forked from djm34/ccminer-m7-branch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cuda_helper.h
499 lines (451 loc) · 13.6 KB
/
cuda_helper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
#ifndef CUDA_HELPER_H
#define CUDA_HELPER_H
static __device__ unsigned long long oMAKE_ULONGLONG(uint32_t LO, uint32_t HI)
{
#if __CUDA_ARCH__ >= 130
return __double_as_longlong(__hiloint2double(HI, LO));
#else
return (unsigned long long)LO | (((unsigned long long)HI) << 32);
#endif
}
static __device__ unsigned long long MAKE_ULONGLONG(uint32_t LO, uint32_t HI)
{
uint64_t result;
asm volatile ("{\n\t"
"mov.b64 %0,{%1,%2}; \n\t"
"}"
: "=l"(result) : "r"(LO) , "r"(HI));
return result;
}
static __device__ uint32_t HIWORD(uint64_t x)
{
uint32_t result;
asm volatile ("{\n\t"
".reg .u32 xl; \n\t"
"mov.b64 {xl,%0},%1; \n\t"
"}"
: "=r"(result) : "l"(x));
return result;
}
static __device__ uint32_t LOWORD(uint64_t x)
{
uint32_t result;
asm volatile ("{\n\t"
".reg .u32 xh; \n\t"
"mov.b64 {%0,xh},%1; \n\t"
"}"
: "=r"(result) : "l"(x));
return result;
}
// das Hi Word aus einem 64 Bit Typen extrahieren
static __device__ uint32_t oHIWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2hiint(__longlong_as_double(x));
#else
return (uint32_t)(x >> 32);
#endif
}
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define SPH_ROTL32(x, n) SPH_T32(((x) << (n)) | ((x) >> (32 - (n))))
#define SPH_ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#else
// Kepler (Compute 3.5)
#define SPH_ROTL32(x, n) __funnelshift_l( (x), (x), (n) )
#define SPH_ROTR32(x, n) __funnelshift_r( (x), (x), (n) )
#endif
// das Hi Word in einem 64 Bit Typen ersetzen
static __device__ uint64_t oREPLACE_HIWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32ULL);
}
static __device__ uint64_t REPLACE_HIWORD(uint64_t x, uint32_t y) {
asm volatile("{\n\t"
" .reg .u32 tl,th; \n\t"
"mov.b64 {tl,th},%0; \n\t"
"mov.b64 %0,{tl,%1}; \n\t"
"}"
: "+l"(x) : "r"(y) );
return x;
}
static __device__ uint64_t REPLACE_LOWORD(uint64_t x, uint32_t y) {
asm volatile ("{\n\t"
" .reg .u32 tl,th; \n\t"
"mov.b64 {tl,th},%0; \n\t"
"mov.b64 %0,{%1,th}; \n\t"
"}"
: "+l"(x) : "r"(y) );
return x;
}
// das Lo Word aus einem 64 Bit Typen extrahieren
static __device__ uint32_t oLOWORD(const uint64_t &x) {
#if __CUDA_ARCH__ >= 130
return (uint32_t)__double2loint(__longlong_as_double(x));
#else
return (uint32_t)(x & 0xFFFFFFFFULL);
#endif
}
// das Lo Word in einem 64 Bit Typen ersetzen
static __device__ uint64_t oREPLACE_LOWORD(const uint64_t &x, const uint32_t &y) {
return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y);
}
// Endian Drehung für 32 Bit Typen
static __device__ uint32_t cuda_swab32(uint32_t x)
{
return __byte_perm(x, x, 0x0123);
}
static __device__ uint64_t swap2ll(uint32_t lo, uint32_t hi)
{
return(MAKE_ULONGLONG(cuda_swab32(lo),cuda_swab32(hi)));
}
// Endian Drehung für 64 Bit Typen
static __device__ uint64_t cuda_swab64(uint64_t x) {
return MAKE_ULONGLONG(cuda_swab32(HIWORD(x)), cuda_swab32(LOWORD(x)));
}
static __device__ uint64_t cuda_swab32ll(uint64_t x) {
return MAKE_ULONGLONG(cuda_swab32(LOWORD(x)), cuda_swab32(HIWORD(x)));
