-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsxfx10.tex
382 lines (206 loc) · 11.1 KB
/
sxfx10.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
\documentclass[12pt,a4paper]{article}
\usepackage{fancyhdr}
\usepackage{fontspec}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{tikz}
\usepackage{pstricks-add}
\setmainfont{Microsoft YaHei}
\pagestyle{fancy}
\begin{document}
\input{macro.tex}
$\nl$
\begin{center}第10章 级数 \end{center}
$部分和S_n,n=1~k$
$\frac{1}{lnn}-\frac{1}{ln(n+1)}=\frac{1}{\zeta ln^2 \zeta}> \frac{1}{(n+1)ln^2(n+1)}$
$\nl$
$设\{a_n\}单调递减且非负,且级数\nsum{1}{\infty}a_n收敛,证明:\ntinf na_n=0$
$只需证明\{na_n\}的奇偶子列分别收敛于0,由Cauchy准则$
$\forall \epsilon >0,\exists N_1 \in N,当n > N时有a_{n+1}+a_{n+2}...a_{2n} < \frac{\epsilon}{2} 由单调性$
$na_{2n} \le a_{n+1}+a_{n+2}...a_{2n} < \frac{\epsilon}{2},即(2n) a_{2n} < \epsilon$
$(2n+1)a_{2n+1}=2na_{2n+1}+a_{2n+1} \le 2na_{2n}+a_{2n+1}< \epsilon + \epsilon$
$\nl$
$在\nsum{1}{\infty}\frac{1}{n}中去掉分母含零的项,则(\nsum{1}{\infty}\frac{1}{n})^* < {90}$
$因为(\nsum{1}{\infty}\frac{1}{n})^*=(1+\frac{1}{2}+..+\frac{1}{9})+(\frac{1}{11}+\frac{1}{19}+...+\frac{1}{99})+(\frac{1}{111}+\frac{1}{119}+...+\frac{1}{999})+...$
$<9^1×1+9^2×0.1+9^3×0.01+...<9 \frac{1}{1-0.9}=90$
$\nl$
$e^{\pi}与\pi ^e用(\frac{x}{lnx})'比较$
$\nl$
$n^{\frac{1}{n}}=1,n \to \infty$
$\nsum{1}{\infty}(e-(1+\frac{1}{n})^n)^2 < \nsum{1}{\infty}((1+\frac{1}{n})^{n+1}-(1+\frac{1}{n})^n)^2=\nsum{1}{\infty}(1+\frac{1}{n})^{2n} \frac{1}{n^2}< \frac{e^2}{n^2} $
$\nl$
$\nsuminf \frac{(n!)^2}{(2n)!} \to \ntinf \frac{a_{n+1}}{a_n}=\ntinf \frac{(n+1)^2}{(2n+1)(2n+2)}=\frac{1}{4}<1$
$\nl$
$\nsuminf n!(\frac{x}{n}^n(x>0)) \to \ntinf \frac{a_{n+1}}{a_n}=\frac{x}{e}$
$而当x=e,则\frac{a_{n+1}}{a_n}>1,则\xtinf a_{n+1} \ne 0$
$\nl$
$\nsuminf \frac{n^2}{(2+\frac{1}{n})^n},\ntinf \sqrt[n] a_n = \frac{n^{\frac{2}{n}}}{2+\frac{1}{n}}=\frac{1}{2} < 1,故收敛$
$\nl$
$\frac{1}{2}+\frac{1}{3^2}+\frac{1}{2^3}+\frac{1}{3^4}+...\frac{1}{2^{2n-1}}+\frac{1}{3^{2n}}+....$
