-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsxfx12.tex
executable file
·566 lines (293 loc) · 19 KB
/
sxfx12.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
\documentclass[12pt,a4paper]{article}
\usepackage{fancyhdr}
\usepackage{fontspec}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{tikz}
\setmainfont{Microsoft YaHei}
\pagestyle{fancy}
\begin{document}
\input{macro.tex}
\begin{center} 第12章 Fourier级数 \end{center}
$\frac{a_0}{2}+\nsuminf (a_ncosnx+b_nsinnx)~f(x)$
$f(x) g(x) \in C[a,b]<f,g>=\jf{a}{b}fgdx$
$<f_i(x),f_j(x)>=
\begin{cases} 0, i \ne j \\ \lambda_i, i=j \end{cases}$
$例:1,cosx,sinx,cos2x,sin2x,...coskx,sinkx$
$在[c,c+2\pi](c \in R)上的正交系,在[0,\pi]上不正交$
$1,cosx,cos2x,....与sinx,sin2x,...均为正交系,在[0,\pi]上$
$一般地1,cos\frac{\pi x}{l},sin\frac{\pi x}{l},...,cos\frac{k\pi x}{l},sin\frac{k\pi x}{l}为[0,2l]或$
$[-l,l]上正交系,而\frac{1}{\sqrt{2l}},\frac{1}{\sqrt{l}}cos\frac{\pi x}{l},\frac{1}{\sqrt{l}}sin\frac{\pi x}{l},...为标准正交基$
$\nl$
$将周期为2\pi 的函数,f(x)= \begin{cases} -\pi, -\pi<x<0 \\ x, 0\le x<\pi \end{cases}展开为付氏级数$
$a_0=\frac{1}{\pi}(\jf{-\pi}{0}-\pi dx+\jf{0}{\pi}xdx)=-\frac{1}{2}\pi$
$a_n=\frac{1}{\pi}(\jf{-\pi}{0}-\pi cosnx dx+\jf{0}{\pi}xcosnxdx)=\frac{1}{n^2 \pi}(cosn\pi -1)=\frac{1}{n^2 \pi}((-1)^n -1)$
$b_n=\frac{1}{\pi}(\jf{-\pi}{0}-\pi sinnx dx+\jf{0}{\pi}xsinxdx)=\frac{1}{n^2 \pi}((-1)^n -1)=\frac{1}{n}[1-2(-1)^n],n \in N$
$f(x)=\frac{1}{4}\pi+\nsuminf {\frac{-2}{(2n-1)^n\pi}cos(2n-1)x+\frac{1}{n}[1-2(-1)^n]sinnx}$
$\nl$
$设f(x)为周期为2\pi 的可积函数,其付氏系数为a_0,a_n,b_n,试计算f(x+h)$
$的付氏系数\alpha_0,\alpha_n,\beta_n(n\in N)$
$分析:\alpha_0=\frac{1}{\pi}\jf{-\pi}{\pi} f(x+h)dx ,令x+h=t,\frac{1}{\pi}\jf{h-\pi}{h+\pi}f(t)dt=\frac{1}{\pi}\jf{-\pi}{\pi}f(t)dt=a_0$
$\alpha_n=\frac{1}{\pi}\jf{h-\pi}{h+\pi}f(t)cosn(t-h)dt=cosnh\frac{1}{\pi}\jf{h-\pi}{h+\pi}f(t)cosntdt$
$+sinnh\frac{1}{\pi}\jf{h-\pi}{h+\pi}|f(t)|sinntdt=a_ncosnh+b_nsinnh$
$同理\beta_n=-a_nsinnh+b_ncosnh$
$\nl$
$奇偶性延拓$
$1^\circ 若周期为2\pi 的函数f为奇函数,则 a_n \equiv 0,n=0,1,2...$
$f(x)~\sum b_nsinnx其中b_n=\frac{2}{\pi}\jf{0}{\pi}f(x)sinnxdx$
$2^\circ 偶函数,b_n \equiv 0,f(x)~\frac{a_0}{2}+\nsuminf\frac{2}{\pi}\jf{0}{\pi}f(x)cosnxdx,n \in N$
