-
Notifications
You must be signed in to change notification settings - Fork 0
/
mlp_feaug.py
782 lines (654 loc) · 32.3 KB
/
mlp_feaug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
import pandas as pd
import numpy as np
import scipy.signal as signal
import operator
import time
import gc
import math
from gatspy import periodic
from collections import deque
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import BaggingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import label_binarize
from sklearn import tree
from sklearn import preprocessing
from random import *
from helper import standardizeData,normalizeData,equalProbabilities
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import GridSearchCV
from multiprocessing import Pool
import multiprocessing as mp
from gatspy.periodic import LombScargleFast
CORES = mp.cpu_count() #4
def scale(dataFrame):
df = dataFrame.copy()
col = df.columns.values
for c in col:
df[c] = (df[c] - df[c].mean()) / df[c].std()
return dataFrame
def splitGalaxies(dataFrame, targets):
print "Split extragalactic "
extra = np.where(dataFrame['hostgal_specz']==0.0)
extragalactic_data = dataFrame.drop(dataFrame.index[extra])
extra_ids = extragalactic_data['object_id'].values.tolist()
#extragalactic_data = extragalactic_data.drop('object_id',axis=1)
extragalactic_targets = targets.drop(targets.index[extra])
print "Split intragalactic "
intra = np.where(dataFrame['hostgal_specz']!=0.0)
intragalactic_data = dataFrame.drop(dataFrame.index[intra])
intra_ids = intragalactic_data['object_id'].values.tolist()
#intragalactic_data = intragalactic_data.drop('object_id',axis=1)
intragalactic_targets = targets.drop(targets.index[intra])
return extragalactic_data, extragalactic_targets,extra_ids, intragalactic_data, intragalactic_targets, intra_ids
def splitTestGalaxies(dataFrame):
print "Split extragalactic "
extra = np.where(dataFrame['hostgal_specz']==0.0)
extragalactic_data = dataFrame.drop(dataFrame.index[extra])
extra_ids = extragalactic_data['object_id'].values.tolist()
print "Split intragalactic "
intra = np.where(dataFrame['hostgal_specz']!=0.0)
intragalactic_data = dataFrame.drop(dataFrame.index[intra])
intra_ids = intragalactic_data['object_id'].values.tolist()
return extra_ids,intra_ids
def format(set_metadata_raw, set_raw):
print "BEGIN FORMAT -----"
#set_data = set_metadata_raw.drop('distmod',axis=1)
#set_raw['flux'] = set_raw['flux'] * set_data['mwebv']
set_data = set_metadata_raw.drop('mwebv', axis=1)
set_raw['flux_ratio_sq'] = np.power(set_raw['flux'] / set_raw['flux_err'], 2.0)
set_raw['flux_by_flux_ratio_sq'] = set_raw['flux'] * set_raw['flux_ratio_sq']
aggs = {
'flux': ['min', 'max', 'mean'],
'detected': ['max'],
'flux_ratio_sq':['sum'],
'flux_by_flux_ratio_sq':['mean'],
'detected':['max']
}
agg_train = set_raw.groupby(['object_id','passband']).agg(aggs).reset_index()
agg_train.columns = [name[0]+"_"+name[1] for name in agg_train.columns]
agg_train['flux_diff'] = agg_train['flux_max'] - agg_train['flux_min']
agg_train['flux_dif2'] = (agg_train['flux_max'] - agg_train['flux_min']) / agg_train['flux_mean']
agg_train['flux_w_mean'] = agg_train['flux_by_flux_ratio_sq_mean'] / agg_train['flux_ratio_sq_sum']
agg_train['flux_dif3'] = (agg_train['flux_max'] - agg_train['flux_min']) / agg_train['flux_w_mean']
agg_train.head()
del set_raw
gc.collect()
full_train = agg_train
min_flux_max = full_train["flux_max"].min()
full_train['magn'] = -2.5*(full_train["flux_max"] +abs(min_flux_max) + 1).apply(np.log)
#print full_train.columns
#merge the pass bands
cc = []
for coln in full_train.columns:
if(coln == 'object_id_'):
cc.append('object_id')
else:
c = coln + '_' + str(0)
cc.append(c)
