diff --git a/docs/src/content/docs/cookbook/examples/api-agent.md b/docs/src/content/docs/cookbook/examples/api-agent.mdx
similarity index 100%
rename from docs/src/content/docs/cookbook/examples/api-agent.md
rename to docs/src/content/docs/cookbook/examples/api-agent.mdx
diff --git a/docs/src/content/docs/cookbook/tools/weather-api.md b/docs/src/content/docs/cookbook/tools/weather-api.mdx
similarity index 57%
rename from docs/src/content/docs/cookbook/tools/weather-api.md
rename to docs/src/content/docs/cookbook/tools/weather-api.mdx
index e20db032..3021e850 100644
--- a/docs/src/content/docs/cookbook/tools/weather-api.md
+++ b/docs/src/content/docs/cookbook/tools/weather-api.mdx
@@ -5,15 +5,17 @@ description: Understanding Tool use in Bedrock LLM Agent
This guide demonstrates how to create a specialized weather agent using BedrockLLMAgent and a custom weather tool. We'll walk through the process of defining the tool, setting up the agent, and integrating it into your Multi-Agent Orchestrator system.
-
-
1. **Define the Weather Tool**
Let's break down the weather tool definition into its key components:
-A. Tool Description
+**A. Tool Description**
+
+import { Tabs, TabItem } from '@astrojs/starlight/components';
+
+
```typescript
export const weatherToolDescription = [
{
@@ -40,6 +42,35 @@ export const weatherToolDescription = [
}
];
```
+
+
+ ```python
+weather_tool_description = [{
+ "toolSpec": {
+ "name": "Weather_Tool",
+ "description": "Get the current weather for a given location, based on its WGS84 coordinates.",
+ "inputSchema": {
+ "json": {
+ "type": "object",
+ "properties": {
+ "latitude": {
+ "type": "string",
+ "description": "Geographical WGS84 latitude of the location.",
+ },
+ "longitude": {
+ "type": "string",
+ "description": "Geographical WGS84 longitude of the location.",
+ },
+ },
+ "required": ["latitude", "longitude"],
+ }
+ },
+ }
+}]
+
+```
+
+
**Explanation:**
- This describes the tool's interface to the LLM.
@@ -49,11 +80,9 @@ export const weatherToolDescription = [
- Requires `latitude` and `longitude` as strings.
- This schema helps the LLM understand how to use the tool correctly.
-
-
-
-B. Custom Prompt
-
+**B. Custom Prompt**
+
+
```typescript
export const WEATHER_PROMPT = `
You are a weather assistant that provides current weather data for user-specified locations using only
@@ -72,6 +101,29 @@ To use the tool, you strictly apply the provided tool specification.
- Complete the entire process until you have all required data before sending the complete response.
`;
```
+
+
+```python
+weather_tool_prompt = """
+You are a weather assistant that provides current weather data for user-specified locations using only
+the Weather_Tool, which expects latitude and longitude. Infer the coordinates from the location yourself.
+If the user provides coordinates, infer the approximate location and refer to it in your response.
+To use the tool, you strictly apply the provided tool specification.
+
+- Explain your step-by-step process, and give brief updates before each step.
+- Only use the Weather_Tool for data. Never guess or make up information.
+- Repeat the tool use for subsequent requests if necessary.
+- If the tool errors, apologize, explain weather is unavailable, and suggest other options.
+- Report temperatures in °C (°F) and wind in km/h (mph). Keep weather reports concise. Sparingly use
+ emojis where appropriate.
+- Only respond to weather queries. Remind off-topic users of your purpose.
+- Never claim to search online, access external data, or use tools besides Weather_Tool.
+- Complete the entire process until you have all required data before sending the complete response.
+"""
+```
+
+
+
**Explanation:**
- This prompt sets the behavior and limitations for the LLM.
@@ -83,13 +135,11 @@ To use the tool, you strictly apply the provided tool specification.
- Format responses consistently (units, conciseness).
- Stay on topic and use only the provided tool.
-
-
-
-C. Tool Handler
+**C. Tool Handler**
+
+
```typescript
-
import { ConversationMessage, ParticipantRole } from "multi-agent-orchestrator";
@@ -123,6 +173,50 @@ export async function weatherToolHandler(response, conversation: ConversationMes
return message;
}
```
+
+
+```python
+import requests
+from requests.exceptions import RequestException
+from typing import List, Dict, Any
+from multi_agent_orchestrator.types import ConversationMessage, ParticipantRole
+
+async def weather_tool_handler(response: ConversationMessage, conversation: List[Dict[str, Any]]) -> ConversationMessage:
+ response_content_blocks = response.content
+
+ # Initialize an empty list of tool results
+ tool_results = []
+
+ if not response_content_blocks:
+ raise ValueError("No content blocks in response")
+
+ for content_block in response_content_blocks:
+ if "text" in content_block:
+ # Handle text content if needed
+ pass
+
+ if "toolUse" in content_block:
+ tool_use_block = content_block["toolUse"]
+ tool_use_name = tool_use_block.get("name")
+
+ if tool_use_name == "Weather_Tool":
+ tool_response = await fetch_weather_data(tool_use_block["input"])
+ tool_results.append({
+ "toolResult": {
+ "toolUseId": tool_use_block["toolUseId"],
+ "content": [{"json": {"result": tool_response}}],
+ }
+ })
+
+ # Embed the tool results in a new user message
+ message = ConversationMessage(
+ role=ParticipantRole.USER.value,
+ content=tool_results)
+
+ return message
+```
+
+
**Explanation:**
- This handler processes the LLM's request to use the Weather_Tool.
