generated from astronomer/airflow-provider-sample
-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Decorator configuration improvements #67
Closed
Closed
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
venkatajagannath
temporarily deployed
to
internal
September 17, 2024 22:26 — with
GitHub Actions
Inactive
Codecov ReportAttention: Patch coverage is
Additional details and impacted files@@ Coverage Diff @@
## main #67 +/- ##
==========================================
+ Coverage 95.42% 95.47% +0.04%
==========================================
Files 5 5
Lines 546 552 +6
==========================================
+ Hits 521 527 +6
Misses 25 25 ☔ View full report in Codecov by Sentry. |
dukarc
reviewed
Sep 18, 2024
dukarc
reviewed
Sep 18, 2024
venkatajagannath
temporarily deployed
to
internal
September 19, 2024 06:12 — with
GitHub Actions
Inactive
venkatajagannath
temporarily deployed
to
internal
September 19, 2024 22:55 — with
GitHub Actions
Inactive
venkatajagannath
temporarily deployed
to
internal
September 19, 2024 22:57 — with
GitHub Actions
Inactive
venkatajagannath
temporarily deployed
to
internal
September 20, 2024 21:12 — with
GitHub Actions
Inactive
venkatajagannath
temporarily deployed
to
internal
September 25, 2024 17:44 — with
GitHub Actions
Inactive
venkatajagannath
temporarily deployed
to
internal
September 25, 2024 17:46 — with
GitHub Actions
Inactive
When running the DAG: """ This tutorial demonstrates how to use the Ray provider in Airflow to parallelize a task using Ray. """ from airflow.decorators import dag, task from ray_provider.decorators.ray import ray CONN_ID = "ray_conn_2" RAY_TASK_CONFIG = { "conn_id": CONN_ID, "num_cpus": 1, "num_gpus": 0, "memory": 0, "poll_interval": 5, } @dag( start_date=None, schedule=None, catchup=False, tags=["ray", "example", "TEST"], doc_md=__doc__, ) def test_taskflow_ray_tutorial(): @task def generate_data() -> list: """ Generate sample data Returns: list: List of integers """ import random return [random.randint(1, 100) for _ in range(10)] # use the @ray.task decorator to parallelize the task @ray.task(config=RAY_TASK_CONFIG) def get_mean_squared_value(data: list) -> float: """ Get the mean squared value from a list of integers Args: data (list): List of integers Returns: float: Mean value of the list """ import numpy as np import ray @ray.remote def square(x: int) -> int: """ Square a number Args: x (int): Number to square Returns: int: Squared number """ return x**2 ray.init() data = np.array(data) futures = [square.remote(x) for x in data] results = ray.get(futures) mean = np.mean(results) print(f"Mean squared value: {mean}") data = generate_data() get_mean_squared_value(data) test_taskflow_ray_tutorial() We faced the issue: Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/ray_provider/operators/ray.py", line 286, in execute self.defer( File "/usr/local/lib/python3.12/site-packages/airflow/models/baseoperator.py", line 1777, in defer raise TaskDeferred(trigger=trigger, method_name=method_name, kwargs=kwargs, timeout=timeout) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/airflow/exceptions.py", line 431, in __init__ raise ValueError("Timeout value must be a timedelta") ValueError: Timeout value must be a timedelta
It works when not setting job_timeout_seconds or setting it to a positive integer but not with 0: get_mean_squared_value = SubmitRayJob( task_id="SubmitRayJob", conn_id=CONN_ID, entrypoint="python ray_script.py {{ ti.xcom_pull(task_ids='generate_data') | join(' ') }}", runtime_env=RAY_RUNTIME_ENV, num_cpus=1, num_gpus=0, memory=0, resources={}, xcom_task_key="SubmitRayJob.dashboard", fetch_logs=True, wait_for_completion=True, job_timeout_seconds=0, poll_interval=5, ) failed with [2024-09-27, 10:29:53 UTC] {taskinstance.py:3310} ERROR - Task failed with exception Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/ray_provider/operators/ray.py", line 287, in execute job_timeout_seconds = timedelta(seconds=self.job_timeout_seconds) if self.job_timeout_seconds > 0 else None ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: '>' not supported between instances of 'NoneType' and 'int' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/airflow/models/taskinstance.py", line 767, in _execute_task result = _execute_callable(context=context, **execute_callable_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/airflow/models/taskinstance.py", line 733, in _execute_callable return ExecutionCallableRunner( ^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/airflow/utils/operator_helpers.py", line 252, in run return self.func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/airflow/models/baseoperator.py", line 406, in wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.12/site-packages/ray_provider/operators/ray.py", line 317, in execute raise AirflowException(f"SubmitRayJob operator failed due to {e}. Cleaning up resources...") airflow.exceptions.AirflowException: SubmitRayJob operator failed due to '>' not supported between instances of 'NoneType' and 'int'. Cleaning up resources...
