forked from resemble-ai/resemble-enhance
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
59 lines (43 loc) · 1.53 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import gradio as gr
import torch
import torchaudio
from resemble_enhance.enhancer.inference import denoise, enhance
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
def _fn(path, solver, nfe, tau, denoising):
if path is None:
return None, None
solver = solver.lower()
nfe = int(nfe)
lambd = 0.9 if denoising else 0.1
dwav, sr = torchaudio.load(path)
dwav = dwav.mean(dim=0)
wav1, new_sr = denoise(dwav, sr, device)
wav2, new_sr = enhance(dwav, sr, device, nfe=nfe, solver=solver, lambd=lambd, tau=tau)
wav1 = wav1.cpu().numpy()
wav2 = wav2.cpu().numpy()
return (new_sr, wav1), (new_sr, wav2)
def main():
inputs: list = [
gr.Audio(type="filepath", label="Input Audio"),
gr.Dropdown(choices=["Midpoint", "RK4", "Euler"], value="Midpoint", label="CFM ODE Solver"),
gr.Slider(minimum=1, maximum=128, value=64, step=1, label="CFM Number of Function Evaluations"),
gr.Slider(minimum=0, maximum=1, value=0.5, step=0.01, label="CFM Prior Temperature"),
gr.Checkbox(value=False, label="Denoise Before Enhancement"),
]
outputs: list = [
gr.Audio(label="Output Denoised Audio"),
gr.Audio(label="Output Enhanced Audio"),
]
interface = gr.Interface(
fn=_fn,
title="Resemble Enhance",
description="AI-driven audio enhancement for your audio files, powered by Resemble AI.",
inputs=inputs,
outputs=outputs,
)
interface.launch()
if __name__ == "__main__":
main()