-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathRecursiveNN.py
90 lines (80 loc) · 3.35 KB
/
RecursiveNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import sys
import random
import progressbar
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm
from SenTree import *
class RecursiveNN(nn.Module):
def __init__(self, vocabSize, embedSize=100, numClasses=5):
super(RecursiveNN, self).__init__()
self.embedding = nn.Embedding(int(vocabSize), embedSize)
self.W = nn.Linear(2*embedSize, embedSize, bias=True)
self.projection = nn.Linear(embedSize, numClasses, bias=True)
self.activation = F.relu
self.nodeProbList = []
self.labelList = []
def traverse(self, node):
if node.isLeaf(): currentNode = self.activation(self.embedding(Var(torch.LongTensor([node.getLeafWord()]))))
else: currentNode = self.activation(self.W(torch.cat((self.traverse(node.left()),self.traverse(node.right())),1)))
self.nodeProbList.append(self.projection(currentNode))
self.labelList.append(torch.LongTensor([node.label()]))
return currentNode
def forward(self, x):
self.nodeProbList = []
self.labelList = []
self.traverse(x)
self.labelList = Var(torch.cat(self.labelList))
return torch.cat(self.nodeProbList)
def getLoss(self, tree):
nodes = self.forward(tree)
predictions = nodes.max(dim=1)[1]
loss = F.cross_entropy(input=nodes, target=self.labelList)
return predictions,loss
def evaluate(self, trees):
pbar = progressbar.ProgressBar(widgets=widgets, maxval=len(trees)).start()
n = nAll = correctRoot = correctAll = 0.0
for j, tree in enumerate(trees):
predictions,loss = self.getLoss(tree)
correct = (predictions.data==self.labelList.data)
correctAll += correct.sum()
nAll += correct.squeeze().size()[0]
correctRoot += correct.squeeze()[-1]
n += 1
pbar.update(j)
pbar.finish()
return correctRoot / n, correctAll/nAll
def Var(v):
if CUDA: return Variable(v.cuda())
else: return Variable(v)
CUDA=False
if len(sys.argv)>1:
if sys.argv[1].lower()=="cuda": CUDA=True
print("Reading and parsing trees")
trn = SenTree.getTrees("./trees/train.txt","train.vocab")
dev = SenTree.getTrees("./trees/dev.txt",vocabIndicesMapFile="train.vocab")
if CUDA: model = RecursiveNN(SenTree.vocabSize).cuda()
else: model = RecursiveNN(SenTree.vocabSize)
max_epochs = 100
widgets = [progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA()]
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, dampening=0.0)
bestAll=bestRoot=0.0
for epoch in range(max_epochs):
print("Epoch %d" % epoch)
pbar = progressbar.ProgressBar(widgets=widgets, maxval=len(trn)).start()
for step, tree in enumerate(trn):
predictions, loss = model.getLoss(tree)
optimizer.zero_grad()
loss.backward()
clip_grad_norm(model.parameters(), 5, norm_type=2.)
optimizer.step()
pbar.update(step)
pbar.finish()
correctRoot, correctAll = model.evaluate(dev)
if bestAll<correctAll: bestAll=correctAll
if bestRoot<correctRoot: bestRoot=correctRoot
print("\nValidation All-nodes accuracy:"+str(round(correctAll,2))+"(best:"+str(round(bestAll,2))+")")
print("Validation Root accuracy:" + str(round(correctRoot,2))+"(best:"+str(round(bestRoot,2))+")")
random.shuffle(trn)