-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsxfx07.tex
executable file
·672 lines (353 loc) · 21.4 KB
/
sxfx07.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
\documentclass[12pt,a4paper]{article}
\usepackage{fancyhdr}
\usepackage{fontspec}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{tikz}
\usepackage{pstricks-add}
\setmainfont{Microsoft YaHei}
\pagestyle{fancy}
\begin{document}
\input{macro.tex}
$\nl$
\begin{center} 第7章 定积分 \end{center}
$\S 7.1.定积分概念与可积性条件$
$记法:T \subset [a,b],对[a,b]的分法T,a=x_0<x_1<...x_n=b$
$\{\zeta_k\}在分法下对[x_{k-1},x_k]中点\zeta_k的取法k=1~n$
$\delta(f,T,\zeta)对T \subset [a,b]以及\{\zeta_k\}作\sum\limits_{i=1}^n f(\zeta_k)\Delta x_k (Riemann和) $
$\nl$
$Ex:\int_{a}^{b}\frac{1}{x^2}dx(3种方法)$
$①取\zeta_n=\sqrt{x_nx_{n-1}} $
$②x_n=ar^n,r=\sqrt[n]{\frac{b}{a}},取\zeta_n=x_{n-1}$
$③利用中值定理,取成中值定理中的\zeta_k$
$\nl$
$例:设f(x),g(x) \in C[a,b],证明$
$\lbdtx{0} \sum\limits_{k=1}^n f(\zeta_k)g(\theta_k)\Delta x_k=\int_{a}^{b}f(x)g(x)dx$
$其中\zeta_k \theta_k \in [x_{k-1},x_k],k=1~n,对\forall T \subset [a,b],\forall \{\zeta_k\}\{\theta_k\}$
$提示:利用连续函数$
$\nl$
$Darboux和:T' \supset T,在分法T中添加分点,成为加细分法T'$
$T=T_1 \cup T_2,旧分法T_1和T_2的所有分点合成加旧分法T$
$\nl$
$M(T)=S(T),m(T)=s(T)$
$性质1,对\forall T \subset [a,b],\forall \{\zeta_k\}有$
$m(T) \le \delta(f,T,\zeta) \le M(T)$
$inf \delta (f,T,\zeta) = m(T),sup \delta (f,T,\zeta) = M(T)$
$若添加k个分点,0 \le M(T)-m(T) \le k(M-m)\lambda$
$称sup_T\{s(T)\}为f(x)在[a,b]上的下积分,记为\underline{\int_{a}^{b}}f(x)dx$
$称inf_T\{s(T)\}为f(x)在[a,b]上的上积分,记为\overline{\int_{a}^{b}}f(x)dx$
$\nl$
$Darboux定理:\lbdtx{0}S(T)=\overline{\int_{a}^{b}}f(x)dx,\lbdtx{0}s(T)=\underline{\int_{a}^{b}}f(x)dx$
$证明:\forall \epsilon >0,由inf\{S(T)\}=\overline{\int_{a}^{b}}f(x)dx定义可知$
$\exists T' \subset [a,b],S(T')<\overline{\int_{a}^{b}}f(x)dx+ \frac{\epsilon}{2}$
$设T'共有k个分点,则\forall T \subset [a,b],则T \cup T'比T至多多k个分点$
$S(T)-S(T \cup T') \le k(M-m)\lambda$
$S(T) \le S(T \cup T')+k(M-m)\lambda \le S(T')+k(M-m)\lambda$
$取\delta = \frac{\epsilon}{2(M-m)},当\lambda < \delta 时,有S(T) \le \int_{a}^{b}f(x)+\epsilon$
$又因S(T) \ge \underline{\int_{a}^{b}}f(x)dx > \underline{\int_{a}^{b}}f(x)dx-\epsilon$
$故|S(T)-\underline{\int_{a}^{b}}f(x)dx| < \epsilon$
$\forall \epsilon>0,\exists \delta>0,|\delta(f,T,\zeta)-I| < \epsilon,\forall T,\lambda < \delta$
$故|s(T)-I| \le \epsilon, |S(T)-I| \le \epsilon$
$I-\epsilon \le s(T) \le S(T) \le I+\epsilon$