}
// diese 64 Bit Rotates werden unter Compute 3.5 (und besser) mit dem Funnel Shifter beschleunigt
#if __CUDA_ARCH__ >= 350
__forceinline__ __device__ uint64_t oROTR64(const uint64_t value, const int offset) {
uint2 result;
if(offset < 32) {
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
} else {
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
}
return __double_as_longlong(__hiloint2double(result.y, result.x));
}
#else
#define oROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif
// diese 64 Bit Rotates werden unter Compute 3.5 (und besser) mit dem Funnel Shifter beschleunigt
#if __CUDA_ARCH__ >= 350
__forceinline__ __device__ uint64_t oROTL64(const uint64_t value, const int offset) {
uint2 result;
if(offset >= 32) {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
} else {
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset));
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset));
}
return __double_as_longlong(__hiloint2double(result.y, result.x));
}
#else
#define oROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#endif
// Wolf0 Rotate
#if __CUDA_ARCH__ >= 350
__forceinline__ __device__ uint64_t ROTR64(const uint64_t x, const int y)
{
uint64_t res;
asm("{\n\t"
".reg .u32 tl,th,vl,vh;\n\t"
".reg .pred p;\n\t"
"mov.b64 {tl,th}, %1;\n\t"
"shf.r.wrap.b32 vl, tl, th, %2;\n\t"
"shf.r.wrap.b32 vh, th, tl, %2;\n\t"
"setp.lt.u32 p, %2, 32;\n\t"
"@p mov.b64 %0, {vl,vh};\n\t"
"@!p mov.b64 %0, {vh,vl};\n\t"
"}" : "=l"(res) : "l"(x) , "r"(y));
return res;
}
#else
#define ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif
#if __CUDA_ARCH__ >= 350
__forceinline__ __device__ uint64_t ROTL64(const uint64_t x, const int y)
{
uint64_t res;
asm("{\n\t"
".reg .u32 tl,th,vl,vh;\n\t"
".reg .pred p;\n\t"
"mov.b64 {tl,th}, %1;\n\t"
"shf.l.wrap.b32 vl, tl, th, %2;\n\t"
"shf.l.wrap.b32 vh, th, tl, %2;\n\t"
"setp.lt.u32 p, %2, 32;\n\t"
"@!p mov.b64 %0, {vl,vh};\n\t"
"@p mov.b64 %0, {vh,vl};\n\t"
"}" : "=l"(res) : "l"(x) , "r"(y));
return res;
}
#else
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#endif
__forceinline__ __device__ uint64_t xor1(uint64_t a, uint64_t b) {
uint64_t result;
asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(a) ,"l"(b));
return result;
}
__forceinline__ __device__ uint32_t xor1b(uint32_t a, uint32_t b) {
uint32_t result;
asm("xor.b32 %0, %1, %2;" : "=r"(result) : "r"(a) ,"r"(b));
return result;
}
__forceinline__ __device__ uint64_t xor3(uint64_t a, uint64_t b, uint64_t c) {
uint64_t result;
asm("{\n\t"
" .reg .u64 t1;\n\t"
"xor.b64 t1, %2, %3;\n\t"
"xor.b64 %0, %1, t1;\n\t"
"}"
: "=l"(result) : "l"(a) ,"l"(b),"l"(c));
return result;
}
__forceinline__ __device__ uint32_t xor3b(uint32_t a, uint32_t b, uint32_t c) {
uint32_t result;
asm("{\n\t"
" .reg .u32 t1;\n\t"
"xor.b32 t1, %2, %3;\n\t"
"xor.b32 %0, %1, t1;\n\t"
"}"
: "=r"(result) : "r"(a) ,"r"(b),"r"(c));
return result;
}
__forceinline__ __device__ uint64_t xor5(uint64_t a, uint64_t b, uint64_t c, uint64_t d, uint64_t e) {
uint64_t result;
asm("{\n\t"
" .reg .u64 t1,t2,t3;\n\t"
"xor.b64 t1, %1, %2;\n\t"