$a_0=\frac{2}{\pi}\jf{0}{\pi}f(x)dx$
$\nl$
$f(x)=x^2(0 \le x \le \pi)展开$
$(1)按余弦展开,f(x)~\frac{\pi ^2}{3}+4\nsuminf \frac{(-1)^n}{n^2}cosnx可计算\nsuminf \frac{(-1)^n}{n^2}$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[->] (-4,0) -- (4,0);
\draw[->] (0,-1) -- (0,3);
\draw (-3,2) parabola bend (-2,0) (-1,2);
\draw (-1,2) parabola bend (0,0) (1,2);
\draw (1,2) parabola bend (2,0) (3,2);
\end{tikzpicture}
$(2)按正弦展开,f(x)~\nsuminf \frac{(-1)^{n+1}}{n}sinnx-\frac{8}{\pi}\nsuminf \frac{sin(2n-1)x}{(2n-1)^2}$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[->] (-4,0) -- (4,0);
\draw[->] (0,-3) -- (0,3);
\draw[domain=-1:1] plot(\x,{tan(\x r)});
\draw[domain=1:3] plot(\x,{tan((\x-2) r)});
\draw[domain=-3:-1] plot(\x,{tan((\x+2) r)});
\end{tikzpicture}
$(3)在[0,2\pi]上展开,a_0=\frac{1}{\pi}\jf{0}{2\pi}f(x)dx=\frac{8}{3}\pi^2$
$a_n=\frac{1}{\pi}\jf{0}{2\pi}x^2cosnxdx=\frac{4}{n^2}$
$b_n=\frac{1}{\pi}\jf{0}{2\pi}x^2sinnxdx=-\frac{4\pi}{n}$
$f(x)~\frac{8}{3}\pi^2+4\nsuminf(\frac{cosnx}{n^2}-\pi \frac{sinnx}{n})$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[->] (-4,0) -- (4,0);
\draw[->] (0,-1) -- (0,3);
\draw[dashed] (1,0) -- (1,1.5);
\node [below] at (1,0) {2$\pi$};
\draw (0,0) parabola (1,2);
\end{tikzpicture}
$\nl$
$例:设可积函数f(x)以2\pi 为周期,图形关于原点(\pm \frac{\pi}{2},0)对称,问$
$在(-\pi,\pi)的付氏系数有何特征?$
$f(x)=-f(-x) \to a_0=0,a_n=0,又有f(x)=-f(\pi-x)$
$b_n=\frac{2}{\pi} \jf{0}{\pi}f(x)sinnxdx=\frac{2}{\pi}(\jf{0}{\frac{\pi}{2}}f(x)sinnxdx+\jf{\frac{\pi}{2}}{\pi}f(x)sinnxdx)$
$=\frac{2}{\pi}(\jf{0}{\frac{\pi}{2}}f(x)sinnxdx+\jf{\frac{\pi}{2}}{0}-f(\pi-t)sinn(\pi-t)dt)$
$=\frac{2}{\pi} \jf{0}{\frac{\pi}{2}}f(x)sinnx(1+(-1)^n)dx$
$故b_{2n-1}=0$
$\nl$
$设f(x) \in R[-l,l]令t=\frac{\pi x}{l}则当x=[-l,l]时f \in [-\pi,\pi]于是$
$\phi(t) \triangleq f(\frac{lt}{\pi}) = f(t)在[-\pi,\pi]上可积,且$
$\phi(t) ~ \frac{a_0}{2}+ \sum(a_n cosnt+b_nsinnt)$
$a_n=\frac{1}{\pi}\jf{-\pi}{\pi}\phi (t)cosntdt$
$=\frac{1}{\pi} \frac{\pi}{l} \jf{-l}{l}f(x)cos \frac{n \pi x}{l}dx$
$b_n=\frac{1}{l}\jf{-l}{l}f(x)sin\frac{n\pi x}{l}dx$
$f(x)~\frac{a_0}{2}+\nsuminf (a_n cos\frac{n \pi x}{l}+b_n sin\frac{n \pi x}{l})$
