forked from kalyanghosh/Face-Detection-using-CNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
UMD.py
281 lines (213 loc) · 11.5 KB
/
UMD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 27 19:54:41 2018
@author: Kalyan
"""
###########################################################################################################
#Instructions to run the code UMD.py inside the dataset subfolder folder inside Project2 folder
#1. Download the data(Batch 3, 12GB version) from http://www.umdfaces.io/
#2. Create a folder named data_UMD inside the dataset folder.Inside the data_UMD folder,
# create two dirs named Annotation and original_pics
#3. Extract the dataset inside the original_pics folder and copy the umdfaces_batch3_ultraface.csv annotation
# file to the Annotation folder.
#4. Run the code UMD.py inside the dataset folder by specifying the following parameters.
# INPUT PARAMETERS
# image_dir = .\data_UMD\original_pics
# anno_dir = .\data_UMD\Annotation
# save_dir = .\data_UMD\cache
# use_Color = True for color image , False for gray
# patch_size = 60, you are free to give your own size
# train_size = 10000, number of training images
# test_size = 1000, number of testing images
# OUTPUT
# After running the code UMD.py, the folder structure that will be generatd is as follows:
# 1. Inside the data_UMD folder, a folder 'cache' will be created
# 2. Inside the data_UMD folder, a folder 'color' (if use_Color=True) else 'gray' will be created
# 3. Inside the 'color'/'gray' folder, two folders namely 'train' and 'test' will be created
# 4. Inside each of the 'train' and 'test' folders,
# 'neg' folder for negative images and 'pos' foder for positive images will be created
###########################################################################################################
import os
import glob
import sys
import csv
import numpy as np
import random
import cv2
import math
import argparse
import cPickle
from util_file import *
def parse_UMD(image_dir, anno_dir,train_size,test_size):
""" origional annotation format
'313', 'gaetano_donizetti/gaetano_donizetti_0010.jpg', '3.652360', '0.998470', '235.973200', '113.164400', '83.661600', '82.111200', '12.000000', '-21.000000', '1.000000', '242.945000',
'123.762000', '0.672196', '249.732000', '122.254000', '0.953512', '258.527000', '123.782000', '0.987899', '275.412000', '122.693000', '0.976441', '285.191000', '120.007000', '0.952408', '294.760000', '120.541000', '0.888727', '248.084000', '130.652000',
'0.918214', '254.237000', '130.043000', '1.003340', '260.078000', '130.637000', '0.961023', '278.597000', '129.900000', '0.959223', '285.327000', '128.429000', '0.985439', '291.989000', '128.231000', '0.981398', '243.272000', '147.739000', '0.000000', '261.525000', '152.766000', '0.627117', '267.922000', '153.909000', '0.989203', '278.154000', '151.961000', '0.948437', '312.663000', '144.420000', '0.000000', '261.234000', '167.113000', '0.896388', '271.949000', '168.055000', '0.972544', '284.254000',
'166.072000', '0.986057', '274.983000', '188.433000', '0.247581', '0.874067', '0.125933'
"""
# check directories of the dataset
check_path(image_dir)
check_path(anno_dir)
#parse the annotation file
anno_file = os.path.join(anno_dir, 'umdfaces_batch3_ultraface.csv')
dataset=[]
num_train_test_size=train_size+test_size
count=0
with open(anno_file) as csvfile:
readCSV = csv.reader(csvfile, delimiter=',')
next(readCSV)
for row in readCSV:
per_data_info=[]
img_name=row[1]
per_data_info.append(img_name)
face_x=row[4]
per_data_info.append(face_x)
face_y=row[5]
per_data_info.append(face_y)
face_width=row[6]
per_data_info.append(face_width)
face_height=row[7]
per_data_info.append(face_height)
count+=1
dataset.append(per_data_info)
if(count<num_train_test_size):
continue
break
return dataset
def create_datasets_UMD(image_dir,anno_dir,save_dir,use_Color,patch_size,train_size,test_size):
dataset=parse_UMD(image_dir,anno_dir,train_size,test_size)
# create directories for saving cropped datasets if necessary
make_dir_if_not_exist(save_dir)
dataset_tag ='color' if use_Color else 'gray'
save_folder = os.path.join(save_dir, dataset_tag)
make_dir_if_not_exist(save_folder)
dataset_train='train'
save_folder_train = os.path.join(save_folder, dataset_train)
make_dir_if_not_exist(save_folder_train)
dataset_test='test'
save_folder_test = os.path.join(save_folder, dataset_test)
make_dir_if_not_exist(save_folder_test)