$奇子列\ntinf \sqrt[n] a_n = \frac{1}{2},偶子列\ntinf \sqrt[n] a_n = \frac{1}{3}$
$故有\sup \ntinf \sqrt a_n = \frac{1}{2} <1$
$\nl$
$ln(1+x)=x-\frac{1}{2}x^2+o(x^2)(x \to 0)$
$a_n=\frac{1}{\sqrt n}-[\frac{1}{n}-\frac{1}{2n^2}+o(\frac{1}{n^2})]^{\frac{1}{2}}$
$故\ntinf \frac{a_n}{\frac{1}{n^{\frac{3}{2}}}}=\frac{1}{4}$
$\nl$
$P判别法:P>1,0 \le l < +\infty 收敛,P \le1,0<l \le +\infty,发散$
$\nl$
$Raabe判别法:设\nsuminf a_n 为正项级数,若 \exists N \in \bold{N},使得\forall n>N时有$
$n(\frac{a_n}{a_{n+1}}-1) \ge r > 1,则收敛,若n(\frac{a_n}{a_{n+1}}-1) \le 1,则发散$
$证明:设\forall n \in N,\frac{a_n}{a_{n+1}} \ge 1+\frac{r}{n},取p(1<p<r)则1+\frac{r}{n}>(1+\frac{1}{n})^p(n \to \infty)$
$\frac{a_n}{a_{n+1}} > (\frac{n+1}{n})^p, a_{n+1}>a_n(\frac{n}{n+1})^p 故a_2<a_1(\frac{1}{2})^p,a_3<a_1(\frac{1}{3})^p$
$推论:\ntinf n(\frac{a_n}{a_{n+1}}-1)=r,r>1收敛,r<1发散$
$\nl$
$\xtx{0+}\frac{\frac{1}{e}(1+x)^{p+\frac{1}{x}}}{x} = \xtx{0+}\frac{\frac{1}{e}e^{(p+\frac{1}{x})ln(1+x)}-1}{x} 将ln(1+x)展开为x-\frac{1}{2}x^2+o(x^2)$
$有\xtx{0+}\frac{e^{(p-\frac{1}{2})x+o(x)}-1}{x}=p-\frac{1}{2}$
$\nl$
$仅有\nsuminf sin(\pi \sqrt {n^2+k^2}),k \in N$
$原级数=(-1)^n sin\frac{k^2 \pi}{\sqrt{n^2+k^2}+n^2} 当n充分大时,成为交错级数$
$且|a_n|>|a_{n+1}|,\xtinf a_n=0$
$\nl$
$阿贝尔 1^\circ 若A \le b_m+...+b_n \le B,a_mA \le \sum_k^{\infty}a_kb_k \le a_m B$
$Cauchy凝聚判别法,若\{a_n\}单调递减非负,则\nsuminf a_n 与 \nsuminf 2^n a_{2^n}同敛散$
$记S_n=a_1+a_2+...a_n,s_k'=a_1+2a_2+....2^ka_{2^k}$
$若n<2^k,有s_n \le a_1+(a_2+a_3)+(a_4+..a_7)+...+(a_{2^k}+....a_{2^{k+1}-1})$
$\le a_1+2a_2+4a_4+....2^k a_{2k}=s_k^*$
$n>2^k,s_n \ge a_1+a_2+(a_3+a_4)+(a_5+..a_8)+...+(a_{2^{k-1}+1}+....a_{2^{k}})$
$\ge \frac{a_1}{2}+a_2+2a_4+4a_8+...+2^{k-1}a_{2^k}$
$若\nsuminf a_n 收敛,S_n有界,则\forall k \in N,必有n \in N,n> 2^k,S_k' \le 2S_n$
$\nl$
$定理(隔项比值法,刘秋生)设\nsuminf a_n 为正项级数,\{a_n\}单调递减,若$
$\frac{a_{2n}}{a_n}=p,则p<\frac{1}{2}时级数收敛,p>\frac{1}{2}级数发散$
$证明:当\xtinf \frac{a_{2n}}{a_n}=p< \frac{1}{2},则有\xtinf \frac{2a_{2n}}{a_n}=p<1,令n=2^k有$
