-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
376 lines (314 loc) · 16.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import os
import json
import torch
import random
import argparse
import numpy as np
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from datetime import datetime
from torch.optim.lr_scheduler import StepLR
from models.alexnet import Alexnet
from models.vggnet import Vggnet
from loss import TotalLoss
from datasets.mnist_dataloader import MnistDataset
from datasets.imagenet_dataloader import ImagenetDataset
from torchvision.transforms import transforms
# Example command: python train.py --name test_mnist_eval_old --gpu_ids 1 --batch_size 32 --pretrained --dataset_dir data/MNIST --num_classes 10 --imsize 128 --eval_old_task
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def check_loss(loss, loss_value):
loss_valid = True
error = ''
if loss_value == float("inf") or loss_value == float("-inf"):
loss_valid = False
error = "WARNING: received an inf loss"
elif torch.isnan(loss).sum() > 0:
loss_valid = False
error = 'WARNING: received a nan loss, setting loss value to 0'
elif loss_value < 0:
loss_valid = False
error = "WARNING: received a negative loss"
if error != '':
print(error)
with open(os.path.join(checkpoint_dir, f"training_log_{training_uid}.txt"), "a") as f:
f.write(error)
return loss_valid
def _get_old_outputs(dataset, loader, model_name):
dataset.obtain_old_outputs = True
old_output_map = _compute_output_of_old_tasks(model_name, loader)
dataset.old_output_map = old_output_map
dataset.obtain_old_outputs = False
return dataset
def _compute_output_of_old_tasks(init_model_name, loader):
if args.model_name == "alexnet":
from torchvision.models import alexnet
model = alexnet(pretrained=True)
elif args.model_name == "vgg16":
from torchvision.models import vgg16
model = vgg16(pretrained=True)
else:
raise NotImplementedError('%s is not found' % args.model_name)
model.to(device)
old_outputs = torch.zeros(0)
all_names = []
model.eval()
with torch.no_grad():
for names, data, _ in loader:
data = data.to(device)
batch_old_outputs = model(data)
old_outputs = torch.cat((old_outputs, batch_old_outputs)) if len(old_outputs) else batch_old_outputs
all_names.extend(names)
old_output_map = {name: old_probs.cpu().numpy() for name, old_probs in zip(all_names, old_outputs)}
del model
torch.cuda.empty_cache()
return old_output_map
def eval_old_task(model, val_loader, num_new_classes):
epoch_val_accuracy = 0
for data, label in val_loader:
data = data.to(device)
label = label.to(device)
val_output, _ = model(data)
acc = (val_output[:, :-num_new_classes].argmax(dim=1) == label).float().mean()
epoch_val_accuracy += acc / len(val_loader)
return epoch_val_accuracy
def warmup(model, train_loader, optimizer, criterion, warmup_epochs, num_new_classes, val_loader_old=None):
model.warmup()
for epoch in range(warmup_epochs):
epoch_loss = 0
epoch_accuracy = 0
model.train()
for data, label, _ in tqdm(train_loader):
data = data.to(device)
label = label.to(device)
output, _ = model(data)
loss = criterion(output, label, is_warmup=True)
optimizer.zero_grad()
if check_loss(loss, loss.item()):
loss.backward()
optimizer.step()
acc = (output[:, -num_new_classes:].argmax(dim=1) == label).float().mean()
epoch_accuracy += acc / len(train_loader)
epoch_loss += loss / len(train_loader)
model.eval()
with torch.no_grad():
epoch_val_accuracy = 0
epoch_val_loss = 0
for data, label, _ in val_loader:
data = data.to(device)
label = label.to(device)
val_output, _ = model(data)
val_loss = criterion(val_output, label, is_warmup=True)
acc = (val_output[:, -num_new_classes:].argmax(dim=1) == label).float().mean()
epoch_val_accuracy += acc / len(val_loader)
epoch_val_loss += val_loss / len(val_loader)
if val_loader_old != None:
epoch_val_accuracy_old = eval_old_task(model, val_loader_old, num_new_classes)
print(f"Warmup epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f} - old_val_acc: {epoch_val_accuracy_old:.4f}\n")
with open(os.path.join(checkpoint_dir, f"training_log_{training_uid}.txt"), "a") as f:
f.write(f"Warmup epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f} - old_val_acc: {epoch_val_accuracy_old:.4f}\n")
else:
print(f"Warmup epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f}\n")
with open(os.path.join(checkpoint_dir, f"training_log_{training_uid}.txt"), "a") as f:
f.write(f"Warmup epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f}\n")
return model, optimizer
def select_training_strategy(model, train_method):
if train_method == "featext":
model.featext()
elif train_method == "finetune":
model.finetune()
elif train_method == "finetune_fc":
model.finetune_fc()