p0 = full_train.loc[full_train['passband_'] == 0]
p0df = pd.DataFrame(p0.values,columns=cc)
p0df = p0df.drop('passband__0',axis=1)
cc = [
coln + '_' + str(1) for coln in full_train.columns
]
p1 = full_train.loc[full_train['passband_'] == 1]
p1df = pd.DataFrame(p1.values,columns=cc)
p1df = p1df.drop('object_id__1',axis=1)
p1df = p1df.drop('passband__1',axis=1)
cc = [
coln + '_' + str(2) for coln in full_train.columns
]
p2 = full_train.loc[full_train['passband_'] == 2]
p2df = pd.DataFrame(p2.values,columns=cc)
p2df = p2df.drop('object_id__2',axis=1)
p2df = p2df.drop('passband__2',axis=1)
cc = [
coln + '_' + str(3) for coln in full_train.columns
]
p3 = full_train.loc[full_train['passband_'] == 3]
p3df = pd.DataFrame(p3.values,columns=cc)
p3df = p3df.drop('object_id__3',axis=1)
p3df = p3df.drop('passband__3',axis=1)
cc = [
coln + '_' + str(4) for coln in full_train.columns
]
p4 = full_train.loc[full_train['passband_'] == 4]
p4df = pd.DataFrame(p4.values,columns=cc)
p4df = p4df.drop('object_id__4',axis=1)
p4df = p4df.drop('passband__4',axis=1)
cc = [
coln + '_' + str(5) for coln in full_train.columns
]
p5 = full_train.loc[full_train['passband_'] == 5]
p5df = pd.DataFrame(p5.values,columns=cc)
p5df = p5df.drop('object_id__5',axis=1)
p5df = p5df.drop('passband__5',axis=1)
tog = pd.concat([p0df,p1df],axis=1)
tog = pd.concat([tog,p2df],axis =1)
tog = pd.concat([tog,p3df],axis =1)
tog = pd.concat([tog,p4df],axis =1)
tog = pd.concat([tog,p5df],axis =1)
#print new_columns
full_train = tog
full_train = full_train.reset_index().merge(
right=set_data,
how='outer',
on='object_id'
)
full_train= full_train.drop('index',axis=1)
full_train['absmagn_0'] = full_train['magn_0'] - full_train['distmod']
full_train['absmagn_1'] = full_train['magn_1'] - full_train['distmod']
full_train['absmagn_2'] = full_train['magn_2'] - full_train['distmod']
full_train['absmagn_3'] = full_train['magn_3'] - full_train['distmod']
full_train['absmagn_4'] = full_train['magn_4'] - full_train['distmod']
full_train['absmagn_5'] = full_train['magn_5'] - full_train['distmod']
full_train = full_train.drop('distmod',axis=1)
#print full_train.columns
return full_train
def scaleD(df,pbb):
df["flux_max_"+str(pbb)] = (df["flux_max_"+str(pbb)]- df["flux_max_"+str(pbb)].mean())/df["flux_max_"+str(pbb)].std()
return df["flux_max_"+str(pbb)]
def get_objects_by_id(path, chunksize=1000000):
"""
Generator that iterates over chunks of PLAsTiCC Astronomical Classification challenge
data contained in the CVS file at path.
Yields subsequent (object_id, pd.DataFrame) tuples, where each DataFrame contains
all observations for the associated object_id.
Inputs:
path: CSV file path name
chunksize: iteration chunk size in rows
Output:
Generator that yields (object_id, pd.DataFrame) tuples
"""
# set initial state
last_id = None
last_df = pd.DataFrame()
for df in pd.read_csv(path, chunksize=chunksize):
# Group by object_id; store grouped dataframes into dict for fast access
grouper = {
object_id: pd.DataFrame(group)
for object_id, group in df.groupby('object_id')
}
# queue unique object_ids, in order, for processing
object_ids = df['object_id'].unique()
queue = deque(object_ids)
# if the object carried over from previous chunk matches
# the first object in this chunk, stitch them together
first_id = queue[0]
if first_id == last_id:
first_df = grouper[first_id]
last_df = pd.concat([last_df, first_df])
grouper[first_id] = last_df
elif last_id is not None:
# save last_df and return as first result
grouper[last_id] = last_df
queue.appendleft(last_id)
# save last object in chunk
last_id = queue[-1]
last_df = grouper[last_id]
# check for edge case with only one object_id in this chunk
if first_id == last_id:
# yield nothing for now...
continue
# yield all but last object, which may be incomplete in this chunk
while len(queue) > 1:
object_id = queue.popleft()
object_df = grouper.pop(object_id)
yield (object_id, object_df)
# yield remaining object
yield (last_id, last_df)
def do_periods(set_raw):
unqobjid = set_raw['object_id'].unique()
cou = 0
ccols = ['object_id','period', 'score']
periods_list = []
for id in unqobjid:
print "COUNT " + str(cou)
model = periodic.LombScargleMultibandFast(fit_period=True)
curr_obj=set_raw.loc[set_raw["object_id"]==id] #Selecting the data just from our object
#https://www.kaggle.com/michaelapers/the-plasticc-astronomy-starter-kit
t_min = max(np.median(np.diff(sorted(curr_obj['mjd']))), 0.1)
t_max = min(10., (curr_obj['mjd'].max() - curr_obj['mjd'].min())/2.)
model.optimizer.set(period_range=(t_min, t_max), first_pass_coverage=5, quiet=True)
model.fit(curr_obj["mjd"], curr_obj["flux"], curr_obj["flux_err"], curr_obj["passband"])
period, score = model.find_best_periods(n_periods=1,return_scores=True)
answer = id,float(period),float(score)
cou = cou + 1
periods_list.append(answer)
periods = pd.DataFrame(periods_list,columns=ccols)
periods.to_csv('periods_train_aug4.csv', index=False)
return periods
def fill_in_hostgal_specz(dataFrame):
df = dataFrame.copy()
df.loc[df['hostgal_specz'].isnull(),'hostgal_specz'] = df['hostgal_photoz']
df = df.drop('hostgal_photoz',axis=1)
df = df.drop('hostgal_photoz_err',axis=1)
#df = df.drop('distmod',axis=1) already dropped
df = df.drop('ra',axis=1)
df = df.drop('decl',axis=1)
df = df.drop('gal_l',axis=1)
df = df.drop('gal_b',axis=1)
return df
def my_predict(column_names,my_extra_data_list, my_intra_data_list, test_set_metadata_raw, extra_model, intra_model):
formatted_columns = [u'object_id', u'flux_min_0', u'flux_max_0', u'flux_mean_0',
u'detected_max_0', u'flux_by_flux_ratio_sq_mean_0',
u'flux_ratio_sq_sum_0', u'flux_diff_0', u'flux_dif2_0',
u'flux_w_mean_0', u'flux_dif3_0', u'magn_0', u'flux_min_1',
u'flux_max_1', u'flux_mean_1', u'detected_max_1',
u'flux_by_flux_ratio_sq_mean_1', u'flux_ratio_sq_sum_1', u'flux_diff_1',
u'flux_dif2_1', u'flux_w_mean_1', u'flux_dif3_1', u'magn_1',
u'flux_min_2', u'flux_max_2', u'flux_mean_2', u'detected_max_2',
u'flux_by_flux_ratio_sq_mean_2', u'flux_ratio_sq_sum_2', u'flux_diff_2',
u'flux_dif2_2', u'flux_w_mean_2', u'flux_dif3_2', u'magn_2',
u'flux_min_3', u'flux_max_3', u'flux_mean_3', u'detected_max_3',
u'flux_by_flux_ratio_sq_mean_3', u'flux_ratio_sq_sum_3', u'flux_diff_3',
u'flux_dif2_3', u'flux_w_mean_3', u'flux_dif3_3', u'magn_3',
u'flux_min_4', u'flux_max_4', u'flux_mean_4', u'detected_max_4',
u'flux_by_flux_ratio_sq_mean_4', u'flux_ratio_sq_sum_4', u'flux_diff_4',
u'flux_dif2_4', u'flux_w_mean_4', u'flux_dif3_4', u'magn_4',
u'flux_min_5', u'flux_max_5', u'flux_mean_5', u'detected_max_5',
u'flux_by_flux_ratio_sq_mean_5', u'flux_ratio_sq_sum_5', u'flux_diff_5',
u'flux_dif2_5', u'flux_w_mean_5', u'flux_dif3_5', u'magn_5', u'ddf',
u'hostgal_specz', u'absmagn_0', u'absmagn_1', u'absmagn_2',
u'absmagn_3', u'absmagn_4', u'absmagn_5']
finish = pd.DataFrame(columns=column_names)
batch_extra_dataFrame = pd.DataFrame(columns = formatted_columns)
batch_intra_dataFrame = pd.DataFrame(columns = formatted_columns)
my_extra_data_batch = pd.DataFrame(columns = ['object_id', 'mjd', 'passband', 'flux', 'flux_err', 'detected'])
my_intra_data_batch = pd.DataFrame(columns = ['object_id', 'mjd', 'passband', 'flux', 'flux_err', 'detected'])
if(len(my_extra_data_list)>0):
