Releases: automl/auto-sklearn
Releases · automl/auto-sklearn
Version 0.10.0
Version 0.10.0
- ADD #325: Allow to separately optimize metrics for metadata generation.
- ADD #946: New dask backend for parallel Auto-sklearn.
- BREAKING #947: Drop Python3.5 support.
- BREAKING #946: Remove shared model mode for parallel Auto-sklearn.
- FIX #351: No longer pass un-picklable logger instances to the target function.
- FIX #840: Fixes a bug which prevented computing metadata for regression datasets. Also adds a unit test for regression metadata computation.
- FIX #897: Allow custom splitters to be used with multi-ouput regression.
- FIX #951: Fixes a lot of bugs in the regression pipeline that caused bad performance for regression datasets.
- FIX #953: Re-add
liac-arff
as a dependency. - FIX #956: Fixes a bug which could cause Auto-sklearn not to find a model on disk which is part of the ensemble.
- FIX #961: Fixes a bug which caused Auto-sklearn to load bad meta-data for metrics which cannot be computed on multiclass datasets (especially ROC_AUC).
- DOC #498: Improve the example on resampling strategies by showing how to pass scikit-learn's splitter objects to Auto-sklearn.
- DOC #670: Demonstrate how to give access to training accuracy.
- DOC #872: Improve an example on how obtain the best model.
- DOC #940: Improve documentation of the docker image.
- MAINT: Improve the docker file by setting environment variable that restrict BLAS and OMP to only use a single core.
- MAINT #949: Replace
pip
bypip3
in the installation guidelines. - MAINT #280, #535, #956: Update meta-data and include regression meta-data again.
Contributors v0.10.0
- Francisco Rivera
- Matthias Feurer
- felixleungsc
- Chu-Cheng Fu
- Francois Berenger
Version 0.8.0
Version 0.7.1
Version 0.7.1
- ADD #764: support for automatic per_run_time_limit selection
- ADD #864: add the possibility to predict with cross-validation
- ADD #874: support to limit the disk space consumption
- MAINT #862: improved documentation and render examples in web page
- MAINT #869: removal of competition data manager support
- MAINT #870: memory improvements when building ensemble
- MAINT #882: memory improvements when performing ensemble selection
- FIX #701: scaling factors for metafeatures should not be learned using test data
- FIX #715: allow unlimited ML memory
- FIX #771: improved worst possible result calculation
- FIX #843: default value for SelectPercentileRegression
- FIX #852: clip probabilities within [0-1]
- FIX #854: improved tmp file naming
- FIX #863: SMAC exceptions also registered in log file
- FIX #876: allow Auto-sklearn model to be cloned
- FIX #879: allow 1-D binary predictions
Contributors
- Matthias Feurer
- Xiaodong DENG
- Francisco Rivera
Version 0.7.0
Version 0.7.0
- ADD #785: user control to reduce the hard drive memory required to store ensembles
- ADD #794: iterative fit for gradient boosting
- ADD #795: add successive halving evaluation strategy
- ADD #814: new sklearn.metrics.balanced_accuracy_score instead of custom metric
- ADD #815: new experimental evaluation mode called iterative_cv
- MAINT #774: move from scikit-learn 0.21.X to 0.22.X
- MAINT #791: move from smac 0.8 to 0.12
- MAINT #822: make autosklearn modules PEP8 compliant
- FIX #733: fix for n_jobs=-1
- FIX #739: remove unnecessary warning
- FIX ##769: fixed error in calculation of meta features
- FIX #778: support for python 3.8
- FIX #781: support for pandas 1.x
Contributors
- Andrew Nader
- Gui Miotto
- Julian Berman
- Katharina Eggensperger
- Matthias Feurer
- Maximilian Peters
- Rong-Inspur
- Valentin Geffrier
- Francisco Rivera
Version 0.6.0
Version 0.5.2
Version 0.5.2
- FIX #669: Correctly handle arguments to the AutoMLRegressor
- FIX #667: Auto-sklearn works with numpy 1.16.3 again.
- ADD #676: Allow brackets [ ] inside the temporary and output directory paths.
- ADD #424: (Experimental) scripts to reproduce the results from the original Auto-sklearn paper.
Contributors
- Jin Woo Ahn (@ahn1340)
- Herilalaina Rakotoarison (@herilalaina)
- Matthias Feurer (@mfeurer)
- yazanobeidi (@yazanobeidi)
Version 0.4.2
Version 0.4.2
- Fixes #538: Remove rounding errors when giving a training set fraction for holdout.
- Fixes #558: Ensemble script now uses less memory and the memory limit can be given to Auto-sklearn.
- Fixes #585: Auto-sklearn’s ensemble script produced wrong results when called directly (and not via one of Auto-sklearn’s estimator classes).
- Fixes an error in the ensemble script which made it non-deterministic.
- MAINT #569: Rename hyperparameter to have a different name than a scikit-learn hyperparameter with different meaning.
- MAINT #592: backwards compatible requirements.txt
- MAINT #588: Fix SMAC version to 0.8.0
- MAINT: remove dependency on the six package
- MAINT: upgrade to XGBoost 0.80
Contributors
- Taneli Mielikäinen (@tmielika)
- Matthias Feurer (@mfeurer)
- Diogo Bastos (@diogo-bastos)
- Zeyi Wen (@zeyiwen)
- Teresa Conceição (@teresaconc)
- Jin Woo Ahn (@ahn1340)
Version 0.4.1
Changes
- Added examples on how to extend Auto-sklearn with a custom classifier, regressor, and preprocessor.
- Auto-sklearn now requires numpy version between 1.9.0 and 1.14.5, due to higher versions causing travis failure.
- Examples now use
sklearn.datasets.load_breast_cancer()
instead ofsklearn.datasets.load_digits()
to reduce memory usage for travis build. - Fixes future warnings on non-tuple sequence for indexing.
- Fixes #500: fixes ensemble builder to correctly evaluate model score with any metrics. See PR #522.
- Fixes #482 and #491: Users can now set up custom logger configuration by passing a dictionary created by a yaml file to
logging_config
. - Fixes #566: ensembles are now sorted correctly.
- Fixes #293: Auto-sklearn checks if appropriate target type was given for classification and regression before call to
fit()
. - Travis-ci now runs flake8 to enforce pep8 style guide, and uses travis-ci instead of circle-ci for deployment.
Contributors
- Matthias Feurer
- Manuel Streuhofer
- Taneli Mielikäinen
- Katharina Eggensperger
- Jin Woo Ahn
Version 0.4.0
Merge pull request #495 from automl/development Development
Version 0.3.0
Merge pull request #406 from automl/development Development