get_mean_squared_value = SubmitRayJob( task_id="SubmitRayJob", conn_id=CONN_ID, entrypoint="python ray_script.py {{ ti.xcom_pull(task_ids='generate_data') | join(' ') }}", runtime_env=RAY_RUNTIME_ENV, num_cpus=1, num_gpus=0, memory=0, resources={}, xcom_task_key="SubmitRayJob.dashboard", fetch_logs=True, wait_for_completion=True, job_timeout_seconds=0, poll_interval=5, ) That resulted [2024-09-27, 10:55:06 UTC] {local_task_job_runner.py:123} ▶ Pre task execution logs [2024-09-27, 10:55:06 UTC] {ray.py:219} INFO - Dashboard URL retrieved from XCom: None [2024-09-27, 10:55:06 UTC] {base.py:84} INFO - Retrieving connection 'ray_conn_2' [2024-09-27, 10:55:06 UTC] {ray.py:87} INFO - Ray cluster address is: http://172.23.0.3:30487 [2024-09-27, 10:55:06 UTC] {ray.py:155} INFO - Address URL is: http://172.23.0.3:30487 [2024-09-27, 10:55:06 UTC] {ray.py:156} INFO - Dashboard URL is: None [2024-09-27, 10:55:06 UTC] {ray.py:183} INFO - Submitted job with ID: raysubmit_G22MqPHyvLv8ghRV [2024-09-27, 10:55:06 UTC] {ray.py:278} INFO - Ray job submitted with id: raysubmit_G22MqPHyvLv8ghRV [2024-09-27, 10:55:06 UTC] {ray.py:208} INFO - Job raysubmit_G22MqPHyvLv8ghRV status: PENDING [2024-09-27, 10:55:06 UTC] {ray.py:282} INFO - Current job status for raysubmit_G22MqPHyvLv8ghRV is: PENDING [2024-09-27, 10:55:06 UTC] {ray.py:290} INFO - Deferring the polling to RayJobTrigger... [2024-09-27, 10:55:06 UTC] {taskinstance.py:3310} ERROR - Task failed with exception Traceback (most recent call last): File "/usr/local/lib/python3.12/site-packages/ray_provider/operators/ray.py", line 302, in execute timeout=job_timeout_seconds, ^^^^^^^^^^^^^^^^^^^ UnboundLocalError: cannot access local variable 'job_timeout_seconds' where it is not associated with a value During handling of the above exception, another exception occurred:
This was referenced Oct 4, 2024
Closed
tatiana
added a commit
that referenced
this pull request
Nov 29, 2024
The Ray provider 0.2.1 allowed users to define a hard-coded configuration to materialize the Kubernetes cluster. This PR aims to enable users to define a function that can receive the Airflow context and generate the configuration dynamically using context properties. This request came from an Astronomer customer. There is an example DAG file illustrating how to use this feature. It has a parent DAG that triggers two child DAGs, which leverage the just introduced `@ray.task` callable configuration. The screenshots below show their success, when using the [local development instructions](https://github.com/astronomer/astro-provider-ray/blob/main/docs/getting_started/local_development_setup.rst) using Astro CLI. Parent DAG: <img width="1624" alt="Screenshot 2024-11-29 at 12 15 13" src="https://github.com/user-attachments/assets/586b4575-ee62-4344-bbd7-a1a6423360ce"> Child 1 DAG: <img width="1624" alt="Screenshot 2024-11-29 at 12 15 56" src="https://github.com/user-attachments/assets/23d89288-c68a-498e-848a-743fb2684c4f"> Example