my_extra_data_batch = pd.concat(my_extra_data_list)
if(len(my_intra_data_list)>0):
my_intra_data_batch = pd.concat(my_intra_data_list)
initial_intra = my_intra_data_batch
intra_periods = pd.read_csv('./periods_test.csv')
#print intra_periods.columns[intra_periods.isnull().any()].tolist()
intra_periods.loc[intra_periods['period'].isnull(),'period_score'] = 1
intra_periods.loc[intra_periods['period'].isnull(),'period'] = 0
intra_periods.loc[intra_periods['period_score'].isnull(),'period_score'] = 0
print "READ TEST FILE PERIODS ----------"
print intra_periods.columns[intra_periods.isnull().any()].tolist()
#rename period_score to score
tt1 = test_set_metadata_raw.loc[test_set_metadata_raw['object_id'].isin(my_extra_data_batch['object_id'].values.tolist())]
if(len(my_extra_data_batch.index)>0):
batch_extra_dataFrame= format(tt1, my_extra_data_batch)
scaler = StandardScaler()
batch_extra_dataFrame.loc[:, batch_extra_dataFrame.columns != 'object_id' ] = (scaler.fit_transform(batch_extra_dataFrame.loc[:,batch_extra_dataFrame.columns != 'object_id' ]))
else:
batch_extra_dataFrame = pd.DataFrame(columns = formatted_columns)
tt2 = test_set_metadata_raw.loc[test_set_metadata_raw['object_id'].isin(my_intra_data_batch['object_id'].values.tolist())]
if(len(my_intra_data_batch.index)>0):
batch_intra_dataFrame= format(tt2, my_intra_data_batch)
batch_intra_dataFrame = dropMagn(batch_intra_dataFrame)
scaler = StandardScaler()
#print batch_intra_dataFrame
batch_intra_dataFrame.loc[:, batch_intra_dataFrame.columns != 'object_id' ] = (scaler.fit_transform(batch_intra_dataFrame.loc[:,batch_intra_dataFrame.columns != 'object_id' ]))
else:
batch_intra_dataFrame = pd.DataFrame(columns = formatted_columns)
print "NULLS"
print batch_extra_dataFrame.columns[batch_extra_dataFrame.isnull().any()].tolist()
print batch_intra_dataFrame.columns[batch_intra_dataFrame.isnull().any()].tolist()
extra_ans = []
intra_ans = []
objids = [[]]
print " >>Predicting extra"
if(len(batch_extra_dataFrame.index)>0):
objids1 = batch_extra_dataFrame['object_id'].values.tolist()
objids = []
for id in objids1:
l1 = [id]
objids.append(l1)
batch_extra_dataFrame = batch_extra_dataFrame.drop('object_id', axis=1)
extra_ans = extra_model.predict_proba(batch_extra_dataFrame)
#print extra_model.classes_
z = np.zeros((len(extra_ans),6)) # zeros for intra classes and class 99
extra_ans = np.append(extra_ans,z,axis=1)
extra_ans = np.append(objids,extra_ans,axis=1)
print " >>Predicting intra"
objids = [[]]
if(len(batch_intra_dataFrame.index)>0):
objids1 = batch_intra_dataFrame['object_id'].values.tolist()
objids = []
for id in objids1:
l1 = [id]
objids.append(l1)
intra_periods = intra_periods.loc[intra_periods['object_id'].isin(objids1)]
batch_intra_dataFrame = batch_intra_dataFrame.merge(
right=intra_periods,
how='outer',
on='object_id'
)
batch_intra_dataFrame = removeExtraCols(batch_intra_dataFrame)
print "NULLS -intra + period"
print batch_intra_dataFrame.columns[batch_intra_dataFrame.isnull().any()].tolist()
intra_ans = intra_model.predict_proba(batch_intra_dataFrame)
#print intra_model.classes_
z = np.zeros((len(intra_ans),9)) # zeros for extra classes and class 99
intra_ans = np.append(z,intra_ans,axis=1)
z1 = np.zeros((len(intra_ans),1))
intra_ans = np.append(intra_ans,z1,axis=1)
intra_ans = np.append(objids,intra_ans,axis=1)
print " >>Putting together"
arr = []
if((len(batch_extra_dataFrame.index)>0) and (len(batch_intra_dataFrame.index)>0) ):
arr = np.concatenate((extra_ans,intra_ans), axis=0)
else:
