Skip to content

Latest commit

 

History

History
268 lines (196 loc) · 9.38 KB

README.md

File metadata and controls

268 lines (196 loc) · 9.38 KB

Airflow

Apache Airflow virtual envs made easy

Making it easy to run tasks in isolated python virtual environments (venv) in Dockerfiles. Maintained with ❤️ by Astronomer.

Let's say you want to be able to run an Airflow task against Snowflake's Snowpark -- which requires Python 3.8.

With the addition of the ExternalPythonOperator in Airflow 2.4 this is possible, but managing the build process to get clean, quick Docker builds can take a lot of plumbing.

This repo provides a nice packaged solution to it, that plays nicely with Docker image caching.

Synopsis

Create a requirements.txt file

For example, snowpark-requirements.txt

snowflake-snowpark-python[pandas]

# To get credentials out of a connection we need these in the venv too sadly
apache-airflow
psycopg2-binary
apache-airflow-providers-snowflake

Use our custom Docker build frontend

# syntax=quay.io/astronomer/airflow-extensions:v1

FROM quay.io/astronomer/astro-runtime:7.2.0-base

PYENV 3.8 snowpark snowpark-requirements.txt

Note: That first # syntax= comment is important, don't leave it out!

Read more about the new PYENV instruction

Use it in a DAG

from __future__ import annotations

import sys

from airflow import DAG
from airflow.decorators import task
from airflow.utils.timezone import datetime

with DAG(
    dag_id="astro_snowpark",
    schedule=None,
    start_date=datetime(2022, 1, 1),
    catchup=False,
    tags=["example"],
) as dag:

    @task
    def print_python():
        print(f"My python version is {sys.version}")

    @task.venv("snowpark")
    def snowpark_task():
        from airflow.providers.snowflake.hooks.snowflake import SnowflakeHook
        from snowflake.snowpark import Session

        print(f"My python version is {sys.version}")

        hook = SnowflakeHook("snowflake_default")
        conn_params = hook._get_conn_params()
        session = Session.builder.configs(conn_params).create()
        tables = session.sql("show tables").collect()
        print(tables)

        df_table = session.table("sample_product_data")
        print(df_table.show())
        return df_table.to_pandas()

    @task
    def analyze(df):
        print(f"My python version is {sys.version}")
        print(df.head(2))

    print_python() >> analyze(snowpark_task())

If you'd prefer not to use TaskFlow, you can directly use Python's ExternalPythonOperator instead. The example DAG below assumes a Dockerfile with the line PYENV 3.10 P310 (the "P310" is the name of the virtual environment):

import os
import sys
from datetime import datetime

from airflow import DAG
from airflow.operators.python import ExternalPythonOperator

def func():
    import numpy as np
    import pandas as pd
    print(f"python version: {sys.version}")
    df = pd.DataFrame(np.random.randint(0,2,size=(2, 2)), columns=["column1", "column2"])
    item = df.get("column1")[0]
    if item == 0:
        print("We got nothin'.")
    elif item == 1:
        print("We got 1!")
    else:
        raise ValueError("Something went horribly wrong!")

with DAG(
    dag_id="pandas_with_python_310",
    schedule_interval="@daily",
    start_date=datetime(2021, 1, 1),
    catchup=False,
    default_args={
        "retries": 2,  # If a task fails, it will retry 2 times.
    },
    tags=["example"],
):
    task = ExternalPythonOperator(
        task_id="p310",
        python=os.environ["ASTRO_PYENV_p310"],
        python_callable=func
    )

Requirements

This needs Apache Airflow 2.4+ for the ExternalPythonOperator to work.

Caveats

Novel Python Syntax

If you're using a virtual environment with a Python version greater than Airflow's Python version, Airflow won't be able to parse syntax unique to the newer Python version. For example, if your Airflow is running Python 3.9, and you create a virtual environment using Python 3.10, you won't be able to use Python 3.10's structural pattern matching, because Airflow's Python 3.9 doesn't recognize match syntax, so it won't be able to parse the DAG.

