-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsxfx08.tex
executable file
·185 lines (116 loc) · 5.57 KB
/
sxfx08.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
\documentclass[12pt,a4paper]{article}
\usepackage{fancyhdr}
\usepackage{fontspec}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{tikz}
\usepackage{pstricks-add}
\setmainfont{Microsoft YaHei}
\pagestyle{fancy}
\begin{document}
\input{macro.tex}
$\nl$
\begin{center} 第8章 定积分应用 \end{center}
$y=e^{-x}sinx与x轴面积S=\frac{1}{2}\frac{e^\pi+1}{e^\pi-1}$
$\nl$
$Pescartes叶形线x^3+y^3=3axy(a>0)所围成面积$
$化成极坐标系 =\frac{9}{2}a^2 \jf{0}{\frac{\pi}{2}}\frac{sec^2 \theta tg^2 \theta}{(1+tg3\theta)^2}d \theta$
% http://tex.stackexchange.com/questions/224861/folium-of-descartes
\begin{figure}[!ht]
%\centering
\psset{algebraic=true,dimen=middle,dotstyle=o,linewidth=0.8pt,arrowsize=3pt 2,arrowinset=0.25,unit=3,plotpoints = 2000}
\begin{pspicture*}(-1.2,-1.2)(1.2,1.2)
%\psset{linecolor =black, linewidth = 1.2pt}
\pscustom[fillstyle = solid, fillcolor =white!25!]{
\parametricplot{-0.6}{0}{t/(1 + t^3) | t^2/(1 + t^3)}
\parametricplot{-100}{-1.5}{t/(1 + t^3) | t^2/(1 + t^3)} }
\pscustom[fillstyle = solid, fillcolor =black!25! ]{
%\parametricplot{0}{5}{3*t/(1 + t^3) | 3*t^2/(1 + t^3)}
%\parametricplot{5}{200}{3*t/(1 + t^3) | 3*t^2/(1 + t^3)}
\parametricplot{0}{5}{t/(1 + t^3) | t^2/(1 + t^3)}
\parametricplot{5}{10}{t/(1 + t^3) | t^2/(1 + t^3)}
\closepath }
%\psline[linewidth = 0.4pt, linecolor = black](-2.5; 45)(2.5 ; 45)
\psline[linewidth = 0.4pt, linecolor = black](-0.9,0.5)(0.6,-1)
\psaxes[linecolor=black,xAxis=true,yAxis=true,labels=none,ticks=none]{->}(0,0)(-1,-1)(1,1)
\end{pspicture*}
\end{figure}
$=\frac{3}{2}a^2$
$x=\frac{3at}{1+t^2},y=\frac{3at^2}{1+t^2}$
$\nl$
$抛物线沿0x轴滚动,焦点画出悬链线$
$\nl$
$示例:求椭圆\frac{x^2}{a^2}+\frac{y^2}{b^2}=1及平面z=\frac{c}{a}x,y=0所围立体体积$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[->] (-3,0) -- (3,0);
\draw[->] (0,-3) -- (0,3);
\draw (-2,-2) -- (2,2);
\draw (2,0) -- (2,1);
\draw[style=dashed, line width=0.5 pt] (-0.5,-0.5) -- (1.6,-0.5);
\draw[style=dashed, line width=0.5 pt] (1.6,0.4) -- (1.6,-0.5);
\draw[style=dashed, line width=0.5 pt] (1.6,0.4) -- (-0.5,-0.5);
\node [left] at (-0.5,-0.5) {P};
\node [right] at (1.6,-0.5) {Q};
\node [above] at (1.6,0.4) {R};
%\draw[line width=0.5 pt] (-1,-1) arc (270:405:3 and 1);
\draw[line width=0.5 pt] (-1,-1) arc (270:415:3 and 1);
\draw(-1,-1)..controls (2.6,0.5) and (2.6,1.5)..(0.8,0.8);
\node [below] at (3,0) {x};
\end{tikzpicture}