#create pos folder-train
positive='pos'
positive_folder_train=os.path.join(save_folder_train, positive)
make_dir_if_not_exist(positive_folder_train)
#create neg folder-train
negative='neg'
negative_folder_train=os.path.join(save_folder_train, negative)
make_dir_if_not_exist(negative_folder_train)
#create pos folder-test
positive='pos'
positive_folder_test=os.path.join(save_folder_test, positive)
make_dir_if_not_exist(positive_folder_test)
#create neg folder-test
negative='neg'
negative_folder_test=os.path.join(save_folder_test, negative)
make_dir_if_not_exist(negative_folder_test)
count=0
dSize=patch_size
img_tag = cv2.IMREAD_COLOR if use_Color else cv2.IMREAD_GRAYSCALE
#train
#crop positive
for i in range(1,train_size):
per_data_info=dataset[i]
full_name=per_data_info[0]
index_of_slash=full_name.find('/')
img_name=full_name[index_of_slash+1:]
folder_name=img_name[:index_of_slash]
X=int(float(per_data_info[1]))
Y=int(float(per_data_info[2]))
W=int(float(per_data_info[3]))
H=int(float(per_data_info[4]))
#find the image in the image_dir
folder_path=os.path.join(image_dir,folder_name)
# if use_Color is True
if use_Color:
for filename in glob.glob(folder_path+'\*.jpg'):
length=len(img_name)
filename_short=filename[len(filename)-length:]
if(filename_short==img_name):
img= cv2.imread(folder_path+'\\'+img_name,img_tag)
cv2.rectangle(img,(X,Y),(X+H,Y+H),(255,255,255))
#crop pos
cropped_image_pos=img[Y:Y+H,X:X+W]
#crop neg
cropped_image_neg=img[0:dSize,0:dSize]
#save pos
resized_pos=cv2.resize(cropped_image_pos,(dSize,dSize))
cv2.imwrite(positive_folder_train+'\\'+img_name,resized_pos)
#save neg
resized_neg=cv2.resize(cropped_image_neg,(dSize,dSize))
cv2.imwrite(negative_folder_train+'\\'+img_name,resized_neg)
# if use_Color is False
else:
for filename in glob.glob(folder_path+'\*.jpg'):
length=len(img_name)
filename_short=filename[len(filename)-length:]
if(filename_short==img_name):
img= cv2.imread(folder_path+'\\'+img_name,img_tag)
cv2.rectangle(img,(X,Y),(X+H,Y+H),(255,255,255))
#crop pos
cropped_image_pos=img[Y:Y+H,X:X+W]
#crop neg
cropped_image_neg=img[0:dSize,0:dSize]
#save pos
resized_pos=cv2.resize(cropped_image_pos,(dSize,dSize))
cv2.imwrite(positive_folder_train+'\\'+img_name,resized_pos)
#save neg
resized_neg=cv2.resize(cropped_image_neg,(dSize,dSize))
cv2.imwrite(negative_folder_train+'\\'+img_name,resized_neg)
#**************************************************************************
#test
for i in range(train_size,train_size+test_size):
per_data_info=dataset[i]
full_name=per_data_info[0]
index_of_slash=full_name.find('/')
img_name=full_name[index_of_slash+1:]
folder_name=img_name[:index_of_slash]
X=int(float(per_data_info[1]))
Y=int(float(per_data_info[2]))
W=int(float(per_data_info[3]))
H=int(float(per_data_info[4]))
#find the image in the image_dir
folder_path=os.path.join(image_dir,folder_name)
# if use_Color is True
if use_Color:
for filename in glob.glob(folder_path+'\*.jpg'):
length=len(img_name)
filename_short=filename[len(filename)-length:]
if(filename_short==img_name):
img= cv2.imread(folder_path+'\\'+img_name,img_tag)
cv2.rectangle(img,(X,Y),(X+H,Y+H),(255,255,255))
#crop pos
cropped_image_pos=img[Y:Y+H,X:X+W]
#crop neg
cropped_image_neg=img[0:dSize,0:dSize]
#save pos
resized_pos=cv2.resize(cropped_image_pos,(dSize,dSize))
cv2.imwrite(positive_folder_test+'\\'+img_name,resized_pos)
#save neg
resized_neg=cv2.resize(cropped_image_neg,(dSize,dSize))
cv2.imwrite(negative_folder_test+'\\'+img_name,resized_neg)
# if use_Color is False
else:
for filename in glob.glob(folder_path+'\*.jpg'):
length=len(img_name)
filename_short=filename[len(filename)-length:]
if(filename_short==img_name):
img= cv2.imread(folder_path+'\\'+img_name,img_tag)
cv2.rectangle(img,(X,Y),(X+H,Y+H),(255,255,255))
#crop pos
cropped_image=img[Y:Y+H,X:X+W]
#crop neg
cropped_image=img[Y:Y+H,X:X+W]
#save pos
resized=cv2.resize(cropped_image,(dSize,dSize))
cv2.imwrite(positive_folder_test+'\\'+img_name,resized)
#save neg
resized_neg=cv2.resize(cropped_image_neg,(dSize,dSize))
cv2.imwrite(negative_folder_test+'\\'+img_name,resized_neg)
# --image_dir .\data_UMD\originalPics, --anno_dir .\data_UMD\annotations, --save_dir .\data_UMD\cache,
# --use_Color True for Color else False, -- patch_size=60 , --train_size =10000 , --test_size= 1000
#
if __name__ == '__main__':
create_datasets_UMD('.\data_UMD\original_pics', '.\data_UMD\Annotation','.\data_UMD\cache',True,60,10000,1000)