+ Let's assume that $g(z)$ is a
sersic model, i.e. $z = \{n, r_\text{hlr}, F, e_1, e_2, s_x, s_y\}$ and
+ $$g(z) = F \times I_0 \exp \left( -b_n \left[\left( \frac{r}{r_\text{hlr}}\right)^{\frac{1}{n}} -1\right] \right)$$
+
+
+ The joint inference of $p(z, \gamma | \mathcal{D})$ leads to a
biased posterior...
+
+
+
+
![](assets/shear_estimate_bias.png)
+
+ Marginal shear posterior $p(\gamma|\mathcal{D})$
+
+
+
+
![](assets/sersic_fit.png)
+
+ Maximum a posteriori fit and residuals
+
+
+
+
+
+ ...due to model misspecification $\longrightarrow$ Let's learn a more flexible $g_\theta$
+
+
+
+
+
+
+
+ Learning from corrupted data
+
+
+
+ Lanusse et al. 2020
![](https://img.shields.io/badge/astro--ph-arXiv%3A2008.03833-B31B1B.svg)
+
+
+ $\longrightarrow$
+
+
+
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Inference network}$
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Generator network}$
+ $q_\phi(z|x)$
+ $p_\theta(x|z)$
+
+ $z \sim q_\phi(z|x)$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+
+ $\longrightarrow$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+
+
+
+ $x' \sim p_\theta(x|z)$
+
+
+
+
+
+
+ Learning from corrupted data
+
+
+ Lanusse et al. 2020
![](https://img.shields.io/badge/astro--ph-arXiv%3A2008.03833-B31B1B.svg)
+
+
+ $\longrightarrow$
+
+
+
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Inference network}$
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Generator network}$
+ $q_\phi(z|x)$
+ $p_\theta(x|z)$
+
+ $z \sim q_\phi(z|x)$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+
+ $\longrightarrow$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+ $g_\theta(z)$
+
+
+
+ $x' \sim p_\theta(x|z)$
+
+
+
+
+
+
+
+
+
+ Learning from corrupted data
+
+
+ Lanusse et al. 2020
![](https://img.shields.io/badge/astro--ph-arXiv%3A2008.03833-B31B1B.svg)
+
+
+ $\longrightarrow$
+
+
+
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Inference network}$
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Generator network}$
+ $q_\phi(z|x)$
+ $p_\theta(x|z)$
+
+ $z \sim q_\phi(z|x)$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+
+ $\longrightarrow$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+ $g_\theta(z)$
+
+ $\ast$
+
+
+
+ $\Pi$
+
+ $x' \sim p_\theta(x|z, \Pi, \Sigma)$
+
+ $\longrightarrow$
+
+
+
+
+
+
+
+
+ Learning from corrupted data
+
+
+ Lanusse et al. 2020
![](https://img.shields.io/badge/astro--ph-arXiv%3A2008.03833-B31B1B.svg)
+
+
+ $\longrightarrow$
+
+
+
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Inference network}$
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Generator network}$
+ $q_\phi(z|x)$
+ $p_\theta(x|z)$
+
+ $z \sim q_\phi(z|x)$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+
+ $\longrightarrow$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+ $g_\theta(z)$
+
+ $\ast$
+
+
+
+ $\Pi$
+
+ $x' \sim p_\theta(x|z, \Pi, \Sigma)$
+
+ $\longrightarrow$
+
+
+
+ $\underbrace{\quad \quad \quad}_{g_\theta(z) \ast \Pi}$
+ $\longrightarrow$
+
+
+
+
+
+
+
+
+ Learning from corrupted data
+
+
+ Lanusse et al. 2020