@@ -130,13 +224,12 @@ export async function weatherToolHandler(response, conversation: ConversationMes
- When it finds a Weather_Tool use:
- It calls `fetchWeatherData` with the provided coordinates.
- It formats the result into a tool result object.
-- Finally, it adds the tool results to the conversation as a new user message.
-
-
-
+- Finally, it returns the tool results to the caller as a new user message.
-D. Data Fetching Function
+**D. Data Fetching Function**
+
+
```typescript
async function fetchWeatherData(inputData: { latitude: number; longitude: number }) {
const endpoint = "https://api.open-meteo.com/v1/forecast";
@@ -158,6 +251,34 @@ async function fetchWeatherData(inputData: { latitude: number; longitude: number
}
}
```
+
+
+```python
+async def fetch_weather_data(input_data):
+ """
+ Fetches weather data for the given latitude and longitude using the Open-Meteo API.
+ Returns the weather data or an error message if the request fails.
+
+ :param input_data: The input data containing the latitude and longitude.
+ :return: The weather data or an error message.
+ """
+ endpoint = "https://api.open-meteo.com/v1/forecast"
+ latitude = input_data.get("latitude")
+ longitude = input_data.get("longitude", "")
+ params = {"latitude": latitude, "longitude": longitude, "current_weather": True}
+
+ try:
+ response = requests.get(endpoint, params=params)
+ weather_data = {"weather_data": response.json()}
+ response.raise_for_status()
+ return weather_data
+ except RequestException as e:
+ return e.response.json()
+ except Exception as e:
+ return {"error": type(e), "message": str(e)}
+```
+
+
**Explanation:**
- This function makes the actual API call to get weather data.
@@ -174,13 +295,13 @@ These components work together to create a functional weather tool:
4. The fetch function retrieves real weather data based on the LLM's input.
This setup allows the BedrockLLMAgent to provide weather information by seamlessly integrating external data into its responses.
-
-
+
2. **Create the Weather Agent**
Now that we have our weather tool defined and the code above in a file called `weatherTool.ts`, let's create a BedrockLLMAgent that uses this tool.
-
+
+
```typescript
// weatherAgent.ts
@@ -206,13 +327,34 @@ const weatherAgent = new BedrockLLMAgent({
});
weatherAgent.setSystemPrompt(WEATHER_PROMPT);
-
```
+
+
+```python
+from tools import weather_tool
+from multi_agent_orchestrator.agents import (BedrockLLMAgent, BedrockLLMAgentOptions)
+
+weather_agent = BedrockLLMAgent(BedrockLLMAgentOptions(
+ name="Weather Agent",
+ streaming=False,
+ description="Specialized agent for giving weather condition from a city.",
+ tool_config={
+ 'tool':weather_tool.weather_tool_description,
+ 'toolMaxRecursions': 5,
+ 'useToolHandler': weather_tool.weather_tool_handler
+ }
+ ))
+weather_agent.set_system_prompt(weather_tool.weather_tool_prompt)
+```
+
+
3. **Add the Weather Agent to the Orchestrator**
Now we can add our weather agent to the Multi-Agent Orchestrator:
+
+
```typescript
import { MultiAgentOrchestrator } from "multi-agent-orchestrator";
@@ -222,11 +364,23 @@ const orchestrator = new MultiAgentOrchestrator();
orchestrator.addAgent(weatherAgent);
```
+
+
+```python
+from multi_agent_orchestrator.orchestrator import MultiAgentOrchestrator
+
+orchestrator = MultiAgentOrchestrator()
+orchestrator.add_agent(weather_agent)
+```
+
+
## 4. Using the Weather Agent
Now that our weather agent is set up and added to the orchestrator, we can use it to get weather information:
+
+
```typescript
const response = await orchestrator.routeRequest(
@@ -235,6 +389,13 @@ const response = await orchestrator.routeRequest(
"session456"
);
```
+
+
+```python
+response = await orchestrator.route_request("What's the weather like in New York City?", "user123", "session456")
+```
+
+
### How It Works