-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
70 lines (62 loc) · 2.32 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import torch
from parameters import NETWORK, HYPERPARAMS
import torch.nn as nn
import torch.optim as optim
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.optimizer = HYPERPARAMS.optimizer
self.optimizer_param = HYPERPARAMS.optimizer_param
self.learning_rate = HYPERPARAMS.learning_rate
self.keep_prob = HYPERPARAMS.keep_prob
self.learning_rate_decay = HYPERPARAMS.learning_rate_decay
self.decay_step = HYPERPARAMS.decay_step
if NETWORK.model == 'A':
self.network = self.build_modelA()
elif NETWORK.model == 'B':
self.network = self.build_modelB()
else:
print("ERROR: no model " + str(NETWORK.model))
exit()
def forward(self, x):
return self.network(x)
def build_modelB(self):
model = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Dropout(self.keep_prob),
nn.Linear(4096, 1024),
nn.ReLU(),
nn.Linear(1024, 128),
nn.ReLU(),
nn.Linear(128, NETWORK.output_size),
nn.Softmax(dim=1)
)
return model
def build_modelA(self):
model = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 128, kernel_size=4, stride=1, padding=2),
nn.ReLU(),
nn.Dropout(self.keep_prob),
nn.Linear(1024, 1024),
nn.ReLU(),
nn.Linear(1024, NETWORK.output_size),
nn.Softmax(dim=1)
)
return model
model = Model()
optimizer = optim.SGD(model.parameters(), lr=model.learning_rate, momentum=model.optimizer_param)
criterion = nn.CrossEntropyLoss()