$\nl$
$(1)f(x)为x到与它最近整数的距离$
\begin{tikzpicture}[domain=1:5,line width=1pt]
\draw[->] (-1,0) -- (3,0);
\draw[->] (0,-1) -- (0,1);
\draw[dashed] (0,0) -- (0.5,0.5);
\draw[dashed] (-0.5,0.5) -- (0,0);
\draw[dashed] (0,0) -- (0.5,0.5);
\draw[dashed] (0.5,0.5) -- (1,0);
\draw[dashed] (1,0) -- (1.5,0.5);
\draw[dashed] (1.5,0.5) -- (2,0);
\end{tikzpicture}
$f(x)表示为偶函数,b_n=0,a_0=2\jf{0}{1}f(x)dx=\frac{1}{2}$
$a_n=2\jf{0}{1}f(x)cos2n\pi x=\frac{1}{(n\pi)^2}[(-1)^n-1],n \in N$
$a_{2n}=0,a_{2n-1}=-\frac{2}{\pi ^2} \frac{1}{(2n-1)^2}$
$f(x)~\frac{1}{4}-\frac{2}{\pi ^2}\nsuminf \frac{cos(2n-1)\pi x}{(2n-1)^2}$
$\nl$
$(2)f(x)=\begin{cases} e^x, 0 \le x < \frac{\pi}{2} \\ 0, -\frac{\pi}{2} \le x < 0 \end{cases} 在[-\frac{\pi}{2},\frac{\pi}{2}]上$
$a_0=\frac{2}{\pi}(e^{\frac{\pi}{2}}-1),a_n=\frac{1}{\pi} \frac{2}{1+4n^2}[(-1)^ne^{\frac{\pi}{2}}-1]$
$b_n=\frac{1}{\pi} \frac{4n}{1+4n^2}[(-1)^{n+1}e^{\frac{\pi}{2}}+1]$
$f(x)~\frac{1}{\pi}(e^{\frac{\pi}{2}}-1)+\frac{1}{\pi}\nsuminf \frac{2}{1+4n^2}[(-1)^ne^{\frac{\pi}{2}}-1]cosnx+\nsuminf \frac{4n}{1+4n^2}[(-1)^{n+1}e^{\frac{\pi}{2}}+1] sinnx$
$= \begin{cases} e^x,0<x<\frac{\pi}{2} \\ 0,-\frac{\pi}{2}<x<0 \\ \frac{1}{2}, x=0 \\ \frac{1}{2}e^{\frac{\pi}{2}},x=\pm \frac{\pi}{2}\end{cases}$
$\nl$
$Besel不等式,设f(x) \in R[-\pi,\pi],a_0,a_n,b_n是f(x)的付氏级数,则有$
$\frac{a_0}{2}+\nsuminf (a_n ^2+b_n^2) \le \frac{1}{\pi}\jf{-\pi}{\pi}f^2(x)dx$
$令S_n(x)=\frac{a_0}{2}+\ksum{1}{n}a_kcoskx+b_ksinkx$
$0 \le \jf{-\pi}{\pi}(f(x)-S_n(x))^2dx=\jf{-\pi}{\pi}f^2(x)dx-2\jf{-\pi}{\pi}f(x)S_n(x)dx+\jf{-\pi}{\pi}(S_n(x))^2dx$
$\jf{-\pi}{\pi}f(x)S_n(x)dx = \jf{-\pi}{\pi}f(x)(\frac{a_0}{2}+\ksum{1}{n}a_kcoskx+b_ksinkx)dx$
$=\frac{\pi}{2}a_0^2+\pi \nsuminf (a_k^2+b_k^2)$
$\jf{-\pi}{\pi}S_n(x)^2dx=\jf{-\pi}{\pi} \frac{a}{2}+\ksum{1}{n}a_kcoskx+b_ksinkx dx$
$=(\frac{a_0}{2})^2 \jf{-\pi}{\pi} dx= \ksum{1}{n} a_k^2 \jf{-\pi}{\pi}cos^2kxdx+b_k^2 \jf{-\pi}{\pi}sin^2kxdx$
$=\frac{\pi}{2}a_0^2+\ksum{1}{n}(a_k^2+b_k^2)$
$由上可知,当a_n,b_n为可积函数f(x)的付氏系数,必有a_n,b_n \to 0$
$\nl$
$设f(x)可积,且以2\pi 为周期,设S_n(x)为f(x)的付氏级数前2n+1项部分和,即$
$S_n(x)=\frac{a}{2}+\ksum{1}{n}(a_ncosnx+b_nsinnx)$