$0 \le \overline{\int_{a}^{b}}f(x)dx - \underline{\int_{a}^{b}}f(x)dx \le S(T)-s(T) \le 2 \epsilon$
$由\epsilon 任意性,即有\overline{\int_{a}^{b}}f(x)dx = \underline{\int_{a}^{b}}f(x)dx$
$\nl$
$T'' = \sum\limits_{k''}\omega_{k''} \Delta x_{k''} < \frac{\epsilon}{2}$
$T' = \sum\limits_{k'}\omega_{k'} \Delta x_{k'} < M\sum\limits_{k'}\Delta_{k'}< M \frac{\epsilon}{2M}$
$\nl$
$例:f(x) \in R[a,b],f(x) \ge m > 0,x \in [a,b),证\frac{1}{f(x)} \in R$
$依题意有\forall \epsilon > 0, \exists T \subset [a,b], \sum\limits_{k=1}^{n}\omega_k \Delta x_k < \epsilon$
$设\omega_{k'}=sup\{|\frac{1}{f(x')}-\frac{1}{f(x'')}|\}$
$因为|\frac{1}{f(x')}-\frac{1}{f(x'')}| \le \frac{1}{m^2} |f(x')-f(x'')|,....$
$\nl$
$\int_{a}^{b}|f(x)|dx必须分段讨论$
$\nl$
$原函数F'(x)=f(x) \forall x \in I$
$可积函数 \exists I \in R,\forall \epsilon >0,\exists \delta >0,|s(f,T,\zeta)|< \epsilon,\forall T,\zeta, \lambda < \delta$
$\nl$
$例:F(x)=\begin{cases} x^2sin\frac{1}{x},1 \ge x >0,\\ 0,x=0 \end{cases},但F'(x)不可积$
$无穷间断点,非单调,必不可积? \frac{1}{x}-[\frac{1}{x}]可积$
$\nl$
$预备命题1.Schwarg不等式,对\forall a_k,b_k (k=1\sim n)有$
$(\sum\limits_{k=1}^{n}a_kb_k)^2 \le (|\sum\limits_{k=1}^{n}a_kb_k|)^2 \le (\sum\limits_{k=1}^{n}a_k^2)(\sum\limits_{k=1}^{n}b_k^2)$
$\nl$
$预备命题2:设f(x)在区间上有界,若sup_I\{f^2(x)\}=\beta^2$
$则有sup\{|f(x)|\}=\beta (\beta \ge 0)$
$习题:$
$均可积$
$\begin{cases}
f(x)=\begin{cases}0,x \ne 0 \\ 1,x=0 \end{cases} \\
g(x)=Riemamm函数
\end{cases}
f(g(x))不可积
$
$\nl$
$不可积函数对于特定T,\zeta 可存在极限(黎曼和)。例:$
$f(x)=\begin{cases}\frac{1}{\sqrt x},0<x \le 1 \\ 0,x=0 \end{cases}$
$用2\sqrt{k+1}-2\sqrt k < \frac{1}{\sqrt k} < 2\sqrt{k}-2\sqrt {k-1},可求得lim \sum f(\frac{k}{n})\frac{1}{n}=2$
$\nl$
$f(x) \in R[a,b]改变有限点处成为g(x),求证:\int_{a}^{b}f(x)dx=\int_{a}^{b}g(x)dx$
$分析:设在x_p处改变,因为\forall \epsilon >0, \exists \delta_1>0,\sum \omega_k \Delta x_k < \frac{\epsilon}{2},\lambda < \delta$
$因为\sum \omega_k ^*\Delta x_k^* = \sum \omega_k ^{*'}\Delta x_k^{*'}(不含x_p)+\sum \omega_k ^{*''}\Delta x_k^{*''}(含x_p)< \frac{\epsilon}{2}+2\omega^* \delta' < \epsilon$
$取\delta'=min(\delta,\frac{\epsilon}{4(\omega^*+1)}),故有g(x) \in R[a,b]$
$由取点任意性可知,\int_{a}^{b}f(x)dx=\int_{a}^{b}g(x)dx$
$\nl$
$例:设f(x) \in R[a,b],且f(x)>0,证明:\int_{a}^{b}f(x)dx>0$
$分析:若\int_{a}^{b}f(x)dx=0,即\lbdtx{0}S(T)=0 \to \lbdtx{0}\sum\limits_{k=1}^n M_k \Delta x_k=0$
$令\epsilon_1 = b-a,则M_k<1,取出该区间\epsilon_i=\frac{1}{i}(b-a),\exists M_{k'}<\frac{1}{i}$