"xor.b64 t2, %3, %4;\n\t"
"xor.b64 t3, t1, t2;\n\t"
"xor.b64 %0, t3,%5;\n\t"
"}"
: "=l"(result) : "l"(a) ,"l"(b), "l"(c), "l"(d) ,"l"(e));
return result;
}
__forceinline__ __device__ uint64_t xor8(uint64_t a, uint64_t b, uint64_t c, uint64_t d,uint64_t e,uint64_t f,uint64_t g, uint64_t h) {
uint64_t result;
asm volatile ("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(g) ,"l"(h));
asm volatile ("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(f));
asm volatile ("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(e));
asm volatile ("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(d));
asm volatile ("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(c));
asm volatile ("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(b));
asm volatile ("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(a));
return result;
}
__forceinline__ __device__ uint32_t xandx(uint32_t a, uint32_t b, uint32_t c)
{
uint32_t result;
asm("{\n\t"
".reg .u32 m,n;\n\t"
"xor.b32 m, %2,%3;\n\t"
"and.b32 n, m,%1;\n\t"
"xor.b32 %0, n,%3;\n\t"
"}\n\t"
: "=r"(result) : "r"(a), "r"(b), "r"(c));
return result;
}
__forceinline__ __device__ uint64_t xandx64(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m,n;\n\t"
"xor.b64 m, %2,%3;\n\t"
"and.b64 n, m,%1;\n\t"
"xor.b64 %0, n,%3;\n\t"
"}\n\t"
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
__forceinline__ __device__ uint64_t xornot64(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m,n;\n\t"
"not.b64 m,%2; \n\t"
"or.b64 n, %1,m;\n\t"
"xor.b64 %0, n,%3;\n\t"
"}\n\t"
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
__forceinline__ __device__ void chi(uint64_t &s0, uint64_t &s1, uint64_t &s2, uint64_t &s3, uint64_t &s4)
{
asm("{\n\t"
".reg .u64 m0,m1,m2,m3,m4;\n\t"
".reg .u64 z0,z1,z2,z3,z4;\n\t"
"not.b64 m0,%0; \n\t"
"not.b64 m1,%1; \n\t"
"not.b64 m2,%2; \n\t"
"not.b64 m3,%3; \n\t"
"not.b64 m4,%4; \n\t"
"and.b64 z1,m1,%2;\n\t"
"and.b64 z2,m2,%3;\n\t"
"and.b64 z3,m3,%4;\n\t"
"and.b64 z4,m4,%0;\n\t"
"and.b64 z0,m0,%1;\n\t"
"xor.b64 %0,%0,z1;\n\t"
"xor.b64 %1,%1,z2;\n\t"
"xor.b64 %2,%2,z3;\n\t"
"xor.b64 %3,%3,z4;\n\t"
"xor.b64 %4,%4,z0;\n\t"
"}\n\t"
: "+l"(s0),"+l"(s1),"+l"(s2),"+l"(s3),"+l"(s4));
}
__forceinline__ __device__ uint64_t xornt64(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m,n;\n\t"
"not.b64 m,%3; \n\t"
"or.b64 n, %2,m;\n\t"
"xor.b64 %0, %1,n;\n\t"
"}\n\t"
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
__forceinline__ __device__ uint64_t sph_t64(uint64_t x)
{
uint64_t result;
asm("{\n\t"
"and.b64 %0,%1,0xFFFFFFFFFFFFFFFF;\n\t"
"}\n\t"
: "=l"(result) : "l"(x));
return result;
}
__forceinline__ __device__ uint32_t sph_t32(uint32_t x)
{
uint32_t result;
asm("{\n\t"
"and.b32 %0,%1,0xFFFFFFFF;\n\t"
"}\n\t"
: "=r"(result) : "r"(x));
return result;
}
__forceinline__ __device__ uint64_t andor(uint64_t a, uint64_t b, uint64_t c)
{
uint64_t result;
asm("{\n\t"
".reg .u64 m,n,o;\n\t"
"and.b64 m, %1, %2;\n\t"
" or.b64 n, %1, %2;\n\t"
"and.b64 o, n, %3;\n\t"
" or.b64 %0, m, o ;\n\t"
"}\n\t"
: "=l"(result) : "l"(a), "l"(b), "l"(c));
return result;
}