$则有S_n(x)=\frac{1}{\pi}\jf{0}{\pi}[f(x+t)-f(x-t)]\phi _n(t)dt$
$\nl$
$D_n(t)=\frac{sin(n+\frac{1}{2})t}{2sin\frac{t}{2}}称为Dirichlet核,D_n(0)=\frac{1}{2}$
$\nl$
$若f(x)在[a,b]只有有限个一类间断点,称为分散连续。若f(x),f'(x)在$
$[a,b]上分段连续,则f(x)在[a,b]上分段光滑.1·分段连续,分段光滑,函数均可积$
$对\forall x \in [a,b](广义)单侧导数存在,也即有$
$\ttx{0+}\frac{f(x+t)-f(x+0)}{t}=f'(x+0)$
$\ttx{0+}\frac{f(x-t)-f(x-0)}{t}=f'(x-0)$
$\nl$
级数
$\nl$
$例:设\{a_n\}单调递增且恒正,证明级数\nsuminf \frac{a_n-a_{n-1}}{a_na_{n-1}^ \lambda}(\lambda > 0)收敛$
$(1)\ntinf a_n=a,0 \le \frac{a_n-a_{n-1}}{a_na_{n-1}^ \lambda} \le \frac{a_n-a_{n-1}}{a_{0}^ {\lambda+1}}=k(a_n-a_{n-1}), \forall n \in N$
$(2)\ntinf a_n=\infty,0 \le \frac{a_n-a_{n-1}}{a_na_{n-1}^ \lambda}=\frac{1}{a_{n-1}^\lambda}-\frac{1}{a_na_{n-1}^{\lambda-1}} \le \frac{1}{a_{n-1}^\lambda}-\frac{1}{a_{n}^\lambda}$
$\nl$
$给定\nsuminf \frac{a_n}{n^x},其中a_n \in N,证明:\exists r(-\infty \le r \le +\infty)使得当x<r$
$时级数发散,x>r时级数收敛$
$先证:\sum \frac{a_n}{n^ \lambda}收敛,则\forall x>\lambda,\sum \frac{a_n}{n^x}必收敛(Abel)$
$再证r存在,对\forall x \in R,\sum \frac{a_n}{n^x}恒收敛或恒发散,则r=\pm \infty$
$不妨设x_1使得\sum \frac{a_n}{n^{x_1}}发散,x_2使得\sum \frac{a_n}{n^{x_2}}收敛,由前面$
$证有x_1<x_2,记E=\{x|\nsuminf \frac{a_n}{n^x}收敛\}$
$记r=infE,若r \in R,则证毕,若r \notin E,则存在$
$单调递减\{x_n\} \subset E,x_n \to r,存在充分大n,使得x_n < x,也有$
$x \in E,若x<r,则x \notin E,\sum \frac{a_n}{n^x}必发散$
$\nl$
$若对于任何一个收敛于0的数列\{x_n\},\sum a_n x_n都收敛,证明$
$ \sum a_n 绝对收敛$
$反证法,若\nsuminf |a_n|发散,即\forall n,k \in N,\exists m(m>n) \isum{1}{m}|a_i| \ge k$
$对n=1,k=1,\exists m_1 \in N:\isum{1}{m_1}|a_i| \ge 1$
$对n=m_1+1,k=2,\exists m_2 \ge m_1+1,\isum{m_1+1}{m_2}|a_i| \ge 2$
$对1 \le m_1 \le m \le ... m_k \le ... 使\isum{m_{k-1}}{m_k}|a_i| \ge k,k=1,2,3...$
$取x_i = \frac{1}{k} sgn a_i(n_{k-1} \le i \le m_k)则对\forall N>0,只要k-1 >N$
$总有m_k>m_{k-1}>N,此时 \isum{m_{k-1}+1}{n_k}a_i x_i = \isum{m_{k-1}+1}{m_k} \frac{|a_i|}{k} \ge 1,不满足条件$
$\nl$
$例:设正项级数\nsuminf a_n收敛,证明: \ptx{+\infty}(\nsuminf a_n^p)^{\frac{1}{p}} = sup(a_n)$
$由正项级数\nsuminf a_n收敛,必有 \ntinf a_n =0,故\exists N:0<a_n<a_1,\forall n>N$
$故sup\{a_n\}=max(a_1,a_2,...a_N)记为a_{n_0}=max(a_1,a_2,...a_N)$
$(1 \le n_0 \le N),则有a_{n_0}=sup_n \{a_n\}$