$套出一个点0<f(\zeta_n)<\frac{1}{n},n \to \infty, f(\zeta_n)=0$
$\nl$
$施瓦茨不等式$
$(\int_{a}^{b}f(x)g(x)dx)^2 \le (\int_{a}^{b}f^2(x)dx)(\int_{a}^{b}g^2(x)dx)$
$\nl$
$积分第二中值定理$
$(1)设f(x)在[a,b]上单调递减非负,g(x) \in R[a,b],则\exists \zeta \in [a,b]$
$\jfab f(x)g(x)dx=f(a)\jf{a}{\zeta}g(x)dx$
$(2)设f(x)在[a,b]上单调递增非负,g(x) \in R[a,b],则\exists \zeta \in [a,b]$
$\jfab f(x)g(x)dx=f(b)\jf{\zeta}{b}g(x)dx$
$(3)设f(x)在[a,b]上单调,g(x) \in R[a,b],则\exists \zeta \in [a,b]$
$\jf{a}{b}f(x)g(x)dx=f(a)\jf{a}{\zeta}g(x)dx+f(b)\jf{\zeta}{b}g(x)dx$
$\nl$
$max(f,g)=\frac{1}{2}(f+g+|f-g|)$
$\nl$
$\ntx{\infty}\jf{n}{n+p}\frac{sinx}{x}dx$
$原式=\ntx{\infty}\frac{sin{\zeta_n}}{\zeta_n}p=0,\zeta_n \in[n,n+p]$
$或=\ntx{\infty}sin\zeta_n \jf{n}{n+\pi}\frac{1}{x}dx=\ntx{\infty}sin\zeta_n ln(1+\frac{p}{n})$
$也可用第二中值定理或施瓦茨不等式$
$\nl$
$\ntx{\infty}\jf{0}{\frac{\pi}{2}}sin^nxdx=\ntx{\infty}(\jf{0}{\frac{\pi}{2}-\epsilon}sin^nxdx+\jf{\frac{\pi}{2}-\epsilon}{\frac{\pi}{2}}sin^nxdx)$
$\le \ntx{\infty}(sin^n\zeta_n \frac{\pi}{2}+\jf{\frac{\pi}{2}-\epsilon}{\frac{\pi}{2}}dx)=0+0$
$\nl$
$设f(x)\in D[a,b],f(a)=f(b)=0,求证:sup|f'(x)| \ge \frac{4}{(b-a)^2} \jf{a}{b}|f(x)|dx$
$f(x)=f(a)+f'(\zeta_1)(x-a)=f'(\zeta_1)(x-a),\zeta_1 \in (a,x)$
$f(x)=f(b)+f'(\zeta_2)(x-b)=f'(\zeta_1)(x-b),\zeta_2 \in (x,b)$
$记M=sup|f'(x)|则|f(x)|\le M(x-a)$
$|f(x)|\le M(-x+b)$
$\jf{a}{b}|f(x)|dx \le \jf{a}{\frac{a+b}{2}}M(x-a)dx+\jf{\frac{a+b}{2}}{b}M(b-x)dx=\frac{M}{4}(b-a)^2$
$\nl$
$例:设f(x)在[a,b]上二阶可导,f'(a)=f'(b)=0,证明:\exists \zeta \in (a,b)$
$使得\jf{a}{b}f(x)dx=(b-a)\frac{f(a)+f(b)}{2}+\frac{1}{6}(b-a)^3 f''(\zeta)$
$错误证法:$
$f(x)=f(a)+f'(a)(x-a)+\frac{1}{2}f''(\zeta_1)(x-a)^2 (注:未必可积,不可分离出下式)$
$f(x)=f(b)+f'(a)(x-b)+\frac{1}{2}f''(\zeta_2)(x-b)^2$
$故有f(x)=\frac{1}{2}[f(a)+f(b)]+\frac{1}{4}[f''(\zeta_1)(x-a)^2+f''(\zeta_2)(x-b)^2]$
$\jfab f(x)dx=(b-a)[\frac{f(b)+f(a)}{2}]+\frac{1}{12}(b-a)^3[f''(\zeta_1)+f''(\zeta_2)]$
$由达布定理(导数介值定理)可证$
$\nl$
$若f(x) \in [a,b],对\forall x \in [a,b],称F(x)=\jf{a}{x}f(t)dt为变上限积分$
$同样可定义J(x)=\jf{x}{b}f(t)dt$
$\nl$
$定理,记F(x)=\jf{a}{x}f(t)dt,x \in [a,b]$
$(1)若f(x) \in R[a,b],则F(x)在[a,b]上一致连续.(由f(x)有界,则一致连续,证明F(x)满足Lipshity条件)$
$(2)若f(x) \in C[a,b],则F(x)在[a,b]上可导,F'(x)=f(x)$
$F'(x_0)=\xtx{x_0}\frac{F(x)-F(x_0)}{x-x_0}=\xtx{x_0}f(x_0+\theta (x-x_0))=f(x_9)$
$\nl$
$若f(x) \in R[a,b],\jf{a}{b}f(x)dx=\lim_{\beta \to b^-}\jf{a}{\beta}f(x)dx$
$连续函数必有原函数$
$\nl$
