-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path003_grigoris.py
145 lines (132 loc) · 6.04 KB
/
003_grigoris.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import argparse
import os
from joblib import Parallel, delayed
import numpy as np
import autosklearn
import autosklearn.data
import autosklearn.data.competition_data_manager
from autosklearn.pipeline.classification import SimpleClassificationPipeline
parser = argparse.ArgumentParser()
parser.add_argument('input')
parser.add_argument('output')
args = parser.parse_args()
input = args.input
dataset = 'grigoris'
output = args.output
path = os.path.join(input, dataset)
D = autosklearn.data.competition_data_manager.CompetitionDataManager(path)
X = D.data['X_train']
y = D.data['Y_train']
X_valid = D.data['X_valid']
X_test = D.data['X_test']
# Replace the following array by a new ensemble
choices = \
[(0.720000, SimpleClassificationPipeline(configuration={
'balancing:strategy': 'none',
'classifier:__choice__': 'liblinear_svc',
'classifier:liblinear_svc:C': 0.0665747065156058,
'classifier:liblinear_svc:dual': 'False',
'classifier:liblinear_svc:fit_intercept': 'True',
'classifier:liblinear_svc:intercept_scaling': 1,
'classifier:liblinear_svc:loss': 'squared_hinge',
'classifier:liblinear_svc:multi_class': 'ovr',
'classifier:liblinear_svc:penalty': 'l2',
'classifier:liblinear_svc:tol': 0.002362381246384099,
'imputation:strategy': 'mean',
'one_hot_encoding:minimum_fraction': 0.0972585384393519,
'one_hot_encoding:use_minimum_fraction': 'True',
'preprocessor:__choice__': 'no_preprocessing',
'rescaling:__choice__': 'normalize'})),
(0.100000, SimpleClassificationPipeline(configuration={
'balancing:strategy': 'weighting',
'classifier:__choice__': 'liblinear_svc',
'classifier:liblinear_svc:C': 7.705276414124367,
'classifier:liblinear_svc:dual': 'False',
'classifier:liblinear_svc:fit_intercept': 'True',
'classifier:liblinear_svc:intercept_scaling': 1,
'classifier:liblinear_svc:loss': 'squared_hinge',
'classifier:liblinear_svc:multi_class': 'ovr',
'classifier:liblinear_svc:penalty': 'l2',
'classifier:liblinear_svc:tol': 0.028951969755081776,
'imputation:strategy': 'most_frequent',
'one_hot_encoding:use_minimum_fraction': 'False',
'preprocessor:__choice__': 'no_preprocessing',
'rescaling:__choice__': 'normalize'})),
(0.080000, SimpleClassificationPipeline(configuration={
'balancing:strategy': 'weighting',
'classifier:__choice__': 'liblinear_svc',
'classifier:liblinear_svc:C': 1.0,
'classifier:liblinear_svc:dual': 'False',
'classifier:liblinear_svc:fit_intercept': 'True',
'classifier:liblinear_svc:intercept_scaling': 1,
'classifier:liblinear_svc:loss': 'squared_hinge',
'classifier:liblinear_svc:multi_class': 'ovr',
'classifier:liblinear_svc:penalty': 'l2',
'classifier:liblinear_svc:tol': 0.0001,
'imputation:strategy': 'median',
'one_hot_encoding:minimum_fraction': 0.0033856971814438443,
'one_hot_encoding:use_minimum_fraction': 'True',
'preprocessor:__choice__': 'no_preprocessing',
'rescaling:__choice__': 'normalize'})),
(0.080000, SimpleClassificationPipeline(configuration={
'balancing:strategy': 'weighting',
'classifier:__choice__': 'liblinear_svc',
'classifier:liblinear_svc:C': 0.2598769185905466,
'classifier:liblinear_svc:dual': 'False',
'classifier:liblinear_svc:fit_intercept': 'True',
'classifier:liblinear_svc:intercept_scaling': 1,
'classifier:liblinear_svc:loss': 'squared_hinge',
'classifier:liblinear_svc:multi_class': 'ovr',
'classifier:liblinear_svc:penalty': 'l2',
'classifier:liblinear_svc:tol': 0.001007160236770467,
'imputation:strategy': 'median',
'one_hot_encoding:minimum_fraction': 0.019059927375795167,
'one_hot_encoding:use_minimum_fraction': 'True',
'preprocessor:__choice__': 'no_preprocessing',
'rescaling:__choice__': 'normalize'})),
(0.020000, SimpleClassificationPipeline(configuration={
'balancing:strategy': 'weighting',
'classifier:__choice__': 'liblinear_svc',
'classifier:liblinear_svc:C': 0.6849477125990308,
'classifier:liblinear_svc:dual': 'False',
'classifier:liblinear_svc:fit_intercept': 'True',
'classifier:liblinear_svc:intercept_scaling': 1,
'classifier:liblinear_svc:loss': 'squared_hinge',
'classifier:liblinear_svc:multi_class': 'ovr',
'classifier:liblinear_svc:penalty': 'l2',
'classifier:liblinear_svc:tol': 1.2676147487949745e-05,
'imputation:strategy': 'mean',
'one_hot_encoding:minimum_fraction': 0.003803817610653382,
'one_hot_encoding:use_minimum_fraction': 'True',
'preprocessor:__choice__': 'no_preprocessing',
'rescaling:__choice__': 'normalize'})),
]
targets = []
predictions = []
predictions_valid = []
predictions_test = []
def fit_and_predict(estimator, weight, X, y):
try:
estimator.fit(X.copy(), y.copy())
pv = estimator.predict_proba(X_valid.copy()) * weight
pt = estimator.predict_proba(X_test.copy()) * weight
except Exception as e:
print(e)
print(estimator.configuration)
pv = None
pt = None
return pv, pt
# Make predictions and weight them
all_predictions = Parallel(n_jobs=-1)(delayed(fit_and_predict) \
(estimator, weight, X, y) for
weight, estimator in choices)
for pv, pt in all_predictions:
predictions_valid.append(pv)
predictions_test.append(pt)
# Output the predictions
for name, predictions in [('valid', predictions_valid),
('test', predictions_test)]:
predictions = np.array(predictions)
predictions = np.sum(predictions, axis=0).astype(np.float32)
filepath = os.path.join(output, '%s_%s_000.predict' % (dataset, name))
np.savetxt(filepath, predictions, delimiter=' ', fmt='%.4e')