$\ntinf \frac{2a_{2·2^k}}{a_{2^k}}=2p <1 \to \ntinf \frac{2^{k+1}a_{2^{k+1}}}{2^ka_{2^k}}=2p<1 (比值法,凝聚定理)$
$\nl$
$定理(叶志江),设f(x)正值连续[1,+\infty)单调递减 \varphi (x)在[1,+\infty)$
$上可导且单调减,且\varphi (x)>x,\forall x \in [1,+\infty)若\ntinf \frac{\varphi (x)f(\varphi (x))}{f(x)}=r$
$则当r<1时,\nsuminf f(n)收敛$
$\nl$
$厄耳玛可夫判别法 \varphi (x)= x+1,\varphi (x)=2x,\varphi (x)=e^x$
$\nl$
$\nsuminf (1-\frac{lnn}{n})^{2n},\exists N \in \bold N:n>N后,a_n<e^{-2lnn}=\frac{1}{n^2}$
$\nl$
$设\{a_n\}\{b_n\}满足e^{a_n}=a_n+e^{b_n},\forall n \in N,若\nsuminf a_n^2收敛,则b_n也收敛$
$e^{b_n}=e^{a_n}-a_n=1+a_n+\frac{1}{2}a_n^2+o(a_n^2)-a_n$
$=1+\frac{1}{2}a_n^2+o(a_n^2),故b_n \to 0(n \to \infty)$
$故e^{b_n}=1+b_n+o(b_n)=1+\frac{1}{2}a_n^2+o(a_n^2)$
$从而b_n ~ \frac{1}{2}a_n^2(n \to \infty)由比较法$
$类似的,有$
$若a_n=b_n+ln(1+a_n)且\nsuminf a_n^2 收敛,证明\nsuminf b_n 也收敛$
$\nl$
$证明:\nsuminf ln(1+\frac{(-1)^n}{n^p})敛散性$
$记a_n=\frac{(-1)^n}{n^p},b_n=ln(1+a_n),c_n=a_n-b_n,则有$
$b_n=ln(1+\frac{(-1)^n}{n^p})$
$\nl$
$例:设加括号后级数发散(括号内同号)证明原级数收敛$
$|s_{nk}-s|<\frac{\epsilon}{2},|A_{k+1}|<\frac{\epsilon}{2}$
$|s_n-s|=|s_{nk}+\isum{n_k+1}{n}-s|\le |s_{nk}-s|+|A_{k+1}|<\epsilon$
$\nl$
$设f(x)在x=0处二阶可导,\xtx{0}\frac{f(x)}{x}=0,证明\nsuminf \sqrt{n}f(\frac{1}{n})绝对收敛$
$由题可知f'(0)=0,故有$
$\xtx{0+}\frac{f(x)}{x^2}=\xtx{0}\frac{f'(x)}{2x}=\frac{1}{2}\xtx{0}\frac{f'(x)-f'(0)}{x-0}=\frac{1}{2}f''(0)$
$即\xtx{0+}\frac{f(x)}{\sqrt x} \frac{1}{x^{\frac{3}{2}}}存在$
$\nl$
$设f(x)为R上连续的周期为1的函数,\jf{0}{1} \varphi (x)dx=0,f'(x) \in C[0,1]$
$记a_n=\jf{0}{1}f(x)\varphi (nx)dx,n \in N,证明:\nsuminf a_n^2收敛$
$a_n^2 \le \frac{c^2}{n^2} \Leftarrow |a_n| \le \frac{c}{n},令\phi (x)=\jf{0}{x}\varphi (t)dt$
$|\varphi(x)|=|\jf{0}{[x]}\varphi(t)dt+\jf{[x]}{x}\varphi(t)dt|=|\jf{[x]}{x}\varphi(t)dt|=|\jf{0}{x-[x]}\varphi(t)dt|$
$\le |\jf{0}{x-[x]}|\varphi(t)|dt| \le \jf{0}{1}\varphi(x)dt \triangleq M$
$又f'(x) \in [0,1],|f'(x)| \le M,\forall x \in [0,1]故有$
$a_n=\jf{0}{1}f(x)\varphi(nx)dx=\frac{1}{n}\jf{0}{1}f(x)d[\phi(nx)]$