$设f(x) \in C[a,b],\phi 在I上可导,且\varphi(I) \subset (a,b)则有$
$\phi (x) \triangleq F(\varphi(x)) = \jf{a}{\varphi(x)}f(t)dt,x \in I$
$在I上仍可导,且有\phi'(x)=f(\varphi(x))\varphi'(x),x \in I$
$推论,设f(x) \in C[a,b],\varphi(x),\psi(x)在I上可导,且值域属于[a,b],则有$
$L(x)=\jf{\psi(x)}{\varphi (x)} f(t)dt,x\in I$
$在I上可导,且L'(x)=f(\varphi(x))\varphi'(x)-f(\psi(x))\psi'(x),x\in I$
$\nl$
$\xtx{0}\frac{\jf{0}{sinx}sin(t^2)dt}{x^3}=\xtx{0}\frac{sin(sin^2x)cosx}{3x^2}=\frac{1}{3}$
$\nl$
$设f(x)在[a,b]连续且严格递增,证明(a+b)\jf{a}{b}f(x)dx<2\jf{a}{b}xf(x)dx$
$将b改为x,令F(x)=(a+x)\jf{a}{x}f(t)dt-2\jf{a}{x}tf(t)dt$
$因为F(a)=0,F'(x)=af(x)+xf(x)+\jf{a}{x}f(t)dt-2xf(x)$
$=\jf{a}{x}f(t)dt-f(x)(x-a)=\jf{a}{x}f(t)dt-\jf{a}{x}f(x)dt$
$=\jf{a}{x}(f(t)-f(x))dt<0$
$因为t \in (a,x),故f(t)<f(x),由几何意义显然$
$\nl$
$设f(x) \in R[0,1]证明:\ntinf \sum\limits_{k=1}^{n} ln[1+f(\frac{k}{n})\frac{1}{n}]=\jf{0}{1}f(x)dx$
$即证:\ntinf \sum\limits_{k=1}^{n}\{ln[1+f(\frac{k}{n})\frac{1}{n}]-f(\frac{k}{n})\frac{1}{n}\}=0$
$因为f(x)有界,故|f(x)|\le M'$
$|ln[1+f(\frac{k}{n})\frac{1}{n}]-f(\frac{k}{n})\frac{1}{n}|=|\frac{ln[1+f(\frac{k}{n})\frac{1}{n}]-f(\frac{k}{n})\frac{1}{n}}{f(\frac{k}{n})\frac{1}{n}}|·|f(\frac{k}{n})\frac{1}{n}|$
$=|\frac{f(\frac{k}{n})\frac{1}{n}-\frac{1}{2}[f(\frac{k}{n})\frac{1}{n}]^2+o([f(\frac{k}{n})\frac{1}{n}]^2)-f(\frac{k}{n})\frac{1}{n}}{f(\frac{k}{n})\frac{1}{n}}|·|f(\frac{k}{n})\frac{1}{n}|$
$=|-\frac{1}{2}·f(\frac{k}{n})\frac{1}{n}+o(f(\frac{k}{n})\frac{1}{n})|·|f(\frac{k}{n})|\frac{1}{n}$
$\le M'' m' \frac{1}{n^2} \triangleq M\frac{1}{n^2}$
$\ntinf \sum\limits_{k=1}^{n}\{ln[1+f(\frac{k}{n})\frac{1}{n}]-f(\frac{k}{n})\frac{1}{n}\} \le \sum\limits_{k=1}^{n}M\frac{1}{n^2}=\frac{M}{n} \to 0(n \to \infty)$
$\nl$
$设f(x)\in C[a,b],\forall g(x) \in C[a,b],g(a)=g(b)=0,有\jf{a}{b}f(x)g(x)dx=0$
$求证:f(x)=0$
$方法1:构造g(x)=f(x)(x-a)(b-x)$
$方法2:若\exists x_0 \in [a,b]使得f(x_0) \ne 0,设f(x_0)>0$
$则\exists \delta, f(x) \ge \frac{f(x_0)}{2}>0,\forall x \in \cup(x_0,\delta)$
$构造g(x)=\begin{cases}0,x \in [a,x_0-\delta]\cup[x_0+\delta,b] \\ 线性,x \in [x_0-\delta,x_0+\delta] \end{cases}$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[->] (-1,0) -- (7,0);
\draw[->] (0,-1) -- (0,5);
\draw[style=dashed] (1,0) -- (1,2);
\draw[style=dashed] (5,0) -- (5,2);
\draw[style=dashed] (3,0) -- (3,4);
\draw[line width=3pt] (2,0) -- (3,4);
\draw[line width=3pt] (4,0) -- (3,4);
\node [right] at (7,0) {x};
\node [above] at (0,5) {y};