if (len(batch_intra_dataFrame.index)>0):
arr = intra_ans
else:
if (len(batch_extra_dataFrame.index)>0):
arr = extra_ans
return arr
def dropMagn(data):
ddata = data.copy()
ddata = ddata.drop('absmagn_0',axis=1)
ddata = ddata.drop('absmagn_1',axis=1)
ddata = ddata.drop('absmagn_2',axis=1)
ddata = ddata.drop('absmagn_3',axis=1)
ddata = ddata.drop('absmagn_4',axis=1)
ddata = ddata.drop('absmagn_5',axis=1)
return ddata
def removeExtraCols(data):
intragalactic_data = data.copy()
intragalactic_data = intragalactic_data.drop('object_id',axis=1)
intragalactic_data = intragalactic_data.drop('magn_0', axis = 1)
intragalactic_data = intragalactic_data.drop('magn_1', axis = 1)
intragalactic_data = intragalactic_data.drop('magn_2', axis = 1)
intragalactic_data = intragalactic_data.drop('magn_3', axis = 1)
intragalactic_data = intragalactic_data.drop('magn_4', axis = 1)
intragalactic_data = intragalactic_data.drop('magn_5', axis = 1)
#intragalactic_data = intragalactic_data.drop('absmagn_0', axis = 1)
#intragalactic_data = intragalactic_data.drop('absmagn_1', axis = 1)
#intragalactic_data = intragalactic_data.drop('absmagn_2', axis = 1)
#intragalactic_data = intragalactic_data.drop('absmagn_3', axis = 1)
#intragalactic_data = intragalactic_data.drop('absmagn_4', axis = 1)
#intragalactic_data = intragalactic_data.drop('absmagn_5', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_diff_0', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_diff_1', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_diff_2', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_diff_3', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_diff_4', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_diff_5', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif2_0', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif2_1', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif2_2', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif2_3', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif2_4', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif2_5', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif3_0', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif3_1', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif3_2', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif3_3', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif3_4', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_dif3_5', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_w_mean_0', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_w_mean_1', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_w_mean_2', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_w_mean_3', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_w_mean_4', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_w_mean_5', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_ratio_sq_sum_0', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_ratio_sq_sum_1', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_ratio_sq_sum_2', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_ratio_sq_sum_3', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_ratio_sq_sum_4', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_ratio_sq_sum_5', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_by_flux_ratio_sq_mean_0', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_by_flux_ratio_sq_mean_1', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_by_flux_ratio_sq_mean_2', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_by_flux_ratio_sq_mean_3', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_by_flux_ratio_sq_mean_4', axis = 1)
