forked from zhouhaoyi/Informer2020
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_informer.py
72 lines (58 loc) · 3.9 KB
/
main_informer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import os
from exp.exp_informer import Exp_Informer
parser = argparse.ArgumentParser(description='[Informer] Long Sequences Forecasting')
parser.add_argument('--model', type=str, required=True, default='informer',help='model of the experiment')
parser.add_argument('--data', type=str, required=True, default='ETTh1', help='data')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='location of the data file')
parser.add_argument('--features', type=str, default='M', help='features [S, M]')
parser.add_argument('--target', type=str, default='OT', help='target feature')
parser.add_argument('--seq_len', type=int, default=96, help='input series length')
parser.add_argument('--label_len', type=int, default=48, help='help series length')
parser.add_argument('--pred_len', type=int, default=24, help='predict series length')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size')
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=3, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=2, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=1024, help='dimension of fcn')
parser.add_argument('--factor', type=int, default=5, help='prob sparse factor')
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--attn', type=str, default='prob', help='attention [prob, full]')
parser.add_argument('--embed', type=str, default='fixed', help='embedding type [fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu',help='activation')
parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
parser.add_argument('--itr', type=int, default=2, help='each params run iteration')
parser.add_argument('--train_epochs', type=int, default=6, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='input data batch size')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test',help='exp description')
parser.add_argument('--loss', type=str, default='mse',help='loss function')
parser.add_argument('--lradj', type=str, default='type1',help='adjust learning rate')
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
args = parser.parse_args()
data_parser = {
'ETTh1':{'data':'ETTh1.csv','T':'OT','M':[7,7,7],'S':[1,1,1]},
'ETTh2':{'data':'ETTh2.csv','T':'OT','M':[7,7,7],'S':[1,1,1]},
'ETTm1':{'data':'ETTm1.csv','T':'OT','M':[7,7,7],'S':[1,1,1]},
}
if args.data in data_parser.keys():
data_info = data_parser[args.data]
args.data_path = data_info['data']
args.target = data_info['T']
args.enc_in, args.dec_in, args.c_out = data_info[args.features]
Exp = Exp_Informer
for ii in range(args.itr):
setting = '{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_at{}_eb{}_{}_{}'.format(args.model, args.data, args.features,
args.seq_len, args.label_len, args.pred_len,
args.d_model, args.n_heads, args.e_layers, args.d_layers, args.d_ff, args.attn, args.embed, args.des, ii)
exp = Exp(args)
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
exp.test(setting)