\draw plot (\x,{3-sin(\x*1.5 r)}) node[right] {};
\node [below] at (1,0) {a};
\node [below] at (2,0) {$x_0-\delta$};
\node [below] at (3,0) {$x_0$};
\node [below] at (4,0) {$x_0+\delta$};
\node [below] at (5,0) {b};
\end{tikzpicture}
$则\jf{a}{b}f(x)g(x)dx=\jf{x_0-\delta}{x_0+\delta}f(x)g(x)dx$
$=f(\zeta)\jf{x_0-\delta}{x_0+\delta}g(x)dx \ge \frac{f(x_0)}{2}$
$\nl$
$I=\jf{0}{1}\frac{ln(1+x)}{1+x^2}dx,令x=tgt,t\in [0,\frac{\pi}{4}],由(tgt)'=(sect)^2$
$=\jf{0}{\frac{\pi}{4}}ln(1+tgt)dt=\jf{0}{\frac{\pi}{4}}ln(1+\frac{sint}{cost})dt=\jf{0}{\frac{\pi}{4}}ln(\frac{sint+cost}{cost})dt$
$=\jf{0}{\frac{\pi}{4}}ln(\frac{cos(\frac{\pi}{2}-t)+cost}{cost})dt=\jf{0}{\frac{\pi}{4}}ln(\frac{2cos\frac{\pi}{4}cos(\frac{\pi}{4}-t)}{cost})dt$
$=\jf{0}{\frac{\pi}{4}}ln\sqrt 2dt+\jf{0}{\frac{\pi}{4}}lncos(\frac{\pi}{4}-t)dt-\jf{0}{\frac{\pi}{4}}lncostdt$
$令\frac{\pi}{4}-t=u,\jf{0}{\frac{\pi}{4}}lncosudu=-\jf{\frac{\pi}{4}}{0}lncosudu$
$原式=\jf{0}{\frac{\pi}{4}}ln\sqrt 2 dt$
$\nl$
$1.\jf{0}{a}f(x)dx=\jf{0}{a}f(a-x)dx$
$2.\jf{0}{\frac{\pi}{2}}f(sinx,cosx)dx=\jf{0}{\frac{\pi}{2}}f(cosx,sinx)dx$
$3. 若f(x)为周期T的函数,\jf{a}{a+T}f(x)dx=\jf{0}{T}f(x)dx$
$4.\jf{0}{\pi}xf(sinx)dx=\frac{\pi}{2}\jf{0}{\pi}f(sinx)dx(利用奇偶函数证明)只需f中均与sinx相关即可$
$\nl$
$I_1 = \jf{0}{\pi}(xsinx)^2dx,令I_2 = \jf{0}{\pi}(xcosx)^2dx,故I_1+I_2=\jf{0}{\pi}x^2dx,I_2-I_1=\jf{0}{\pi}x^2cos2xdx$
$\nl$
$\int arcsin \sqrt{\frac{x}{1+x}}dx,令t=arcsin\sqrt{\frac{x}{1+x}},则tg^2t=x,故I=tg^2t-\int tg^2tdt$
$\nl$
$\xtinf \frac{\jf{0}{x}|sint|dt}{x}$
$解:\forall k=1~n有\jf{0}{\pi}|sint|dt=\jf{(k-1)\pi}{k\pi}|sint|dt=\jf{0}{\pi}sintdt=2$
$\jf{0}{n\pi}|sint|dt=2n,设n\pi \le x< (n+1)\pi$
$\frac{2n}{(n+1)\pi}=\frac{\jf{0}{n\pi}|sint|dt}{(n+1)\pi} \le 原式 \le \frac{\jf{0}{(n+1)\pi}|sint|dt}{n\pi}=\frac{2(n+1)}{n\pi}$
$\nl$
$例:\jf{-\frac{\pi}{4}}{\frac{\pi}{4}}\frac{dx}{1+sinx},因为\jf{-a}{a}f(x)dx=\jf{0}{a}(f(x)+f(-x))dx$
$ 故原式 = \jf{0}{\frac{\pi}{4}}(\frac{1}{1+sinx}+\frac{1}{1-sinx})dx=2\jf{0}{\frac{\pi}{4}}dtgx=2tgx|_0^{\frac{\pi}{4}}$
$\nl$
$例:\jf{0}{\frac{\pi}{4}}\frac{1-sin2x}{1+sin2x}dx=\jf{0}{\frac{\pi}{4}}\frac{1-sin2(\frac{\pi}{4}-x)}{1+sin2(\frac{\pi}{4}-x)}dx=\jf{0}{\frac{\pi}{4}}\frac{1-cos2x}{1+cos2x}dx$
$=\jf{0}{\frac{\pi}{4}}tg^2xdx=\jf{0}{\frac{\pi}{4}}sec^2xdx-\jf{0}{\frac{\pi}{4}}dx=1-\frac{\pi}{4}$
$\nl$
$设f(x)=\jf{0}{a-x}e^{t(2a-t)}dt,求\jf{0}{a}f(x)dx$
$分析:f(a)=0,f'(x)=-e^{a^2-x^2}$