__forceinline__ __device__ uint32_t andor32(uint32_t a, uint32_t b, uint32_t c)
{
uint32_t result;
asm("{\n\t"
".reg .u32 m,n,o;\n\t"
"and.b32 m, %1, %2;\n\t"
" or.b32 n, %1, %2;\n\t"
"and.b32 o, n, %3;\n\t"
" or.b32 %0, m, o ;\n\t"
"}\n\t"
: "=r"(result) : "r"(a), "r"(b), "r"(c));
return result;
}
__forceinline__ __device__ uint64_t shr_t64(uint64_t x,uint32_t n)
{
uint64_t result;
asm("{\n\t"
"shr.b64 %0,%1,%2;\n\t"
"}\n\t"
: "=l"(result) : "l"(x), "r"(n));
return result;
}
__forceinline__ __device__ uint64_t shl_t64(uint64_t x,uint32_t n)
{
uint64_t result;
asm("{\n\t"
"shl.b64 %0,%1,%2;\n\t"
"}\n\t"
: "=l"(result) : "l"(x), "r"(n));
return result;
}
__forceinline__ __device__ uint32_t shr_t32(uint32_t x,uint32_t n)
{
uint32_t result;
asm("{\n\t"
"shr.b32 %0,%1,%2;\n\t"
"}\n\t"
: "=r"(result) : "r"(x), "r"(n));
return result;
}
__forceinline__ __device__ uint32_t shl_t32(uint32_t x,uint32_t n)
{
uint32_t result;
asm("{\n\t"
"shl.b32 %0,%1,%2;\n\t"
"}\n\t"
: "=r"(result) : "r"(x), "r"(n));
return result;
}
__forceinline__ __device__ void and64(uint64_t &d,uint64_t a,uint64_t b)
{
asm("and.b64 %0,%1,%2;" : "=l"(d) : "l"(a), "l"(b));
}
__forceinline__ __device__ void sbox(uint32_t &a, uint32_t &b,uint32_t &c,uint32_t &d)
{
uint32_t t;
t = a;
asm("and.b32 %0,%0,%1;" : "+r"(a) : "r"(c));
asm("xor.b32 %0,%0,%1;" : "+r"(a) : "r"(d));
asm("xor.b32 %0,%0,%1;" : "+r"(c) : "r"(b));
asm("xor.b32 %0,%0,%1;" : "+r"(c) : "r"(a));
asm( "or.b32 %0,%0,%1;" : "+r"(d) : "r"(t));
asm("xor.b32 %0,%0,%1;" : "+r"(d) : "r"(b));
asm("xor.b32 %0,%0,%1;" : "+r"(t) : "r"(c));
b=d;
asm( "or.b32 %0,%0,%1;" : "+r"(d) : "r"(t));
asm("xor.b32 %0,%0,%1;" : "+r"(d) : "r"(a));
asm("and.b32 %0,%0,%1;" : "+r"(a) : "r"(b));
asm("xor.b32 %0,%0,%1;" : "+r"(t) : "r"(a));
asm("xor.b32 %0,%0,%1;" : "+r"(b) : "r"(d));
asm("xor.b32 %0,%0,%1;" : "+r"(b) : "r"(t));
a=c;
c=b;
b=d;
asm("not.b32 %0,%1;" : "=r"(d) : "r"(t));
}
__forceinline__ __device__ void muladd128(uint64_t &u,uint64_t &v,uint64_t a, uint64_t b,uint64_t &c,uint64_t &e)
{
asm("{\n\t"
".reg .b64 abl,abh; \n\t"
".reg .b32 abll,ablh,abhl,abhh,x1,x2,x3,x4; \n\t"
".reg .b32 cl,ch,el,eh; \n\t"
"mul.lo.u64 abl,%2,%3; \n\t"
"mul.hi.u64 abh,%2,%3; \n\t"
"mov.b64 {abll,ablh},abl; \n\t"
"mov.b64 {abhl,abhh},abh; \n\t"
"mov.b64 {cl,ch},%4; \n\t"
"mov.b64 {el,eh},%5; \n\t"
"add.cc.u32 x1,cl,el; \n\t"
"addc.cc.u32 x2,ch,eh; \n\t"
"addc.u32 x3,0,0; \n\t"
"add.cc.u32 x1,x1,abll; \n\t"
"addc.cc.u32 x2,x2,ablh; \n\t"
"addc.cc.u32 x3,x3,abhl; \n\t"
"addc.u32 x4,abhh,0; \n\t"
"mov.b64 %1,{x1,x2}; \n\t"
"mov.b64 %0,{x3,x4}; \n\t"
"}\n\t"
: "=l"(u), "=l"(v) : "l"(a) , "l"(b) , "l"(c) , "l"(e));
}
__forceinline__ __device__ uint64_t mul(uint64_t a,uint64_t b)
{
uint64_t result;
asm("{\n\t"
"mul.lo.u64 %0,%1,%2; \n\t"
"}\n\t"
: "=l"(result) : "l"(a) , "l"(b));
return result;
}
__device__ __forceinline__ uint64_t shfl(uint64_t x, int lane)
{
uint32_t lo,hi;
asm volatile("mov.b64 {%0,%1},%2;" : "=r"(lo), "=r"(hi) : "l"(x));
lo = __shfl(lo, lane);
hi = __shfl(hi, lane);
asm volatile("mov.b64 %0,{%1,%2};" : "=l"(x) : "r"(lo) , "r"(hi));
return x;
}
#endif // #ifndef CUDA_HELPER_H