Imports for virtual environments must be done within the task scope

Consider the below Snowpark example. Snowpark must be imported from the task scope and not the DAG scope:

@task.venv("snowpark")
def snowpark_task():
    from airflow.providers.snowflake.hooks.snowflake import SnowflakeHook
    from snowflake.snowpark import Session

    print(f"My python version is {sys.version}")

    hook = SnowflakeHook("snowflake_default")
    conn_params = hook._get_conn_params()
    session = Session.builder.configs(conn_params).create()
    tables = session.sql("show tables").collect()
    print(tables)

    df_table = session.table("sample_product_data")
    print(df_table.show())
    return df_table.to_pandas()

Requirements for building Docker images

This needs the buildkit backend for Docker.

It is enabled by default for Docker Desktop users; Linux users will need to enable it:

To set the BuildKit environment variable when running the docker build command, run:

DOCKER_BUILDKIT=1 docker build .

To enable docker BuildKit by default, set daemon configuration in /etc/docker/daemon.json feature to true and restart the daemon. If the daemon.json file doesn’t exist, create new file called daemon.json and then add the following to the file.

{
  "features": {
    "buildkit" : true
  }
}

And restart the Docker daemon.

The syntax extension also currently expects to find a packages.txt and requirements.txt in the Docker context directory (these can be empty by default).

Reference

PYENV Docker instruction

The PYENV command adds a Python Virtual Environment, running on the specified Python version to the docker image, and optionally install packages from a requirements.txt

It has the following syntax:

PYENV <python-version> <venv-name> [<reqs-file>]

The requirements file is optional, so one can install a bare Python environment with something like:

PYENV 3.10 venv1

@task.venv decorator

The @task.venv decorator wraps the ExternalPythonOperator. The decorator does a few things:

  1. It assigns the decorated function as the ExternalPythonOperator's callable
  2. It uses the string passed to the decorator to look up the absolute path of the virtual environment, and passes that path to the ExternalPythonOperator's python parameter.
    1. For example, @task.venv("python-310") would be analagous to ExternalPythonOperator(python="python-310", ...).
    2. Note that the string passed to @task.venv must match the virtual environment name in the Dockerfile's PYENV command.
      1. That is, if the Dockerfile has the line PYENV 3.10 python-310, tasks must use @task.venv("python-310") to run in that virtual environment.
  3. It accepts any arbitrary kwargs that a ExternalPythonOperator would otherwise accept.

In This Repo

This contains the cusotm Docker BuildKit frontend (see this blog for details) adds a new custom command PYENV that can be used inside Dockerfiles to install new Python versions and virtual environments with custom dependencies.

This contains an Apache Airflow provider that providers the @task.venv decorator.

The Gory Details

a.k.a. How do I do this all manually?

The # syntax line tells buildkit to user our Build frontend to process the Dockerfile into instructions.

The example Dockerfile above gets converted into roughly the following Dockerfile:

# syntax=docker/dockerfile:1

FROM quay.io/astronomer/astro-runtime:7.2.0

USER root
COPY --link --from=python:3.8-slim /usr/local/bin/*3.8* /usr/local/bin/
COPY --link --from=python:3.8-slim /usr/local/include/python3.8* /usr/local/include/python3.8
COPY --link --from=python:3.8-slim /usr/local/lib/pkgconfig/*3.8* /usr/local/lib/pkgconfig/
COPY --link --from=python:3.8-slim /usr/local/lib/*3.8*.so* /usr/local/lib/
COPY --link --from=python:3.8-slim /usr/local/lib/python3.8 /usr/local/lib/python3.8
RUN /sbin/ldconfig /usr/local/lib
RUN ln -s /usr/local/include/python3.8 /usr/local/include/python3.8m

USER astro
RUN mkdir -p /home/astro/.venv/snowpark
COPY reqs/venv1.txt /home/astro/.venv/snowpark/requirements.txt
RUN /usr/local/bin/python3.8 -m venv --system-site-packages /home/astro/.venv/snowpark
ENV ASTRO_PYENV_snowpark /home/astro/.venv/snowpark/bin/python
RUN --mount=type=cache,target=/home/astro/.cache/pip /home/astro/.venv/snowpark/bin/pip --cache-dir=/home/astro/.cache/pip install -r /home/astro/.venv/snowpark/requirements.txt

The final part of this puzzle from the Airflow operator is to look up the path to python in the created venv using the ASTRO_PYENV_* environment variable:

@task.external_python(python=os.environ["ASTRO_PYENV_snowpark"])
def snowpark_task():
    ...