$\jf{0}{a}f(x)dx=xf(x)|_0^a-\jf{0}{a}xf'(x)dx=\jf{0}{a}xe^{a^2-x^2}dx=-\frac{1}{2}\jf{0}{a}e^{a^2-x^2}d(a^2-x^2)=\frac{e^{a^2}}{2}$
$\nl$
$证明:\jf{1}{a}f(x^2+\frac{a^2}{x^2})\frac{dx}{x}=\jf{1}{a}f(x+\frac{a^2}{x})\frac{dx}{x}$
$令x^2=t,则2xdx=dt$
$\jf{1}{a}f(x^2+\frac{a^2}{x^2})\frac{dx}{x}=\frac{1}{2}\jf{1}{a^2}f(t+\frac{a^2}{t})\frac{dt}{t}$
$=\frac{1}{2}[\jf{1}{a}f(t+\frac{a^2}{t})\frac{dt}{t}+\jf{a}{a^2}f(t+\frac{a^2}{t})\frac{dt}{t}]$
$在后一积分中令u=\frac{a^2}{t},则变为\jf{a}{1}f(u+\frac{a^2}{u})du(-\frac{1}{u^2}u)=\jf{1}{a}f(u+\frac{a^2}{u})\frac{du}{u}$
$\nl$
$f(x)=\jf{x}{x+1}sin(e^t)dt,证明e^x|f(x)| \le 2$
$令e^t=u,dt=\frac{1}{u}du,于是f(x)=\jf{e^x}{e^{x+1}}\frac{sinu}{u}du$
$f(x)=-\frac{cosu}{u}|_{e^x}^{e^{x+1}}-\jf{e^x}{e^{x+1}}\frac{cosu}{u^2}du=\frac{cose^x}{e^x}-\frac{cose^{x+1}}{e^{x+1}}-\jf{e^x}{e^{x+1}}\frac{cosu}{u^2}du$
$e^x|f(x)| \le |cose^x|+|\frac{cose^{x+1}}{e}|+(\jf{e^x}{e^{x+1}}\frac{cosu}{u^2}du)e^x$
$\le 1+\frac{1}{e}+(\jf{e^x}{e^{x+1}}\frac{1}{u^2}du)e^x=\frac{2}{e^x}e^x$
$\nl$
$例:证明\ntinf \jf{0}{\pi}|sinnx|ln(1+x)dx=\frac{2}{\pi}\jf{0}{\pi}ln(1+x)dx=2\jf{0}{1}ln(1+\pi t)dt$
$分析:\jf{0}{\pi}|sinnx|ln(1+x)dx=\sum\limits_{k=1}^{n}\jf{\frac{k-1}{n}\pi}{\frac{k}{n}\pi}|sinnx|ln(1+x)dx$
$因为\jf{\frac{k-1}{n}\pi}{\frac{k}{n}\pi}|sinnx|dx,令nx=t,则有\jf{\frac{k-1}{n}\pi}{\frac{k}{n}\pi}|sint|\frac{t}{n}dt=\frac{1}{n}\jf{0}{\pi}sintdt=\frac{2}{n}$
$ln(1+x)在[0,+\infty)上递增,故有$
$\jf{\frac{k-1}{n}\pi}{\frac{k}{n}\pi}|sinnx|ln(1+x)dx \ge ln(1+\frac{k-1}{n}\pi)\jf{\frac{k-1}{n}\pi}{\frac{k}{n}\pi}|sinnx|dx=\frac{2}{n}ln(1+\frac{k-1}{n}\pi)$
$\jf{\frac{k-1}{n}\pi}{\frac{k}{n}\pi}|sinnx|ln(1+x)dx \le \frac{2}{n}ln(1+\frac{k-1}{n}\pi)$
$上式两边求和取极限$
$方法二:用积分中值定理$
$\jf{0}{\pi}|sinnx|ln(1+x)dx=\sum\limits_{k=1}^{n}\jf{\frac{k-1}{n}\pi}{\frac{k}{n}\pi}|sinnx|ln(1+x)dx$
$=\sum\limits_{k=1}^{n}ln(1+\zeta_k)\jf{\frac{k-1}{n}\pi}{\frac{k}{n}\pi}|sinnx|dx$
$=\sum\limits_{k=1}^{n}ln(1+\zeta_k)\frac{2}{n}$
$\nl$
$设f(x)在[0,+\infty)上单调递增,对\forall T>0,f(x) \in R[0,T]$
$证明:\xtinf f(x)=c的充要条件是\xtinf \frac{1}{x}\jf{0}{x}f(t)dt=c$
$必要性:要证\forall \epsilon >0,\exists X>0,|\frac{1}{x}\jf{0}{x}f(t)dt-c|<\epsilon,\forall x>X$
$因为\xtinf f(x)=c,\forall \epsilon >0,\exists x_0>0,c-\epsilon<f(x)<c+\epsilon,\forall x>x_0$
$\frac{1}{x}\jf{0}{x}f(t)dt=\frac{1}{x}\jf{0}{x_0}f(t)dt+\frac{1}{x}\jf{x_0}{x}f(t)dt$
$<无穷小量+\frac{1}{x}\jf{x_0}{x}(c+\epsilon)dt$