of logs that illustrate the RayCluster using dynamic configuration was created and used in Kubernetes, with its own IP address: ``` (...) [2024-11-29T12:14:52.276+0000] {standard_task_runner.py:104} INFO - Running: ['airflow', 'tasks', 'run', 'ray_dynamic_config_child_1', 'process_data_with_ray', 'manual__2024-11-29T12:14:50.273712+00:00', '--job-id', '773', '--raw', '--subdir', 'DAGS_FOLDER/ray_dynamic_config.py', '--cfg-path', '/tmp/tmpkggwlv23'] [2024-11-29T12:14:52.278+0000] {logging_mixin.py:190} WARNING - /usr/local/lib/python3.12/site-packages/airflow/task/task_runner/standard_task_runner.py:70 DeprecationWarning: This process (pid=238) is multi-threaded, use of fork() may lead to deadlocks in the child. (...) [2024-11-29T12:14:52.745+0000] {decorators.py:94} INFO - Using the following config {'conn_id': 'ray_conn', 'runtime_env': {'working_dir': '/usr/local/airflow/dags/ray_scripts', 'pip': ['numpy']}, 'num_cpus': 1, 'num_gpus': 0, 'memory': 0, 'poll_interval': 5, 'ray_cluster_yaml': '/usr/local/airflow/dags/scripts/first-254.yaml', 'xcom_task_key': 'dashboard'} (...) [2024-11-29T12:14:55.430+0000] {hooks.py:474} INFO - ::group::Create Ray Cluster [2024-11-29T12:14:55.430+0000] {hooks.py:475} INFO - Loading yaml content for Ray cluster CRD... [2024-11-29T12:14:55.451+0000] {hooks.py:410} INFO - Creating new Ray cluster: first-254 [2024-11-29T12:14:55.456+0000] {hooks.py:494} INFO - ::endgroup:: (...) [2024-11-29T12:14:55.663+0000] {hooks.py:498} INFO - ::group::Setup Load Balancer service [2024-11-29T12:14:55.663+0000] {hooks.py:334} INFO - Attempt 1: Checking LoadBalancer status... [2024-11-29T12:14:55.669+0000] {hooks.py:278} ERROR - Error getting service first-254-head-svc: (404) Reason: Not Found HTTP response headers: HTTPHeaderDict({'Audit-Id': '81b07ac4-db3b-48a6-b336-f52ae93bee55', 'Cache-Control': 'no-cache, private', 'Content-Type': 'application/json', 'X-Kubernetes-Pf-Flowschema-Uid': '955e8bb0-08b1-4d45-a768-e49387a9767c', 'X-Kubernetes-Pf-Prioritylevel-Uid': 'd5240328-288d-4366-b094-d8fd793c7431', 'Date': 'Fri, 29 Nov 2024 12:14:55 GMT', 'Content-Length': '212'}) HTTP response body: {"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"services \"first-254-head-svc\" not found","reason":"NotFound","details":{"name":"first-254-head-svc","kind":"services"},"code":404} [2024-11-29T12:14:55.669+0000] {hooks.py:355} INFO - LoadBalancer service is not available yet... [2024-11-29T12:15:35.670+0000] {hooks.py:334} INFO - Attempt 2: Checking LoadBalancer status... [2024-11-29T12:15:35.688+0000] {hooks.py:348} INFO - LoadBalancer is ready. [2024-11-29T12:15:35.688+0000] {hooks.py:441} INFO - {'ip': '172.18.255.1', 'hostname': None, 'ports': [{'name': 'client', 'port': 10001}, {'name': 'dashboard', 'port': 8265}, {'name': 'gcs', 'port': 6379}, {'name': 'metrics', 'port': 8080}, {'name': 'serve', 'port': 8000}], 'working_address': '172.18.255.1'} (...) [2024-11-29T12:15:38.345+0000] {triggers.py:124} INFO - ::group:: Trigger 1/2: Checking the job status [2024-11-29T12:15:38.345+0000] {triggers.py:125} INFO - Polling for job raysubmit_paxAkyLiKxEHPmwG every 5 seconds... (...) [2024-11-29T12:15:38.354+0000] {hooks.py:156} INFO - Dashboard URL is: http://172.18.255.1:8265 [2024-11-29T12:15:38.361+0000] {hooks.py:208} INFO - Job raysubmit_paxAkyLiKxEHPmwG status: PENDING [2024-11-29T12:15:38.361+0000] {triggers.py:100} INFO - Status of job raysubmit_paxAkyLiKxEHPmwG is: PENDING [2024-11-29T12:15:38.361+0000] {triggers.py:108} INFO - ::group::raysubmit_paxAkyLiKxEHPmwG logs [2024-11-29T12:15:43.416+0000] {hooks.py:208} INFO - Job raysubmit_paxAkyLiKxEHPmwG status: RUNNING [2024-11-29T12:15:43.416+0000] {triggers.py:100} INFO - Status of job raysubmit_paxAkyLiKxEHPmwG is: RUNNING [2024-11-29T12:15:43.417+0000] {triggers.py:112} INFO - 2024-11-29 04:15:40,813 INFO worker.py:1429 -- Using address 10.244.0.140:6379 set in the environment variable RAY_ADDRESS [2024-11-29T12:15:43.417+0000] {triggers.py:112} INFO - 2024-11-29 04:15:40,814 INFO worker.py:1564 -- Connecting to existing Ray cluster at address: 10.244.0.140:6379... [2024-11-29T12:15:43.417+0000] {triggers.py:112} INFO - 2024-11-29 04:15:40,820 INFO worker.py:1740 -- Connected to Ray cluster. View the dashboard at �[1m�[32m10.244.0.140:8265 �[39m�[22m [2024-11-29T12:15:48.430+0000] {hooks.py:208} INFO - Job raysubmit_paxAkyLiKxEHPmwG status: SUCCEEDED [2024-11-29T12:15:48.430+0000] {triggers.py:112} INFO - Mean of this population is 12.0 [2024-11-29T12:15:48.430+0000] {triggers.py:112} INFO - �[36m(autoscaler +5s)�[0m Tip: use `ray status` to view detailed cluster status. To disable these messages, set RAY_SCHEDULER_EVENTS=0. [2024-11-29T12:15:48.430+0000] {triggers.py:112} INFO - �[36m(autoscaler +5s)�[0m Adding 1 node(s) of type small-group. [2024-11-29T12:15:49.448+0000] {triggers.py:113} INFO - ::endgroup:: [2024-11-29T12:15:49.448+0000] {triggers.py:144} INFO - ::endgroup:: [2024-11-29T12:15:49.448+0000] {triggers.py:145} INFO - ::group:: Trigger 2/2: Job reached a terminal state [2024-11-29T12:15:49.448+0000] {triggers.py:146} INFO - Status of completed job raysubmit_paxAkyLiKxEHPmwG is: SUCCEEDED (...) ``` Child 2 DAG: <img width="1624" alt="Screenshot 2024-11-29 at 12 17 20" src="https://github.com/user-attachments/assets/5f0320a2-3bce-49a9-8580-a584d1f894dc"> Kubernetes RayClusters spun: <img width="758" alt="Screenshot 2024-11-29 at 12 15 37" src="https://github.com/user-attachments/assets/aabcce4a-ce4a-47db-b9cf-e87cf68f2316"> **Limitations** The example DAGs are not currently being executed in the CI, but there is a dedicated ticket for this work: #95 **References** This PR had inspiration from: #67
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Currently, ray configuration to the ray.task decorator can only be a static input.
This PR fixes that behavior and also allows users to provide the configuration at runtime.
We are also making the following updates --