forked from BrynMarieR/CovCysPredictor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCovCysPredictor.py
executable file
·119 lines (96 loc) · 3.87 KB
/
CovCysPredictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# move from pymol to biopython
from Bio.PDB import PDBParser
from Bio.PDB.SASA import ShrakeRupley
from Bio.SeqUtils import seq1
import math
import sys
import pickle
import json
# informs Biopython that we don't mind its warnings
from Bio.PDB.PDBParser import PDBConstructionWarning
import warnings
### INPUT
if len(sys.argv) < 3:
print("Must input exactly one PDB file name and one output directory")
print("e.g. `python ./CovCysPredictor.py my_file.pdb output_dir/`")
sys.exit()
pdb_file = sys.argv[1]
output_dir = sys.argv[2]
print("Running prediction...")
### CONSTANTS and DATA
# regression constants
# calculated from median-performing model
# predicting y ~ intercept + log_exp + any_fpocket + aa
# NQNC model from CB
with open('coefficients.json', 'r') as file:
model_coefs = json.load(file)[0]
beta_0 = model_coefs["intercept"]
beta_log_exp = model_coefs["log_exp"]
beta_any_fpocket = model_coefs["any_fpocket"]
beta_aa_dict = {
key: val for key, val in model_coefs.items()
if key not in ["intercept", "log_exp", "any_fpocket", "cutoff"]
}
cutoff = model_coefs["cutoff"]
### CALCULATED PROPERTIES
# calculate solvent-accessible surface area
# and amino acid neighborhood
parser = PDBParser()
# condition on whether the pdb file is extant in the output directory
with warnings.catch_warnings():
warnings.simplefilter('ignore', PDBConstructionWarning)
structure = parser.get_structure("protein", f"{output_dir}/{pdb_file}")
# Structure MUST be cleaned in advance MANUALLY (or with other pipeline)
# No: nucleic acids, ions, cofactors, solvents, etc
# remove organic
# remove inorganic
# remove polymer.nucleic
# remove solvent
sasa_calculator = ShrakeRupley()
sasa_calculator.compute(structure)
# all chains (or non-contiguous polypeptides) will be used together
# define a helper method to get neighbors given a cysteine residue
def get_neighbors(structure, cys, radius):
neighbors = []
for resid in structure.get_residues():
if resid.__contains__("CA") and (resid["CA"] - cys["SG"] <= radius):
if resid["CA"] - cys["CA"] > 0.0001: # not the cysteine alpha carbon
neighbors.append(seq1(resid.get_resname()))
return neighbors
### FPOCKET HELPER
with open(f"{output_dir}/cysteines_in_fpocket_{pdb_file[:-4]}.log") as fi:
tmp_cys_in_fpocket = fi.readlines()
cys_in_fpocket = [l.strip('\n') for l in tmp_cys_in_fpocket]
# store a list of cysteine residues
stored_cysteine_residues = {
f"{ch.get_id()} {x.get_id()[1]}": {
"chain": ch.get_id(),
"resid": x.get_id()[1],
"sasa": x["SG"].sasa,
"log_exp": math.log(x["SG"].sasa + 1),
"any_fpocket": int(f"{ch.get_id()} {x.get_id()[1]}" in cys_in_fpocket),
"neighbors": get_neighbors(structure, x, 8) # counts all neighbors w/ an alpha carbon
# w/in "radius" angstroms; one-letter codes
} for ch in structure.get_chains() for x in ch.get_residues() if x.get_resname() == "CYS"
}
### PREDICTION ENGINE
for k,v in stored_cysteine_residues.items():
# apply beta coefficients to calculated properties
nu = beta_0 + beta_log_exp*v["log_exp"] + beta_any_fpocket*v["any_fpocket"] + \
sum(v["neighbors"].count(aa)*beta_aa_dict[aa]
for aa in list(set(v["neighbors"]))
if aa in beta_aa_dict.keys())
# logistic link function
mu = math.exp(nu)/(1 + math.exp(nu))
v["score"] = f"{mu:.2}"
if mu >= cutoff:
v["predicted_modifiable"] = True
#print("--> LIKELY to be covalently modifiable")
else:
v["predicted_modifiable"] = False
with open(f"{output_dir}/{pdb_file[:-4]}.pkl", "wb+") as f:
pickle.dump(stored_cysteine_residues, f)
with open(f"{output_dir}/{pdb_file[:-4]}_results.txt", "w") as f2:
f2.write(json.dumps(stored_cysteine_residues, indent=4))
print("Prediction complete!")
print(stored_cysteine_residues)