forked from continuedev/continue
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOllama.ts
242 lines (223 loc) · 6.78 KB
/
Ollama.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import { BaseLLM } from "..";
import {
ChatMessage,
CompletionOptions,
LLMOptions,
ModelProvider,
} from "../..";
import { stripImages } from "../countTokens";
import { streamResponse } from "../stream";
class Ollama extends BaseLLM {
static providerName: ModelProvider = "ollama";
static defaultOptions: Partial<LLMOptions> = {
apiBase: "http://localhost:11434/",
model: "codellama-7b",
};
constructor(options: LLMOptions) {
super(options);
if (options.model === "AUTODETECT") {
return;
}
this.fetch(this.getEndpoint("api/show"), {
method: "POST",
headers: {},
body: JSON.stringify({ name: this._getModel() }),
})
.then(async (response) => {
if (response.status !== 200) {
console.warn(
"Error calling Ollama /api/show endpoint: ",
await response.text(),
);
return;
}
const body = await response.json();
if (body.parameters) {
const params = [];
for (let line of body.parameters.split("\n")) {
let parts = line.split(" ");
if (parts.length < 2) {
continue;
}
let key = parts[0];
let value = parts[parts.length - 1];
switch (key) {
case "num_ctx":
this.contextLength = parseInt(value);
break;
case "stop":
if (!this.completionOptions.stop) {
this.completionOptions.stop = [];
}
this.completionOptions.stop.push(value);
break;
default:
break;
}
}
}
})
.catch((e) => {
console.warn(`Error calling Ollama /api/show endpoint: ${e}`);
});
}
private _getModel() {
return (
{
"mistral-7b": "mistral:7b",
"mixtral-8x7b": "mixtral:8x7b",
"llama2-7b": "llama2:7b",
"llama2-13b": "llama2:13b",
"codellama-7b": "codellama:7b",
"codellama-13b": "codellama:13b",
"codellama-34b": "codellama:34b",
"codellama-70b": "codellama:70b",
"phi-2": "phi:2.7b",
"phind-codellama-34b": "phind-codellama:34b-v2",
"wizardcoder-7b": "wizardcoder:7b-python",
"wizardcoder-13b": "wizardcoder:13b-python",
"wizardcoder-34b": "wizardcoder:34b-python",
"zephyr-7b": "zephyr:7b",
"codeup-13b": "codeup:13b",
"deepseek-1b": "deepseek-coder:1.3b",
"deepseek-7b": "deepseek-coder:6.7b",
"deepseek-33b": "deepseek-coder:33b",
"neural-chat-7b": "neural-chat:7b-v3.3",
"starcoder-1b": "starcoder:1b",
"starcoder-3b": "starcoder:3b",
"stable-code-3b": "stable-code:3b",
}[this.model] ?? this.model
);
}
private _convertMessage(message: ChatMessage) {
if (typeof message.content === "string") {
return message;
}
return {
role: message.role,
content: stripImages(message.content),
images: message.content
.filter((part) => part.type === "imageUrl")
.map((part) => part.imageUrl?.url.split(",").at(-1)),
};
}
private _convertArgs(
options: CompletionOptions,
prompt: string | ChatMessage[],
) {
const finalOptions: any = {
model: this._getModel(),
raw: true,
keep_alive: options.keepAlive ?? 60 * 30, // 30 minutes
options: {
temperature: options.temperature,
top_p: options.topP,
top_k: options.topK,
num_predict: options.maxTokens,
stop: options.stop,
num_ctx: this.contextLength,
mirostat: options.mirostat,
num_thread: options.numThreads,
},
};
if (typeof prompt === "string") {
finalOptions.prompt = prompt;
} else {
finalOptions.messages = prompt.map(this._convertMessage);
}
return finalOptions;
}
private getEndpoint(endpoint: string): URL {
let base = this.apiBase;
if (process.env.IS_BINARY) {
base = base?.replace("localhost", "127.0.0.1");
}
return new URL(endpoint, base);
}
protected async *_streamComplete(
prompt: string,
options: CompletionOptions,
): AsyncGenerator<string> {
const response = await this.fetch(this.getEndpoint("api/generate"), {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(this._convertArgs(options, prompt)),
});
let buffer = "";
for await (const value of streamResponse(response)) {
// Append the received chunk to the buffer
buffer += value;
// Split the buffer into individual JSON chunks
const chunks = buffer.split("\n");
for (let i = 0; i < chunks.length; i++) {
const chunk = chunks[i];
if (chunk.trim() !== "") {
try {
const j = JSON.parse(chunk);
if ("response" in j) {
yield j["response"];
} else if ("error" in j) {
throw new Error(j["error"]);
}
} catch (e) {
throw new Error(`Error parsing Ollama response: ${e} ${chunk}`);
}
}
}
// Assign the last chunk to the buffer
buffer = chunks[chunks.length - 1];
}
}
protected async *_streamChat(
messages: ChatMessage[],
options: CompletionOptions,
): AsyncGenerator<ChatMessage> {
const response = await this.fetch(this.getEndpoint("api/chat"), {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify(this._convertArgs(options, messages)),
});
let buffer = "";
for await (const value of streamResponse(response)) {
// Append the received chunk to the buffer
buffer += value;
// Split the buffer into individual JSON chunks
const chunks = buffer.split("\n");
buffer = chunks.pop() ?? "";
for (let i = 0; i < chunks.length; i++) {
const chunk = chunks[i];
if (chunk.trim() !== "") {
try {
const j = JSON.parse(chunk);
if (j.message?.content) {
yield {
role: "assistant",
content: j.message.content,
};
} else if (j.error) {
throw new Error(j.error);
}
} catch (e) {
throw new Error(`Error parsing Ollama response: ${e} ${chunk}`);
}
}
}
}
}
async listModels(): Promise<string[]> {
const response = await this.fetch(
// localhost was causing fetch failed in pkg binary only for this Ollama endpoint
this.getEndpoint("api/tags"),
{
method: "GET",
},
);
const data = await response.json();
return data.models.map((model: any) => model.name);
}
}
export default Ollama;