Skip to content

Latest commit

 

History

History
60 lines (47 loc) · 2.21 KB

README.md

File metadata and controls

60 lines (47 loc) · 2.21 KB

Lower Bounds and Algorithms in the Linear Decision Tree Model

Build

Keywords

Problems in the Linear Decision Tree Model

  • Sorting, Merging
  • Sorting under Partial Information, Merging under Partial Information
  • Sorting X + Y
  • 3SUM, k-SUM, k-LDT, subset sum
  • Point Location in an Arrangement of Hyperplanes

Lower bounds

  • Information-theoretic lower bound
  • Lower bounds for linear satisfiability problems (Erickson)
  • Lower bounds for linear degeneracy testing (Ailon, Chazelle)

Algorithms and upper bounds

  • Quicksort
  • Mergesort
  • Heapsort
  • Ford-Johnson algorithm
  • Tape merge
  • Hwang-Lin algorithm
  • Linial's algorithm
  • Fredman's algorithm
  • Buck's theorem
  • Meiser's algorithm

Contents

Main References

  1. Cardinal, J., Fiorini, S., Joret, G., Jungers, R. M., and Munro, J. I. (2013). Sorting under partial information (without the ellipsoid algorithm). Combinatorica, 33(6):655–697.
  2. Fredman, M. L. (1976). How good is the information theory bound in sorting? Theoretical Computer Science, 1(4):355–361.
  3. Grønlund, A. and Pettie, S. (2014). Threesomes, degenerates, and love triangles. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pages 621–630. IEEE.
  4. Linial, N. (1984). The information-theoretic bound is good for merging. SIAM Journal on Computing, 13(4):795–801.
  5. Meiser, S. (1993). Point location in arrangements of hyperplanes. Information and Computation, 106(2):286–303.