$=\frac{1}{n}[f(x)\phi(nx)|_0^1-\jf{0}{1}\phi(nx)-f'(x)dx]$
$=-\frac{1}{n}\jf{0}{1}\phi(nx)f'(x)dx$
$|a_n| \le \frac{M N}{n}$
$\nl$
$\nsuminf \frac{1}{a_n}收敛 \iff \nsuminf \frac{n}{a_1+...a_n}收敛,a_n单调递增>0$
$\Leftarrow 的证明, a_1+...+a_n \le na_n,\frac{1}{a_n} \le \frac{n}{a_1+...a_n},故右边收敛,左边必收敛$
$\Rightarrow 的证明,\frac{2n}{a_1+...a_{2n}} \le \frac{2n}{a_{n+1}+...a_{2n}} \le \frac{2n}{na_n} = \frac{2}{a_n}$
$\nl$
$\jf{0}{+\infty}|f(x)|dx收敛 g(x)=\jf{0}{+\infty}f(t)cosxtdt 一致连续$
$|sin \frac{x^1-x^r}{2}| \le \frac{1}{2}|x^1-x^n|$
$\nl$
$例:na_n收敛,\nsuminf n(a_n-a_{n-1})收敛,证明\nsuminf a_n收敛$
$记\ntinf na_n=r,\lim \nsuminf n(a_n-a_{n-1})=S$
$令b_i=1,\sum a_k = na_n-\sum k(a_k-a_{k-1})$
$\nl$
$例:设\nsuminf \frac{a_n}{n}收敛,证明\ntinf \frac{1}{n}\sum a_k=0$
$记s_n=\sum \frac{a_k}{k},\sum \frac{a_k}{k}k=s_nn-\sum s_k$
$\frac{1}{n}\sum a_k=s_n-\frac{s_1+s_2+...s_{n-1}}{n-1}\frac{n-1}{n}再用Cauchy第一定理$
$\nl$
$f \in L^2(0,\pi),证明:不可同时有\jf{0}{\pi}|f(x)-sinx|^2dx \le \frac{3}{4},\jf{0}{\pi}|f(x)-cosx|^2dx \le \frac{3}{4}$
$证明:|sinx-cosx|^2 \le 2|f(x)-sinx|^2+2|f(x)-cosx|^2$
$且\jf{0}{\pi}|sinx-cosx|^2dx=\pi$
$\jf{0}{+\infty}sin(x^2)dx=\jf{0}{+\infty}cos(x^2)dx=\frac{\sqrt 2 \pi}{4}$
$\nl$
$求出所有在[0,+\infty)上的正值函数g(x)使得$
$\frac{1}{2}\jf{0}{x}g^2(t)dt=\frac{1}{x}(\jf{0}{x}g(t)dt)^2$
$证明:即有\frac{1}{2}g^2(x)=\frac{2}{x}(\jf{0}{x}g(t)dt)g(x)-\frac{1}{x^2}(\jf{0}{x}g(t)dt)^2$
$故\jf{0}{x}g(t)dt=(1 \pm \frac{1}{\sqrt 2})xg(x)$
$求导,\pm g(x)=(\sqrt 2 \pm 1)xg'(x)$
$令f(x)=lng(x)$
$则f'(x)=\mp (\frac{1}{\sqrt 2 \pm 1})x$
$\nl$
$判敛 \ \ \ \nsuminf \frac{(-1)^{[n]}}{n^p} \ \nsuminf \frac{sinnsinn^2}{n}$
$证:\nsum{0}{\infty}\frac{1}{n!}\nsum{0}{\infty}\frac{(-1)^n}{n!}=1(\nsum{0}{\infty}=e)$
$\nl$
$令a_n=1+\frac{(-1)^n}{n},n(a_n-a_{n+1}) \nrightarrow 0,当n \to \infty$
$\sqrt {1+\sqrt{2+\sqrt{3+...\sqrt{n}}}}< \sqrt {2^2+\sqrt{2^4+\sqrt{2^8+...\sqrt{2^{2^n}}}}}
< 2 \sqrt {1+\sqrt{1+\sqrt{1+...\sqrt{1}}}} < 4
$
$x_1=\frac{c}{2},c \in R,x_{n+1}=\frac{c}{2}+x_n^2,\{x_n\}收敛性$
