-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimize_hyperparams.py
79 lines (72 loc) · 3.83 KB
/
optimize_hyperparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import time
import argparse
import pprint
import numpy as np
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
from train import train
from parameters import HYPERPARAMS, OPTIMIZER
# define the search space
fspace = {
'learning_rate': hp.uniform('learning_rate', OPTIMIZER.learning_rate['min'], OPTIMIZER.learning_rate['max']),
'learning_rate_decay': hp.uniform('learning_rate_decay', OPTIMIZER.learning_rate_decay['min'], OPTIMIZER.learning_rate_decay['max']),
'optimizer': hp.choice('optimizer', OPTIMIZER.optimizer),
'optimizer_param': hp.uniform('optimizer_param', OPTIMIZER.optimizer_param['min'], OPTIMIZER.optimizer_param['max']),
'keep_prob': hp.uniform('keep_prob', OPTIMIZER.keep_prob['min'], OPTIMIZER.keep_prob['max'])
}
# parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--max_evals", required=True, help="Maximum number of evaluations during hyperparameters search")
args = parser.parse_args()
max_evals = int(args.max_evals)
current_eval = 1
train_history = []
# defint the fucntion to minimize (will train the model using the specified hyperparameters)
def function_to_minimize(hyperparams, optimizer=HYPERPARAMS.optimizer, optimizer_param=HYPERPARAMS.optimizer_param,
learning_rate=HYPERPARAMS.learning_rate, keep_prob=HYPERPARAMS.keep_prob,
learning_rate_decay=HYPERPARAMS.learning_rate_decay):
if 'learning_rate' in hyperparams:
learning_rate = hyperparams['learning_rate']
if 'learning_rate_decay' in hyperparams:
learning_rate_decay = hyperparams['learning_rate_decay']
if 'keep_prob' in hyperparams:
keep_prob = hyperparams['keep_prob']
if 'optimizer' in hyperparams:
optimizer = hyperparams['optimizer']
if 'optimizer_param' in hyperparams:
optimizer_param = hyperparams['optimizer_param']
global current_eval
global max_evals
print( "#################################")
print( " Evaluation {} of {}".format(current_eval, max_evals))
print( "#################################")
start_time = time.time()
try:
accuracy = train(learning_rate=learning_rate, learning_rate_decay=learning_rate_decay,
optimizer=optimizer, optimizer_param=optimizer_param, keep_prob=keep_prob)
training_time = int(round(time.time() - start_time))
current_eval += 1
train_history.append({'accuracy':accuracy, 'learning_rate':learning_rate, 'learning_rate_decay':learning_rate_decay,
'optimizer':optimizer, 'optimizer_param':optimizer_param, 'keep_prob':keep_prob, 'time':training_time})
except Exception as e:
# exception occured during training, saving history and stopping the operation
print( "#################################")
print( "Exception during training: {}".format(str(e)))
print( "Saving train history in train_history.npy")
np.save("train_history.npy", train_history)
exit()
return {'loss': -accuracy, 'time': training_time, 'status': STATUS_OK}
# lunch the hyperparameters search
trials = Trials()
best_trial = fmin(fn=function_to_minimize, space=fspace, algo=tpe.suggest, max_evals=max_evals, trials=trials)
# get some additional information and print the best parameters
for trial in trials.trials:
if trial['misc']['vals']['keep_prob'][0] == best_trial['keep_prob'] and \
trial['misc']['vals']['learning_rate'][0] == best_trial['learning_rate'] and \
trial['misc']['vals']['learning_rate_decay'][0] == best_trial['learning_rate_decay']:
best_trial['accuracy'] = -trial['result']['loss'] * 100
best_trial['time'] = trial['result']['time']
print( "#################################")
print( " Best parameters found")
print( "#################################")
pprint.pprint(best_trial)
print( "#################################")