$=无穷小量+(c+\epsilon)(1-\frac{x_0}{x})$
$注意到f(x)\in R[0,x_0]故\frac{1}{x}\jf{0}{x_0}f(t)dt \to 0,(x \to \infty)$
$充分性须用到单调递增条件,否则存在反例:y=1+sinx$
$充分性:f(x)=\frac{1}{x}\jf{0}{x_0}f(x)dt \ge \frac{1}{x}\jf{0}{x_0}f(t)dt \to c,而f(x)=\frac{1}{x}\jf{x}{2x}f(x)dt \le \frac{1}{x}\jf{x}{2x}f(t)dt=2\frac{1}{2x}\jf{0}{2x}f(t)dt-\frac{1}{x}\jf{0}{x}f(t)dt \to 2c-c=c$
$\nl$
$例:设f(x)连续,\varphi (x)=\jf{0}{1}f(xt)dt,且\xtx{0}\frac{f(x)}{x}=A$
$讨论\varphi'(x)在x=0处的连续性$
$分析:f(0)=0,令xt=n,则\varphi (x)=\frac{1}{x} \jf{0}{x}f(u)du,x \ne 0$
$从而\varphi'(x)=\frac{xf(x)-\jf{0}{x}f(u)}{x^2}du,x \ne 0,另\varphi (0)=0$
$\varphi'(0)= \xtx{0} \frac{\varphi (x)-\varphi(0)}{x}=\xtx{0} \frac{\jf{0}{x}f(u)du}{x^2}=\xtx{0} \frac{f(x)}{2x}=\frac{A}{2}$
$\xtx{0} \varphi '(x)=\xtx{0} \frac{xf(x)-\jf{0}{x}f(u)du}{x^2} =\xtx{0}\frac{f(x)}{x}-\xtx{0}\frac{\jf{0}{x}f(u)du}{x^2}=A-\frac{A}{2}=\frac{A}{2}$
$故\varphi '(x)在x=0处连续$
$\nl$
$设f(x)在[a,b]上可导,f'(x)>0,f(x)>0,对图中所示面积A(x)B(x)$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[->] (0,0) -- (5,0);
\draw[->] (0,0) -- (0,6);
\fill[gray] (4,2) -- (1,2) parabola (4,4.3);
\fill[white] (4,2) rectangle (1,3);
\fill[gray] (1,3) -- (1,2) parabola (3,3);
\draw (1,2) parabola (4,4.3);
\draw (0,3) -- (4,3);
\draw (1,0) -- (1,3);
\draw (3,0) -- (3,3);
\draw (4,0) -- (4,5);
\node [below] at (2,3) {A(x)};
\node [above] at (4,3) {B(x)};
\node [below] at (1,0) {a};
\node [below] at (3,0) {x};
\node [below] at (4,0) {b};
\node [left] at (0,3) {f(x)};
\end{tikzpicture}
$证明:必存在x \in [a,b]使得\frac{A(x)}{B(x)}=1999$
$分析,A(x)=f(x)(x-a)-\jf{a}{x}f(t)dt=\jf{a}{x}(f(x)-f(t))dt$
$B(x)=\jf{x}{b}(f(t)-f(x))dt$
$可令F(x)=A(x)-1999B(x),验证F'(x)>0,验证F(a)<0,F(b)>0$
$\nl$
$设f(x)二阶可导,证明\exists \zeta_0 \in (a,b),使得\jf{a}{b}f(x)dx=(b-a)\frac{f(a)+f(b)}{2}-\frac{(b-a)^2}{12}f''(\zeta_0)$
$分析:试用分部积分法$
$\nl$
$设f(x) \in C[a,b],对\forall [\alpha,\beta] \subset [a,b]有$
$|\jf{\alpha}{\beta}f(x)dx| \le M(\beta - \alpha)^{1+\lambda},M>0,\lambda>0$
$证明:f(x)=0,\forall x \in [a,b]$
$①令F(x)=\jf{a}{x}f(t)dt,\forall x \in (a,b),取\Delta x使得x+\Delta x \in(a,b]$
$则|F(x+\Delta x)-F(x)|=|\jf{x}{x+\Delta x}f(t)dt| \le M \Delta x^{1+\lambda}$
$|\frac{F(x+\Delta x0-F(x)}{\Delta x}| \le M|\Delta x|^\lambda$
$f(x) \in C,|f(\zeta_x)| \le M|\Delta x|^\lambda,\zeta 介于x与x+\Delta x之间$
$当\Delta x \to,\zeta_x \to x,0 \le f(x) \le 0$
