add_argument(
"--model_name",
required=True,
type=str
)
parser.add_argument(
"--dataset_name",
required=True,
type=str
)
parser.add_argument(
"--loss_name",
required=True,
type=str
)
parser.add_argument(
"--freeze_trunk",
action="store_true",
)
parser.add_argument(
"--download",
action="store_true",
)
parser.add_argument(
"--batch_size",
required=True,
type=int
)
parser.add_argument(
"--inference_batch_size",
required=True,
type=int
)
parser.add_argument(
"--num_epochs",
required=True,
type=int
)
parser.add_argument(
"--iters_per_epoch",
required=True,
type=int
)
parser.add_argument(
"--patience_epochs",
required=True,
type=int
)
parser.add_argument(
"--lr",
required=True,
type=float
)
parser.add_argument(
"--warmup_iters",
required=True,
type=int
)
parser.add_argument(
"--num_workers",
required=True,
type=int
)
parser.add_argument(
"--samples_per_class",
required=True,
type=int
)
parser.add_argument(
"--instance_id",
required=False,
type=str,
default=None
)
return parser.parse_args()
def set_random(seed):
np.random.seed(seed)
torch.manual_seed(seed)
c_f.COLLECT_STATS = True
c_f.NUMPY_RANDOM = np.random.RandomState(seed)
def main():
args = parse_args()
logs_folder = "logs_folder"
weights_folder = "weights_folder"
tensorboard_folder = "tensorboard_folder"
loss_kwargs = {}
device = torch.device('cuda')
args_dict = vars(args)
print("Arguments:")
pprint(args_dict)
set_random(args.seed)
if args.model_name in image_model_list:
model = convnext_model_provider('convnext_tiny', download=args.download, embedding_dim=args.embedding_dim)
dataset = img_dataset_dict[args.dataset_name](download=args.download)
train_dataset, test_dataset = image_dataset_split_transform(dataset, random_state=args.seed)
elif args.model_name in text_model_list:
assert args.model_name == 'bert'
model = distilbert_model_provider(download=args.download, freeze_trunk=args.freeze_trunk)
tokenizer = distilbert_tokenizer_provider(download=args.download)
dataset = text_dataset_dict[args.dataset_name](tokenizer=tokenizer, download=args.download, device=device)
train_dataset, test_dataset = text_dataset_split_transform(dataset, random_state=args.seed)
else:
raise ValueError(f'Unknown model name {model_name}')
model = model.to(device)
loss_fn = loss_provider(
loss_name=args.loss_name,
embedding_dim=args.embedding_dim,
num_classes=len(np.unique(train_dataset.labels)),
samples_per_class=args.samples_per_class,
loss_kwargs=loss_kwargs
)
sampler = sampler_provider(
train_dataset=train_dataset,
samples_per_class=args.samples_per_class,
)
trainer = get_trainer(
model=model,
train_dataset=train_dataset,
test_dataset=test_dataset,
loss_fn=loss_fn,
device=device,
lr=args.lr,
batch_size=args.batch_size,
warmup_iters=args.warmup_iters,
iters_per_epoch=args.iters_per_epoch,
sampler=sampler,
num_workers=args.num_workers,
patience_epochs=args.patience_epochs,
inference_batch_size=args.inference_batch_size,
logs_folder=logs_folder,
weights_folder=weights_folder,
tensorboard_folder=tensorboard_folder
)
trainer.train(num_epochs=args.num_epochs)
best_models = [p for p in os.listdir(f'{weights_folder}') if p.startswith('trunk_best')]
assert len(best_models) == 1
print(f"Loading best mode: {best_models[0]}")
fpath = f'{weights_folder}/{best_models[0]}'
model.load_state_dict(torch.load(fpath))
model.to(device)
model.eval()
accs = eval_model(
test_dataset=test_dataset,
model=model,
inference_batch_size=args.inference_batch_size,
num_workers=args.num_workers,
)
print("Uploading results...")
# Log if needed
print('Done!')
if __name__ == "__main__":
main()