![](https://img.shields.io/badge/astro--ph-arXiv%3A2008.03833-B31B1B.svg)
+
+
+ $\longrightarrow$
+
+
+
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Inference network}$
+ $\underbrace{\quad \quad \quad \quad \quad \quad}_\textrm{Generator network}$
+ $q_\phi(z|x)$
+ $p_\theta(x|z)$
+
+ $z \sim q_\phi(z|x)$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+
+ $\longrightarrow$
+
+
+
+
+
+
+ $\rightarrow$
+ $\rightarrow$
+ $\rightarrow$
+
+ $\longrightarrow$
+
+
+ $g_\theta(z)$
+
+ $\ast$
+
+
+
+ $\Pi$
+
+ $x' \sim p_\theta(x|z, \Pi, \Sigma)$
+
+ $\longrightarrow$
+
+
+
+ $\underbrace{\quad \quad \quad}_{g_\theta(z) \ast \Pi}$
+ $\longrightarrow$
+
+
+
+ Optimized maximizing the ELBO
+
+
+ $\log p(x) \geq \mathbb{E}_{z\sim q_\phi(z|x)} \left[ \log p_\theta(x|z, \Pi, \Sigma) + \mathbb{D}_\text{KL}(q_\phi \| p(z)) \right]$
+
+
+
+
+
+
+
+
+
+
+ A generative model for galaxy morphologies
+
+
+
+
![]()
+
+
+ The Bayesian view of the problem: $$ p(z | x ) \propto
+ p_\theta(x | z, \Sigma, \mathbf{\Pi}) p(z)$$ where:
+
+
+ - $p( z | x )$ is the posterior
+ -
+ $p( x | z )$ is the data likelihood,
+ contains the physics
+
+ - $p( z )$ is the prior
+
+
+
+
+
+
+
+
![]()
+
![]()
+
+
+
+ Data
+ $x_n$
+
+
+ Truth
+ $x_0$
+
+
+
+
+
+
+
+
+ Posterior samples
+ $g_\theta(z)$
+
+
+
+
+
+
+
+
+
![]()
+
+
+
+
+
+ $\mathbf{P} (\Pi \ast g_\theta(z))$
+
+
+ Median
+
+
+
+
+
+
+
+
+
+
![]()
+
+
+
+
+ Data residuals
+ $x_n - \mathbf{P} (\Pi \ast g_\theta(z))$
+
+
+ Standard Deviation
+
+
+
+
+
+ $\Longrightarrow$
+ Uncertainties are fully captured by the posterior.
+
+
+
+
+ Joint inference using a generative model for the morphology
+
+
+
+
Remy, Lanusse, Starck (2022)
+
![](https://img.shields.io/badge/astro--ph.CO-arXiv%3A2210.16243-B31B1B.svg)
+
+
+
+
+ Let's use the learned $g_\theta(z)$
+
+
+ The joint inference of $p(z, \gamma | \mathcal{D})$ leads to an
unbiased posterior!
+
+
+
+
![](assets/shear_estimate_nobias.png)
+
+ Marginal shear posterior $p(\gamma|\mathcal{D})$
+
+
+
+
![](assets/deepgal1.png)
+
+ Maximum a posteriori fit and residuals
+
+
+
+
+
+
+
+
+ Takeaway message
+
+
+
+
+
+ -
+ Ellipticity is not a well defined quantity for arbitrary galaxies $\rightarrow$ bias in shear estimation
+
+
+
+
+
+ -
+ Forward modeling allows to decouple morphology from observing conditions
+
+
+ - Deep generative models can be used to provide flexible light profile model
+
+
+ - Explicit likelihood: uses of all of our physical knowledge
+ $ + $ Our method can be applied for varying PSF, noise, or even different instruments!
+
+
+
+
+
+
+
+
+
+
+ $\Longrightarrow$ Joint inference of morphology and shear leads to unbiased marginal shear posterior
+
+
+
+
+
+
+
![](https://img.shields.io/badge/astro--ph.CO-arXiv%3A2210.16243-B31B1B.svg)
+
+
+
+
+ Opening remarks
+
+
+ -
+ Shear estimators are known to respond to galaxy selection,
+ how to include galaxy detection and selection
+ in the bayesian framework?
+
+
+ -
+ Galaxy that are observed blended may be affected by a
+ different amount of shear. How to handle blended objects?
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
+