$\ksum{1}{\infty}\frac{2^{\frac{k}{n}}}{n+\frac{1}{k}}=\ntinf \frac{1}{n}\ksum{1}{n}2^{\zeta_k}=\jf{0}{1}2^xdx$
$求\ntinf \frac{\ksum{1}{n}k^{\alpha +1}}{n\ksum{1}{n}k^{\alpha}}(分\le -1与>-1)$
$\nl$
$设y=f(x)(x\ge 0)为严格递增连续函数,f(0)=0,g为反函数$
$则有\jf{0}{a}f(x)dx+\jf{0}{b}g(y)dy \ge ab(a \ge 0,b \ge 0)$
$几何意义:1^\circ \ b=f(a);2^\circ \ b>f(a);3^\circ \ b<f(a);$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\node [above] at (1.2,1) {$1^\circ$};
\draw[->] (0,0) -- (0,1.2);
\draw[->] (0,0) -- (1.2,0);
\draw (0,1) -- (1,1);
\draw (1,0) -- (1,1);
\node [below] at (1,0) {a};
\node [left] at (0,1) {b};
\node [below] at (0.5,0.6) {f(x)};
\draw(0,0)..controls (0.2,0.6) and (0.7,0.3)..(1,1);
\end{tikzpicture}
\begin{tikzpicture}[domain=1:5,line width=1pt]
\node [above] at (1.2,1) {$2^\circ$};
\draw[->] (0,0) -- (0,1.2);
\draw[->] (0,0) -- (1.2,0);
\draw (0,1) -- (1,1);
\draw (0.8,0) -- (0.8,1);
\node [below] at (1,0) {a};
\node [left] at (0,1) {b};
\node [below] at (0.5,0.6) {f(x)};
\draw(0,0)..controls (0.2,0.6) and (0.7,0.3)..(1,1);
\end{tikzpicture}
\begin{tikzpicture}[domain=1:5,line width=1pt]
\node [above] at (1.2,1) {$3^\circ$};
\draw[->] (0,0) -- (0,1.2);
\draw[->] (0,0) -- (1.2,0);
\draw (0,0.8) -- (1,0.8);
\draw (1,0) -- (1,1);
\node [below] at (1,0) {a};
\node [left] at (0,1) {b};
\node [below] at (0.5,0.6) {f(x)};
\draw(0,0)..controls (0.2,0.6) and (0.7,0.3)..(1,1);
\end{tikzpicture}
$\nl$
$arctg(k+1)-arctgk=arctg \frac{1}{k^2+k+1}$
$\nl$
$[a,b]上f(x)可积,则f(x)在[a,b]上必有无穷多个连续点$
$利用区间套证明,任取一个闭区间,存在一个连续点,而有无穷多个闭区间$
$\nl$
$f(x) \in D[0,1],|f(x)| \le \jf{0}{1}(|f(t)+f'(t)|)dt,利用分部积分$
$\nl$
$\jf{a}{b}fg \ge \frac{1}{b-a}(\jf{a}{b}\sqrt{fg}dx)^2,swarchy$
$\nl$
$\ntinf \frac{n}{\sqrt[n]{n!}}=e$
$证明:\ntinf ln \sqrt[n]{\frac{n!}{n^n}}=\ntinf \frac{1}{n} ln \frac{n!}{n^n}$
$=\ntinf \frac{1}{n} ln \isum{1}{\infty} \frac{i}{n}=\jf{0}{1}lnxdx$
$=(xlnx-x)|_0^1=-1-\lim\limits_{\epsilon \to 0^+}(\epsilon ln \epsilon - \epsilon)=-1$
\end{document}