forked from ahmetgunduz/Real-time-GesRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
151 lines (116 loc) · 4.33 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import csv
import pdb
from sklearn.metrics import accuracy_score, precision_score, recall_score, classification_report, confusion_matrix
import numpy as np
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Logger(object):
def __init__(self, path, header):
self.log_file = open(path, 'w')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerow(header)
self.header = header
def __del(self):
self.log_file.close()
def log(self, values):
write_values = []
for col in self.header:
assert col in values
write_values.append(values[col])
self.logger.writerow(write_values)
self.log_file.flush()
class Queue:
#Constructor creates a list
def __init__(self, max_size, n_classes):
self.queue = list(np.zeros((max_size, n_classes),dtype = float).tolist())
self.max_size = max_size
self.median = None
self.ma = None
self.ewma = None
#Adding elements to queue
def enqueue(self,data):
self.queue.insert(0,data)
self.median = self._median()
self.ma = self._ma()
self.ewma = self._ewma()
return True
#Removing the last element from the queue
def dequeue(self):
if len(self.queue)>0:
return self.queue.pop()
return ("Queue Empty!")
#Getting the size of the queue
def size(self):
return len(self.queue)
#printing the elements of the queue
def printQueue(self):
return self.queue
#Average
def _ma(self):
return np.array(self.queue[:self.max_size]).mean(axis = 0)
#Median
def _median(self):
return np.median(np.array(self.queue[:self.max_size]), axis = 0)
#Exponential average
def _ewma(self):
weights = np.exp(np.linspace(-1., 0., self.max_size))
weights /= weights.sum()
average = weights.reshape(1,self.max_size).dot( np.array(self.queue[:self.max_size]))
return average.reshape(average.shape[1],)
def LevenshteinDistance(a,b):
# This is a straightforward implementation of a well-known algorithm, and thus
# probably shouldn't be covered by copyright to begin with. But in case it is,
# the author (Magnus Lie Hetland) has, to the extent possible under law,
# dedicated all copyright and related and neighboring rights to this software
# to the public domain worldwide, by distributing it under the CC0 license,
# version 1.0. This software is distributed without any warranty. For more
# information, see <http://creativecommons.org/publicdomain/zero/1.0>
"Calculates the Levenshtein distance between a and b."
n, m = len(a), len(b)
if n > m:
# Make sure n <= m, to use O(min(n,m)) space
a,b = b,a
n,m = m,n
current = range(n+1)
for i in range(1,m+1):
previous, current = current, [i]+[0]*n
for j in range(1,n+1):
add, delete = previous[j]+1, current[j-1]+1
change = previous[j-1]
if a[j-1] != b[i-1]:
change = change + 1
current[j] = min(add, delete, change)
return current[n]
def load_value_file(file_path):
with open(file_path, 'r') as input_file:
value = float(input_file.read().rstrip('\n\r'))
return value
def calculate_accuracy(outputs, targets):
batch_size = targets.size(0)
_, pred = outputs.topk(1, 1, True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1))
n_correct_elems = correct.float().sum().item()
return n_correct_elems / batch_size
def calculate_precision(outputs, targets):
batch_size = targets.size(0)
_, pred = outputs.topk(1, 1, True)
pred = pred.t()
return precision_score(targets.view(-1), pred.view(-1), average = 'macro')
def calculate_recall(outputs, targets):
batch_size = targets.size(0)
_, pred = outputs.topk(1, 1, True)
pred = pred.t()
return recall_score(targets.view(-1), pred.view(-1), average = 'macro')