intragalactic_data = intragalactic_data.drop('flux_by_flux_ratio_sq_mean_5', axis = 1)
intragalactic_data = intragalactic_data.drop('detected_max_0', axis=1)
intragalactic_data = intragalactic_data.drop('detected_max_1', axis=1)
intragalactic_data = intragalactic_data.drop('detected_max_2', axis=1)
intragalactic_data = intragalactic_data.drop('detected_max_3', axis=1)
intragalactic_data = intragalactic_data.drop('detected_max_4', axis=1)
intragalactic_data = intragalactic_data.drop('detected_max_5', axis=1)
return intragalactic_data
def augument(data, meta):
gc.enable()
print "Augumenting training set data"
print ">>compute ids"
idmax = meta['object_id'].max()
n = len(meta.index)
m = len(data.index)
oldids = meta['object_id'].unique()
newids = np.array(range(idmax+1, idmax+n+1))
print ">>change meta"
new_meta = meta.copy()
new_meta['object_id'] = newids
#add noise to distmod
mu, sigma = 0, 0.1
noise = np.random.normal(mu, sigma, [1,n])[0]
new_meta['distmod'] = new_meta['distmod'] + noise
final_meta = meta.append(new_meta)
print ">>change data"
new_data = data.copy()
gc.collect()
dictionary = dict(zip(oldids, newids))
new_data = new_data.replace({"object_id": dictionary})
#print new_data
#add noise to flux
fluxerrvals = new_data['flux_err'].apply(abs).values.tolist()
noise = np.random.normal(mu, new_data['flux_err'])[0]
new_data['flux'] = new_data['flux'] + noise
#add noise to flux_err
noise = np.random.normal(mu, sigma, [1,m])[0]
new_data['flux_err'] = new_data['flux_err'] + noise
final_data = data.append(new_data)
#print final_meta
print ">>finished augumenting."
print len(final_data['object_id'].unique())
print len(final_meta['object_id'].unique())
final_meta.to_csv('train_meta_aug4.csv', index=False)
final_data.to_csv('train_data_aug4.csv', index=False)
return final_data, final_meta
def augument_twice(data, meta):
gc.enable()
print ">>compute ids"
idmax = meta['object_id'].max()
n = len(meta.index)
m = len(data.index)
oldids = meta['object_id'].unique()
newids = np.array(range(idmax+1, idmax+n+1))
newids2 = np.array(range(idmax+n+2, idmax+n+2+n))
print ">>change meta"
new_meta = meta.copy()
new_meta2 = meta.copy()
new_meta['object_id'] = newids
new_meta2['object_id'] = newids2
#add noise to distmod
mu, sigma = 0, 0.1
noise = np.random.normal(mu, sigma, [1,n])[0]
noise2 = np.random.normal(mu, sigma, [1,n])[0]
new_meta['distmod'] = new_meta['distmod'] + noise
new_meta2['distmod'] = new_meta2['distmod'] + noise2
final_meta = meta.append(new_meta)
final_meta = final_meta.append(new_meta2)
print ">>change data"
new_data = data.copy()
new_data2 = data.copy()
gc.collect()
dictionary = dict(zip(oldids, newids))
dictionary2 = dict(zip(oldids, newids2))
new_data = new_data.replace({"object_id": dictionary})
new_data2 = new_data2.replace({"object_id": dictionary2})
#print new_data
#add noise to flux
noise = np.random.normal(mu, new_data['flux_err'])[0]
noise2 = np.random.normal(mu, new_data2['flux_err'])[0]
new_data['flux'] = new_data['flux'] + noise
new_data2['flux'] = new_data2['flux'] + noise2
#add noise to flux_err
noise = np.random.normal(mu, sigma, [1,m])[0]
noise2 = np.random.normal(mu, sigma, [1,m])[0]
new_data['flux_err'] = new_data['flux_err'] + noise
new_data2['flux_err'] = new_data2['flux_err'] + noise2
final_data = data.append(new_data)
final_data = final_data.append(new_data2)
#print final_meta
print ">>finished augumenting."