$对y\in[-b,b]过y作垂直于y轴平面截立体的截面为直角三角形PRQ,且有PQ=x=a\sqrt{1-\frac{y^2}{b^2}},QR=c\sqrt{1-\frac{y^2}{b^2}}$
$从而截面积函数为S(y)=\frac{1}{2}ac(1-\frac{y^2}{b^2})$
$V=\jf{-b}{b}dV=\jf{-b}{b}\frac{1}{2}ac(1-\frac{y^2}{b^2})dy=\frac{2}{3}abc$
$\nl$
$求Viviand体,由x^2+y^2+z^2=a^2,x^2+y^2=ax(a>0)围成体积$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[style=dashed, line width=0.5 pt] (-4,-1) -- (4,1);
\draw[style=dashed, line width=0.5 pt] (-4,1) -- (4,-1);
\draw[style=dashed, line width=0.5 pt] (0,0) -- (0,3);
\draw[style=dashed, line width=0.5 pt] (0,0) ellipse (3 and 1);
\draw[style=dashed, line width=0.5 pt] (3,0) arc (0:180:3);
\draw(2.4,-0.6)..controls (3,0) and (2,3)..(0,3);
\draw (2.4,-0.6)..controls (0.5,0.5)..(0,1.5)..controls (-0.4,2) and (-0.4,3) .. (0,3);
\draw (1.2,-0.3) ellipse (1.5 and 0.5);
\draw (-0.3,-0.4) -- (-0.3,2.5);
\end{tikzpicture}
$\nl$
$物理应用(示例规范)$
$从高为H,半径为R的圆锥桶中吸出密度为M的液体的功$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[style=dashed, line width=0.5 pt] (0,-4) -- (0,1);
\draw[line width=1 pt] (0,0) ellipse (3 and 1);
\draw[style=dashed, line width=0.5 pt] (3,0) -- (0,-3);
\draw[style=dashed, line width=0.5 pt] (-3,0) -- (0,-3);
\draw[line width=1 pt] (2.8,-0.4) -- (0,-3);
\draw[line width=1 pt] (-2.8,-0.4) -- (0,-3);
\end{tikzpicture}
$解:取坐标如图,基本区间为0 \le x \le H$
$在[0,H]上任取x,x+dx,则从桶内抽出位于[x,x+dx]层上液体所做功为$
$dW=\pi r^2 dx M (H-x),r=\frac{R}{H}x$
$W=\frac{1}{12}M\pi R^2H^2$
$\nl$
$定理1,设弧\overset{\frown} {AB},x=x(t),y=y(t),在[\alpha,\beta]连续,线密度为\lambda (t) \in c[\alpha,\beta]$
$则\overset{\frown} {AB}重心坐标\overline x=\frac{\jf{\alpha}{\beta}x(t)\lambda(t)ds}{\jf{\alpha}{\beta}\lambda(t)ds},\overline y=\frac{\jf{\alpha}{\beta}y(t)\lambda(t)ds}{\jf{\alpha}{\beta}\lambda(t)ds}$
$其中ds=\sqrt{x^2(t)+y^2(t)}dt为弧微分$
$\nl$
$定理2:设质量均匀平面图形D,y=f(x) \ge 0, x=a、x=b及x轴$
$则D质心为\overset{\frown} {x}=\frac{\jf{a}{b}xydx}{\jf{a}{b}ydx},\overset{\frown} {y}=\frac{\frac{1}{2}\jf{a}{b}y^2dx}{\jf{a}{b}ydx}$
$\nl$
$Guldin定理$
$(1)平面弧,\overset{\frown} {AB}长度为l,绕定轴旋转(\overset{\frown} {AB}不穿过轴)$
$其质心到转轴距离为\eta,则有S=2\pi \eta l,其中S为旋转曲面表面积$
$(2)平面图形D面积S,绕定轴旋转(D不穿过轴)其质心到轴距离为\eta ,则有V=2\pi \eta S,其中V为旋转体体积$
$\nl$
$例:求质心绕x轴旋转,旋转体体积$
$V=2\pi \eta \pi R^2-2\pi \eta \pi r^2$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[fill=gray] (0,2) circle (2);
\draw[fill=white] (0,1) circle (1);
\draw[->] (0,-1) -- (0,5);
\draw[->] (-2.5,0) -- (2.5,0);
\node[right] at (2.5,0) {x};
\node[right] at (0,1) {r};
\node[right] at (0,2.5) {R};
\end{tikzpicture}
\end{document}