elif train_method == "lwf":
model.lwf()
elif train_method == "lwf_eq_prob":
model.lwf_eq_prob()
else:
raise NotImplementedError("Choose valid training method")
model.strategy = train_method
return model
def train(model, train_loader, criterion, optimizer, num_new_classes):
epoch_loss = 0
epoch_accuracy = 0
model.train()
if model.strategy == "lwf" or model.strategy == "lwf_eq_prob":
for data, label, old_outputs in tqdm(train_loader):
data = data.to(device)
label = label.to(device)
old_outputs = old_outputs.to(device)
output, old_task_output = model(data)
loss = criterion(output, label, old_preds=old_task_output, old_gts=old_outputs)
optimizer.zero_grad()
if check_loss(loss, loss.item()):
loss.backward()
optimizer.step()
acc = (output[:, -num_new_classes:].argmax(dim=1) == label).float().mean()
epoch_accuracy += acc / len(train_loader)
epoch_loss += loss / len(train_loader)
else:
for data, label in tqdm(train_loader):
data = data.to(device)
label = label.to(device)
output, _ = model(data)
loss = criterion(output, label)
optimizer.zero_grad()
if check_loss(loss, loss.item()):
loss.backward()
optimizer.step()
acc = (output[:, -num_new_classes:].argmax(dim=1) == label).float().mean()
epoch_accuracy += acc / len(train_loader)
epoch_loss += loss / len(train_loader)
return model, optimizer, epoch_accuracy, epoch_loss
def evaluation(model, val_loader, criterion, num_new_classes, val_loader_old=None):
epoch_val_loss = 0
epoch_val_accuracy = 0
model.eval()
with torch.no_grad():
epoch_val_accuracy = 0
epoch_val_loss = 0
if model.strategy == "lwf" or model.strategy == "lwf_eq_prob":
for data, label, old_outputs in val_loader:
data = data.to(device)
label = label.to(device)
old_outputs = old_outputs.to(device)
val_output, val_old_task_output = model(data)
val_loss = criterion(val_output, label, val_old_task_output, old_outputs)
acc = (val_output[:, -num_new_classes:].argmax(dim=1) == label).float().mean()
epoch_val_accuracy += acc / len(val_loader)
epoch_val_loss += val_loss / len(val_loader)
else:
for data, label in val_loader:
data = data.to(device)
label = label.to(device)
val_output, _ = model(data)
val_loss = criterion(val_output, label)
acc = (val_output[:, -num_new_classes:].argmax(dim=1) == label).float().mean()
epoch_val_accuracy += acc / len(val_loader)
epoch_val_loss += val_loss / len(val_loader)
if val_loader_old != None:
epoch_val_accuracy_old = eval_old_task(model, val_loader_old, num_new_classes)
if val_loader_old != None:
return epoch_val_accuracy, epoch_val_loss, epoch_val_loss, epoch_val_accuracy_old
else:
return epoch_val_accuracy, epoch_val_loss, epoch_val_loss
parser = argparse.ArgumentParser()
# experiment specifics
parser.add_argument('--name', type=str, default='imagenet2mnist', help='name of the experiment. It decides where to store samples and models')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--seed', type=int, default=47)
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
parser.add_argument('--dataset', type=str, default='mnist', choices=['mnist'], help='Dataset choice')
# training specifics
parser.add_argument('--batch_size', type=int, default=16, help='input batch size')
parser.add_argument('--num_workers', type=int, default=16, help='num workers for data prep')
parser.add_argument('--epochs', type=int, default=100, help='# of epochs in training')
parser.add_argument('--warmup_epochs', type=int, default=2, help='# of epochs in warmup step')
parser.add_argument('--weight_decay', type=int, default=5e-4, help='Coefficient of weight decay for optimizer')
parser.add_argument('--train_method', type=str, default="lwf", choices=["lwf", "finetune", "featext", "finetune_fc", "lwf_eq_prob"], help='training strategy for new model')
parser.add_argument('--pretrained', action='store_true', help='Imagenet pretrained or not')
parser.add_argument('--loss_temp', type=float, default=2, help='temperature of KDLoss')
# for setting inputs
parser.add_argument('--dataset_dir', type=str, default='./data/mnist/')
parser.add_argument('--eval_old_task', action='store_true', help='Evaluate validation accuracy of imagenet or not')
parser.add_argument('--old_dataset_dir', type=str, default='./data/imagenet/')
parser.add_argument('--num_classes', type=int, required=True)
parser.add_argument('--imsize', type=int, default=256)
parser.add_argument('--imsize_old_task', type=int, default=256)
# for displays
parser.add_argument('--save_epoch_freq', type=int, default=20, help='frequency of saving checkpoints at the end of epochs')
# model and optimizer
parser.add_argument('--model_name', type=str, default='alexnet', choices=["vgg16", "alexnet"], help='create model with given name')