print len(final_data['object_id'].unique())
print len(final_meta['object_id'].unique())
final_meta.to_csv('train_meta_aug.csv', index=False)
final_data.to_csv('train_data_aug.csv', index=False)
return final_data, final_meta
def main():
mode = 1 #0-cv, 1-predict
print "Reading train data"
#training_set_raw = pd.read_csv('/modules/cs342/Assignment2/training_set.csv')
#training_set_metadata_raw = pd.read_csv('/modules/cs342/Assignment2/training_set_metadata.csv')
training_set_raw = pd.read_csv('./train_data_aug4.csv')
training_set_metadata_raw = pd.read_csv('./train_meta_aug4.csv')
training_set_targets = training_set_metadata_raw['target']
training_set_data = training_set_metadata_raw.drop('target',axis=1)
classes = sorted(training_set_targets.unique())
class_weight = {
c: 1 for c in classes
}
for c in [64, 15]:
class_weight[c] = 2
training_set_data = fill_in_hostgal_specz(training_set_data)
full_train = format(training_set_data, training_set_raw)
extragalactic_data, extragalactic_targets, extra_ids, intragalactic_data, intragalactic_targets, intra_ids = splitGalaxies(full_train, training_set_targets)
initial_intra = training_set_raw.loc[training_set_raw['object_id'].isin(intra_ids)]
print initial_intra.shape
print training_set_raw.shape
print len(training_set_raw['object_id'].unique())
print training_set_metadata_raw.shape
print len(training_set_metadata_raw['object_id'].unique())
print "Computing periods"
#intra_periods = do_periods(initial_intra)
intra_periods = pd.read_csv('./periods_train_aug4.csv')
initial_extra = training_set_raw.loc[training_set_raw['object_id'].isin(extra_ids)]
intra_periods.loc[intra_periods['period'].isnull(),'period_score'] = 1
intra_periods.loc[intra_periods['period'].isnull(),'period'] = 0
intra_periods.loc[intra_periods['period_score'].isnull(),'period_score'] = 0
intragalactic_data = intragalactic_data.merge(
right=intra_periods,
how='outer',
on='object_id'
)
#print intragalactic_data
intragalactic_data = removeExtraCols(intragalactic_data)
#intragalactic_data['period_score'] = intragalactic_data['score']
#intragalactic_data = intragalactic_data.drop('score',axis=1)
extragalactic_data = extragalactic_data.drop('object_id',axis=1)
if mode==0:
print "Model for extra:"
scaler = StandardScaler()
intragalactic_data = dropMagn(intragalactic_data)
intragalactic_data.loc[:,intragalactic_data.columns != 'passband' ] = (scaler.fit_transform(intragalactic_data.loc[:,intragalactic_data.columns != 'passband' ]))
scaler = StandardScaler()
extragalactic_data.loc[:, extragalactic_data.columns != 'passband' ] = (scaler.fit_transform(extragalactic_data.loc[:,extragalactic_data.columns != 'passband' ]))
clf = MLPClassifier(max_iter=5, hidden_layer_sizes=(75,75,75))
#CV_rfc = GridSearchCV(estimator=clf, param_grid=param_grid, cv= 5)
#CV_rfc.fit(extragalactic_data, extragalactic_targets)
#print "params"
#print CV_rfc.best_params_
print extragalactic_data.columns
print cross_val_score(clf, extragalactic_data, extragalactic_targets, cv=10, scoring="neg_log_loss").mean()
print "Model for intra:"
clf = MLPClassifier(hidden_layer_sizes=(85,85,85))
print intragalactic_data.columns
scaler = StandardScaler()
intragalactic_data.loc[:,intragalactic_data.columns != 'passband' ] = (scaler.fit_transform(intragalactic_data.loc[:,intragalactic_data.columns != 'passband' ]))
clf.fit(intragalactic_data, intragalactic_targets.values.ravel())
print cross_val_score(clf, intragalactic_data, intragalactic_targets, cv=10, scoring="neg_log_loss").mean()
else:
print "Training"
scaler = StandardScaler()
intragalactic_data = dropMagn(intragalactic_data)
intragalactic_data.loc[:,intragalactic_data.columns != 'passband' ] = (scaler.fit_transform(intragalactic_data.loc[:,intragalactic_data.columns != 'passband' ]))