$②\forall x \in (a,b),有\{\epsilon_n\}(\epsilon_n > 0,\ntinf \epsilon_n=0)使得x+\epsilon_n \in [a,b]$
$则|\jf{x}{x+\epsilon_n}f(x)dx| \le M\epsilon_n^{1+\lambda}$
$x_n介于x与x+\epsilon_n,f(x_n)\epsilon_n=\jf{x}{x+\epsilon_n}f(x)dx \le M\epsilon_n^{1+\lambda}$
$\nl$
$设f''(x) \in c[0,1],f(0)=f(1)=0,且f(x) \ne 0 ,\forall x \in (0,1)$
$求证:\jf{0}{1}|\frac{f''(x)}{f(x)}|dx \ge 4$
$分析:设f(x)>0,\forall x \in (0,1),设maxf(x)=f(x_0)$
$故\exists x_1,x_2:f'(x_1)=\frac{f(x_0)}{x_0},f'(x_2)=-\frac{f(x_0)}{1-x_0}(中值定理)$
$从而有\jf{0}{1}|\frac{f''(x)}{f(x)}| \ge \frac{\jf{0}{1}|f''(x)|dx}{f(x_0)} \ge \frac{\jf{x_1}{x_2}|f''(x)|dx}{f(x_0)} \ge \frac{|\jf{x_1}{x_2}f''(x)dx|}{f(x_0)}$
$=\frac{1}{f(x_0)} |f'(x_2)-f'(x_1)| =\frac{1}{x_0(1-x_0)} \ge 4$
$\nl$
$f'(x) \in c[0,1], \jf{0}{1}f(x)dx=0,证明:\jf{0}{1}f^2(x)dx \le \jf{0}{1}[f'(x)]^2dx$
$①\exists x_1,x_2 \in (0,1],\jf{0}{1}fx(x)=f(x_1)=0,\jf{0}{1}f^2(x)dx=f^2(x_2)(积分中值定理)$
$利用Schwarz不等式,\jf{0}{1}f^2(x)dx=f^2(x_2)=(f(x_2)-f(x_1))^2$
$=(\jf{x_1}{x_2}f'(x)dx)^2 \le (\jf{x_1}{x_2}|f'(x)|dx)^2 \le (\jf{0}{1}|f'(x)|dx)^2$
$\le \jf{0}{1}dx \jf{0}{1}f'(x)^2dx = \jf{0}{1}f'(x)^2dx$
$②\exists \zeta \in [0,1]使得f(\zeta)=\jf{0}{1}f(x)dx=0$
$f^2(x)=[f(x)-f(\zeta)]^2=(\jf{\zeta}{x}f'(t)dt)^2$
$\le (\jf{\zeta}{x}f'(t)^2dt) (\jf{\zeta}{x}dt) \le \jf{0}{1}f'(x)^2dx$
$所以\jf{0}{1}f^2(x)dx \le \jf{0}{1}\{\jf{0}{1}f'(x)^2dx\}dx = \jf{0}{1}[f'(x)]^2dx$
$\nl$
$设f(x) \in c(a,b),\forall g(x) \in c[a,b],\jf{a}{b}f(x)g(x)dx=0$
$证明f(x)必为常数$
$令g(x)=f(x)-\frac{1}{b-a}\jf{a}{b}f(x)dx,则\jf{a}{b}g(x)dx=0$
$因为\int kf(x) =k \int f(x) \to \jf{a}{b}(\frac{1}{b-a}\jf{a}{b}f(x)dx)g(x)dx=0$
$又因为\jf{a}{b}f(x)g(x)dx=0,$
$\jf{a}{b}g(x)f(x)-(\frac{1}{b-a}\jf{a}{b}f(x)dx)g(x)=0$
$故有等价于\jf{a}{b}g^2(x)dx=0,故g(x)=0$
$故f(x)=\frac{1}{b-a}\jf{a}{b}f(x)dx=c$
$\nl$
$例:集合F是满足下列条件的实函数f (1)f(x) \in c[0,1]且非负$
$(2)f(0)=0,f(1)=1$
$证明:inf_F \{\jf{0}{1}f(x)dx\}=0,F=\{x^n\},并问是否存在\varphi \in F:\jf{0}{1}\varphi(x)dx=0$
$\nl$
$例:设f(x) \in c[a,b],\jf{a}{b}x^nf(x)dx=0,n=0,1,2,3..n,n可取n+1个值$
$证明:f(x)在(a,b)内至少有n+1个零点$
$考虑n=1时,因为\jf{a}{b}f(x)dx=0,故f(x)在[a,b]内至少有一个零点$
$设为f(x_0)=0,若只有一个零点x_0,则f(x)在x_0两边异号$
$故f(x)(x-x_0)在[a,b]内同号,故\jf{a}{b}f(x)(x-x_0)dx \ne 0,与$
$\jf{a}{b}f(x)xdx-x_0 \jf{a}{b}f(x)=0-0=0矛盾,归纳法类推$
$\nl$
$设正值函数f(x)\in C(R),以\frac{\pi}{2}为周期,又$
$\jf{0}{\frac{\pi}{2}}e^{f(x)}ln[f(x)]sinxdx=\jf{0}{\frac{\pi}{2}}e^{f(x)}ln[f(x)]cosxdx=0$
$证明:f(x)在(0,\pi)内至少存在四个点,使得f(x_i)=1$
\end{document}