-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
76 lines (69 loc) · 4.26 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from parameters import DATASET, NETWORK
import numpy as np
def load_data(validation=False, test=False):
data_dict = dict()
validation_dict = dict()
test_dict = dict()
if DATASET.name == "new_1":
# load train set
data_dict['X'] = np.load(DATASET.train_folder + '/images.npy')
data_dict['X'] = data_dict['X'].reshape([-1, NETWORK.input_size, NETWORK.input_size, 1])
if NETWORK.use_landmarks:
data_dict['X2'] = np.load(DATASET.train_folder + '/landmarks.npy')
if NETWORK.use_hog_and_landmarks:
data_dict['X2'] = np.load(DATASET.train_folder + '/landmarks.npy')
data_dict['X2'] = np.array([x.flatten() for x in data_dict['X2']])
data_dict['X2'] = np.concatenate((data_dict['X2'], np.load(DATASET.train_folder + '/hog_features.npy')), axis=1)
data_dict['Y'] = np.load(DATASET.train_folder + '/labels.npy')
if DATASET.trunc_trainset_to > 0:
data_dict['X'] = data_dict['X'][0:DATASET.trunc_trainset_to, :, :]
if NETWORK.use_landmarks and NETWORK.use_hog_and_landmarks:
data_dict['X2'] = data_dict['X2'][0:DATASET.trunc_trainset_to, :]
elif NETWORK.use_landmarks:
data_dict['X2'] = data_dict['X2'][0:DATASET.trunc_trainset_to, :, :]
data_dict['Y'] = data_dict['Y'][0:DATASET.trunc_trainset_to, :]
if validation:
# load validation set
validation_dict['X'] = np.load(DATASET.validation_folder + '/images.npy')
validation_dict['X'] = validation_dict['X'].reshape([-1, NETWORK.input_size, NETWORK.input_size, 1])
if NETWORK.use_landmarks:
validation_dict['X2'] = np.load(DATASET.validation_folder + '/landmarks.npy')
if NETWORK.use_hog_and_landmarks:
validation_dict['X2'] = np.load(DATASET.validation_folder + '/landmarks.npy')
validation_dict['X2'] = np.array([x.flatten() for x in validation_dict['X2']])
validation_dict['X2'] = np.concatenate((validation_dict['X2'], np.load(DATASET.validation_folder + '/hog_features.npy')), axis=1)
validation_dict['Y'] = np.load(DATASET.validation_folder + '/labels.npy')
if DATASET.trunc_validationset_to > 0:
validation_dict['X'] = validation_dict['X'][0:DATASET.trunc_validationset_to, :, :]
if NETWORK.use_landmarks and NETWORK.use_hog_and_landmarks:
validation_dict['X2'] = validation_dict['X2'][0:DATASET.trunc_validationset_to, :]
elif NETWORK.use_landmarks:
validation_dict['X2'] = validation_dict['X2'][0:DATASET.trunc_validationset_to, :, :]
validation_dict['Y'] = validation_dict['Y'][0:DATASET.trunc_validationset_to, :]
if test:
# load test set
test_dict['X'] = np.load(DATASET.test_folder + '/images.npy')
test_dict['X'] = test_dict['X'].reshape([-1, NETWORK.input_size, NETWORK.input_size, 1])
if NETWORK.use_landmarks:
test_dict['X2'] = np.load(DATASET.test_folder + '/landmarks.npy')
if NETWORK.use_hog_and_landmarks:
test_dict['X2'] = np.load(DATASET.test_folder + '/landmarks.npy')
test_dict['X2'] = np.array([x.flatten() for x in test_dict['X2']])
test_dict['X2'] = np.concatenate((test_dict['X2'], np.load(DATASET.test_folder + '/hog_features.npy')), axis=1)
test_dict['Y'] = np.load(DATASET.test_folder + '/labels.npy')
if DATASET.trunc_testset_to > 0:
test_dict['X'] = test_dict['X'][0:DATASET.trunc_testset_to, :, :]
if NETWORK.use_landmarks and NETWORK.use_hog_and_landmarks:
test_dict['X2'] = test_dict['X2'][0:DATASET.trunc_testset_to, :]
elif NETWORK.use_landmarks:
test_dict['X2'] = test_dict['X2'][0:DATASET.trunc_testset_to, :, :]
test_dict['Y'] = test_dict['Y'][0:DATASET.trunc_testset_to, :]
if not validation and not test:
return data_dict
elif not test:
return data_dict, validation_dict
else:
return data_dict, validation_dict, test_dict
else:
print( "Unknown dataset")
exit()