parser.add_argument('--load_from', type=str, default='', help='load the pretrained model from the specified location')
parser.add_argument('--optimizer_type', type=str, default='sgd', choices=["sgd", "adam"], help='Name of the optimizer')
parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam')
parser.add_argument('--gamma', type=float, default=0.1)
parser.add_argument('--lr_factor', type=float, default=0.5)
parser.add_argument('--lr', type=float, default=1e-4, help='initial learning rate for adam')
args = parser.parse_args()
checkpoint_dir = os.path.join(args.checkpoints_dir, args.name)
os.makedirs(checkpoint_dir, exist_ok=True)
training_uid = "{}_{}_{}".format(args.train_method, args.dataset, datetime.now().strftime("%Y%m%d%H%M%S%f")[:-3])
config_file = os.path.join(checkpoint_dir, f'config_{training_uid}.json')
json.dump(vars(args), open(config_file, 'w'))
seed_everything(args.seed)
is_multigpu = "0" in args.gpu_ids and "1" in args.gpu_ids
num_new_classes = args.num_classes
if args.dataset == 'mnist':
train_dataset = MnistDataset(root=args.dataset_dir, phase="train", imsize=args.imsize)
val_dataset = MnistDataset(root=args.dataset_dir, phase="val", imsize=args.imsize)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers//2, pin_memory=True)
if args.eval_old_task:
val_dataset_old = ImagenetDataset(root=args.old_dataset_dir, phase="val", imsize=args.imsize_old_task)
val_loader_old = torch.utils.data.DataLoader(val_dataset_old, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers//2, pin_memory=True)
if args.model_name == "alexnet":
model = Alexnet(pretrained=args.pretrained, num_new_classes=num_new_classes)
elif args.model_name == "vgg16":
model = Vggnet(pretrained=args.pretrained, num_new_classes=num_new_classes)
else:
raise NotImplementedError('%s is not found' % args.model_name)
if is_multigpu:
device = 'cuda:0'
model = nn.DataParallel(model)
else:
device = f'cuda:{args.gpu_ids}'
model.to(device)
# Loss function
criterion = TotalLoss(strategy=args.train_method, temp=args.loss_temp, num_new_classes=num_new_classes)
# Optimizer selection
if args.optimizer_type == "sgd":
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
elif args.optimizer_type == "adam":
optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(args.beta1, 0.9), weight_decay=args.weight_decay)
else:
raise NotImplementedError("choose adam or sgd")
if args.train_method.startswith('lwf') or "finetune" in args.train_method:
for g in optimizer.param_groups:
g['lr'] = g['lr'] * 0.02
init_epoch = 0
if args.load_from != "":
checkpoint = torch.load(args.load_from)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
init_epoch = checkpoint['epoch']
criterion = checkpoint['criterion']
if args.train_method.startswith('lwf'):
# Get outputs of new data from pretrained network on old tasks
train_dataset = _get_old_outputs(train_dataset, train_loader, args.model_name)
val_dataset = _get_old_outputs(val_dataset, val_loader, args.model_name)
# Warm-up for fully connected layers of new task
if args.eval_old_task:
model, optimizer = warmup(model, train_loader, optimizer, criterion, args.warmup_epochs, num_new_classes, val_loader_old)
else:
model, optimizer = warmup(model, train_loader, optimizer, criterion, args.warmup_epochs, num_new_classes)
# Choose training strategy
model = select_training_strategy(model, args.train_method)
for epoch in range(init_epoch, init_epoch + args.epochs):
model, optimizer, epoch_accuracy, epoch_loss = train(model, train_loader, criterion, optimizer, num_new_classes)
if args.eval_old_task:
epoch_val_accuracy, epoch_val_loss, epoch_val_loss, epoch_val_accuracy_old = evaluation(model, val_loader, criterion, num_new_classes, val_loader_old)
print(f"Epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f} - old_val_acc: {epoch_val_accuracy_old:.4f}\n")
with open(os.path.join(checkpoint_dir, f"training_log_{training_uid}.txt"), "a") as f:
f.write(f"Epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f} - old_val_acc: {epoch_val_accuracy_old:.4f}\n")
else:
epoch_val_accuracy, epoch_val_loss, epoch_val_loss = evaluation(model, val_loader, criterion, num_new_classes)
print(f"Epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f}\n")
with open(os.path.join(checkpoint_dir, f"training_log_{training_uid}.txt"), "a") as f:
f.write(f"Epoch : {epoch+1} - loss : {epoch_loss:.4f} - acc: {epoch_accuracy:.4f} - val_loss : {epoch_val_loss:.4f} - val_acc: {epoch_val_accuracy:.4f}\n")
if epoch % args.save_epoch_freq == 0 and epoch:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'criterion': criterion,
'config_file': config_file
},
os.path.join(checkpoint_dir, f"epoch_{epoch}.pth")
)