Skip to content

Releases: automl/auto-sklearn

Version 0.10.0

26 Sep 15:38
7a3f3a5
Compare
Choose a tag to compare

Version 0.10.0

  • ADD #325: Allow to separately optimize metrics for metadata generation.
  • ADD #946: New dask backend for parallel Auto-sklearn.
  • BREAKING #947: Drop Python3.5 support.
  • BREAKING #946: Remove shared model mode for parallel Auto-sklearn.
  • FIX #351: No longer pass un-picklable logger instances to the target function.
  • FIX #840: Fixes a bug which prevented computing metadata for regression datasets. Also adds a unit test for regression metadata computation.
  • FIX #897: Allow custom splitters to be used with multi-ouput regression.
  • FIX #951: Fixes a lot of bugs in the regression pipeline that caused bad performance for regression datasets.
  • FIX #953: Re-add liac-arff as a dependency.
  • FIX #956: Fixes a bug which could cause Auto-sklearn not to find a model on disk which is part of the ensemble.
  • FIX #961: Fixes a bug which caused Auto-sklearn to load bad meta-data for metrics which cannot be computed on multiclass datasets (especially ROC_AUC).
  • DOC #498: Improve the example on resampling strategies by showing how to pass scikit-learn's splitter objects to Auto-sklearn.
  • DOC #670: Demonstrate how to give access to training accuracy.
  • DOC #872: Improve an example on how obtain the best model.
  • DOC #940: Improve documentation of the docker image.
  • MAINT: Improve the docker file by setting environment variable that restrict BLAS and OMP to only use a single core.
  • MAINT #949: Replace pip by pip3 in the installation guidelines.
  • MAINT #280, #535, #956: Update meta-data and include regression meta-data again.

Contributors v0.10.0

  • Francisco Rivera
  • Matthias Feurer
  • felixleungsc
  • Chu-Cheng Fu
  • Francois Berenger

Version 0.8.0

08 Jul 19:42
7d6a05c
Compare
Choose a tag to compare

Version 0.8.0

  • ADD #803: multi-output regression
  • ADD #893: new Auto-sklearn mode Auto-sklearn 2.0

Contributors

  • Chu-Cheng Fu
  • Matthias Feurer

Version 0.7.1

03 Jul 15:41
9cb198c
Compare
Choose a tag to compare

Version 0.7.1

  • ADD #764: support for automatic per_run_time_limit selection
  • ADD #864: add the possibility to predict with cross-validation
  • ADD #874: support to limit the disk space consumption
  • MAINT #862: improved documentation and render examples in web page
  • MAINT #869: removal of competition data manager support
  • MAINT #870: memory improvements when building ensemble
  • MAINT #882: memory improvements when performing ensemble selection
  • FIX #701: scaling factors for metafeatures should not be learned using test data
  • FIX #715: allow unlimited ML memory
  • FIX #771: improved worst possible result calculation
  • FIX #843: default value for SelectPercentileRegression
  • FIX #852: clip probabilities within [0-1]
  • FIX #854: improved tmp file naming
  • FIX #863: SMAC exceptions also registered in log file
  • FIX #876: allow Auto-sklearn model to be cloned
  • FIX #879: allow 1-D binary predictions

Contributors

  • Matthias Feurer
  • Xiaodong DENG
  • Francisco Rivera

Version 0.7.0

07 May 20:36
bb8396b
Compare
Choose a tag to compare

Version 0.7.0

  • ADD #785: user control to reduce the hard drive memory required to store ensembles
  • ADD #794: iterative fit for gradient boosting
  • ADD #795: add successive halving evaluation strategy
  • ADD #814: new sklearn.metrics.balanced_accuracy_score instead of custom metric
  • ADD #815: new experimental evaluation mode called iterative_cv
  • MAINT #774: move from scikit-learn 0.21.X to 0.22.X
  • MAINT #791: move from smac 0.8 to 0.12
  • MAINT #822: make autosklearn modules PEP8 compliant
  • FIX #733: fix for n_jobs=-1
  • FIX #739: remove unnecessary warning
  • FIX ##769: fixed error in calculation of meta features
  • FIX #778: support for python 3.8
  • FIX #781: support for pandas 1.x

Contributors

  • Andrew Nader
  • Gui Miotto
  • Julian Berman
  • Katharina Eggensperger
  • Matthias Feurer
  • Maximilian Peters
  • Rong-Inspur
  • Valentin Geffrier
  • Francisco Rivera

Version 0.6.0

03 Jan 16:38
275bf18
Compare
Choose a tag to compare

Version 0.6.0

  • MAINT: move from scikit-learn 0.19.X to 0.21.X
  • MAINT #688: allow for pyrfr version 0.8.X
  • FIX #680: Remove unnecessary print statement
  • FIX #600: Remove unnecessary warning

Contributors

  • Guilherme Miotto
  • Matthias Feurer
  • Jin Woo Ahn

Version 0.5.2

13 May 14:34
1c6af59
Compare
Choose a tag to compare

Version 0.5.2

  • FIX #669: Correctly handle arguments to the AutoMLRegressor
  • FIX #667: Auto-sklearn works with numpy 1.16.3 again.
  • ADD #676: Allow brackets [ ] inside the temporary and output directory paths.
  • ADD #424: (Experimental) scripts to reproduce the results from the original Auto-sklearn paper.

Contributors

Version 0.4.2

13 Dec 09:17
d31992a
Compare
Choose a tag to compare

Version 0.4.2

  • Fixes #538: Remove rounding errors when giving a training set fraction for holdout.
  • Fixes #558: Ensemble script now uses less memory and the memory limit can be given to Auto-sklearn.
  • Fixes #585: Auto-sklearn’s ensemble script produced wrong results when called directly (and not via one of Auto-sklearn’s estimator classes).
  • Fixes an error in the ensemble script which made it non-deterministic.
  • MAINT #569: Rename hyperparameter to have a different name than a scikit-learn hyperparameter with different meaning.
  • MAINT #592: backwards compatible requirements.txt
  • MAINT #588: Fix SMAC version to 0.8.0
  • MAINT: remove dependency on the six package
  • MAINT: upgrade to XGBoost 0.80

Contributors

Version 0.4.1

12 Nov 11:44
fd0fe3f
Compare
Choose a tag to compare

Changes

  • Added examples on how to extend Auto-sklearn with a custom classifier, regressor, and preprocessor.
  • Auto-sklearn now requires numpy version between 1.9.0 and 1.14.5, due to higher versions causing travis failure.
  • Examples now use sklearn.datasets.load_breast_cancer() instead of sklearn.datasets.load_digits() to reduce memory usage for travis build.
  • Fixes future warnings on non-tuple sequence for indexing.
  • Fixes #500: fixes ensemble builder to correctly evaluate model score with any metrics. See PR #522.
  • Fixes #482 and #491: Users can now set up custom logger configuration by passing a dictionary created by a yaml file to logging_config.
  • Fixes #566: ensembles are now sorted correctly.
  • Fixes #293: Auto-sklearn checks if appropriate target type was given for classification and regression before call to fit().
  • Travis-ci now runs flake8 to enforce pep8 style guide, and uses travis-ci instead of circle-ci for deployment.

Contributors

  • Matthias Feurer
  • Manuel Streuhofer
  • Taneli Mielikäinen
  • Katharina Eggensperger
  • Jin Woo Ahn

Version 0.4.0

19 Jun 11:39
202918e
Compare
Choose a tag to compare
Merge pull request #495 from automl/development

Development

Version 0.3.0

05 Jan 08:43
76c033b
Compare
Choose a tag to compare
Merge pull request #406 from automl/development

Development