scaler = StandardScaler()
extragalactic_data.loc[:, extragalactic_data.columns != 'passband' ] = (scaler.fit_transform(extragalactic_data.loc[:,extragalactic_data.columns != 'passband' ]))
extra_model =MLPClassifier(max_iter=5, hidden_layer_sizes=(75,75,75))
print extragalactic_data.columns
extra_model.fit(extragalactic_data, extragalactic_targets.values.ravel())
intra_model = MLPClassifier(max_iter=5, hidden_layer_sizes=(85,85,85))
intra_model.fit(intragalactic_data, intragalactic_targets.values.ravel())
print "Finished training. Starting predictions"
print "Reading test data"
test_set_metadata_raw = pd.read_csv('/modules/cs342/Assignment2/test_set_metadata.csv')
filepath = '/modules/cs342/Assignment2/test_set.csv'
extra_classes = extra_model.classes_
intra_classes = intra_model.classes_
extra_ids = []
intra_ids = []
test_set_metadata_raw = fill_in_hostgal_specz(test_set_metadata_raw)
extra_ids, intra_ids = splitTestGalaxies(test_set_metadata_raw)
column_names = []
column_names.append('object_id')
for classi in extra_classes:
className = "class_" + str(classi)
column_names.append(className)
for classi in intra_classes:
className = "class_" + str(classi)
column_names.append(className)
column_names.append("class_99")
print column_names
#print column_names
count = 0
batch_no = 0
batch_extra_dataFrame = pd.DataFrame()
batch_intra_dataFrame = pd.DataFrame()
myextrabatchlist = []
myintrabatchlist = []
print " >Starting new batch 0"
my_extra_data_list = []
my_intra_data_list = []
extra_idss = set(extra_ids)
intra_idss = set(intra_ids)
cc=-1
for obj_id, d in get_objects_by_id(filepath):
cc=cc+1
#combined = format(test_set_metadata_raw.loc[test_set_metadata_raw['object_id']==obj_id],d)
if (obj_id in extra_idss):
my_extra_data_list.append(d) # = np.append(my_extra_data_list, d)
else:
my_intra_data_list.append(d) #= np.append(my_intra_data_list, d)
if(count == 10000):
print " >>Formatting batch objects"
arr = my_predict(column_names,my_extra_data_list, my_intra_data_list, test_set_metadata_raw, extra_model, intra_model)
print " >>Write to csv"
finish = pd.DataFrame(arr, columns=column_names)
#print finish
finish["class_99"] = (1-finish.drop("object_id", axis=1)).product(axis=1) #Adding values to class_99
#Below is a very messy way of making all rows sum to 1 despite the above
finish.loc[:,finish.columns!="object_id"] = finish.loc[:,finish.columns!="object_id"].div(finish.loc[:,finish.columns!="object_id"].sum(axis=1), axis=0)
if(batch_no==0):
finish.to_csv("mlp_feaug.csv", index = False, header = True)
else:
with open("mlp_feaug.csv", 'a') as f:
finish.to_csv(f, index = False, header=False)
print " >Starting new batch " + str(batch_no + 1)
batch_no = batch_no + 1
lst = 0
count = 0
my_extra_data_list = []
my_intra_data_list = []
else:
count = count + 1
print "!Remaining objects: " + str(count)
print " >>Formatting batch objects"
arr = my_predict(column_names,my_extra_data_list, my_intra_data_list, test_set_metadata_raw, extra_model, intra_model)
print " >>Write to csv"
finish = pd.DataFrame(arr, columns=column_names)
finish["class_99"] = (1-finish.drop("object_id", axis=1)).product(axis=1) #Adding values to class_99
#Below is a very messy way of making all rows sum to 1 despite the above
finish.loc[:,finish.columns!="object_id"] = finish.loc[:,finish.columns!="object_id"].div(finish.loc[:,finish.columns!="object_id"].sum(axis=1), axis=0)
with open("mlp_feaug.csv", 'a') as f:
finish.to_csv(f, index = False, header=False)
print " >>Clean up."
preds = pd.read_csv("mlp_feaug.csv")
preds['object_id']=preds['object_id'].apply(int)
#preds['object_id']=preds['object_id'].apply(int)
print preds.shape
print cc
preds.to_csv("mlp_feaug2.csv", index=False)
#preds.to_csv('predictions2.csv', index=False)
print "DONE."
main()