$又有p\to +\infty,令p>1,则当n充分大时,总有a_n^P<a_n,由$
$\nsuminf a_n 收敛,故\nsuminf a_n^p也收敛,于是由收敛定义可知\exists N:$
$\nsum{N+1}{\infty}a_n^P<a_{n_0}^P,于是有a_{n_0}=(a_{n_0}^P)^{\frac{1}{p}} \le (\nsuminf a_n^P)^{\frac{1}{p}} = (\nsum{1}{r} a_n^P + \nsum{r+1}{\infty} a_n^P)^{\frac{1}{p}}$
$\le (\nsum{1}{r} a_n^P + a_{n_0}^P)^{\frac{1}{p}} \le (Na_{n_0}^P + a_{n_0}^P)^{\frac{1}{p}} = ((N+1)a_{n_0}^P)^{\frac{1}{p}}$
$(N+1)^{\frac{1}{p}}a_{n_0}$
$\nl$
$证明:任何有理数必为调和级数中有限项之和$
$设\frac{A}{B}为正有理数,A,B \in N,因为\sum \frac{1}{n}发散,故\exists n_0 \in N:$
$\ksum{1}{n} \frac{1}{k} \le \frac{A}{B} < \ksum{1}{n+1} \frac{1}{k}$
$若等式不成立,作新有理数\frac{C}{D}=\frac{A}{B}-\ksum{1}{n},则\frac{C}{D}< \frac{1}{n_0+1}$
$又\exists n_1 \in N, \frac{1}{n_1+1} \le \frac{C}{D} < \frac{1}{n_1},若等号不成立,作\frac{E}{F}= \frac{C}{D} - \frac{1}{n_1+1} >0$
$\exists n_2 \in N, \frac{1}{n_2+1} \le \frac{E}{F} < \frac{1}{n_2}....$
$由上有\frac{A}{B} > \frac{C}{D} > \frac{E}{F}...且C>E>.... $
$\frac{C}{D} - \frac{1}{n+1} = \frac{(n+1)C-D}{D(n+1)} = \frac{C-\frac{D}{n+1}}{D} \triangleq \frac{E}{F},C-E=C-[(n+1)C-D]=D-nC>0$
$上述分子经过有限步运算后减为1,....$
$\nl$
$设\{a_n\}满足a_n=\ksuminf tg^2a_{n+k},n \in N,若\nsuminf a_n收敛,a_n \equiv 0$
$改写条件为a_n= \msum{n+1}{\infty}tg^2a_m,可知\{a_n\}单调递减非负$
$又由\xtx{0+}\frac{tgx}{x}=1,\exists \epsilon_0(0<\epsilon_0 \le \frac{1}{\delta}),tgx<2x,\forall x \in [0,\epsilon_0]$
$由\nsuminf a_n 收敛,故\exists N \in \bold N : \nsum{N+1}{\infty}a_n < \epsilon_0 \le \frac{1}{\delta}$
$此时必有a_n \le \epsilon_0,\forall n \ge N+1,于是由上式可得$
$tga_n < 2a_n \to tg^a_n < 4a_n^2,\forall n>N$
$从而,a_N=\nsum{N+1}{\infty}tg^2a_n \le \nsum{N+1}{\infty} 4a_n^2 \le 4\nsum{N+1}{\infty}a_Na_n \le 4 \epsilon_0 a_N \le \frac{a_N}{2}$
$a_N=0,故由a_n单调递减非负,可令a_n \equiv 0,n>N$
$由a_{N-1}=\nsum{N}{\infty}tg^2a_n=0,a_{N-2}=0,...$
$\nl$
$设f_n(x)(n \in N)为[a,b]上的单调函数,\ntinf f_n(x)=f(x),且f(x) \in C[a,b]$
$证明:\{f_n(x)\}在[a,b]上一致收敛$
$(5 \epsilon 法)等分区间$
$\nl$
$设可微函数列\{f_n(x)\}在[a,b]上收敛,\{f_n'(x)\}在[a,b]上一致有界$
$证明\{f_n(x)\}在[a,b]上一致收敛$
$证法1:设|f'_n(x)| \le M,\forall n \forall x,对\forall \epsilon >0,对[a,b]作分法T,$
$a=x_0 < x_1 <..x_p=b,max|x_k-x_{k-1}|< \frac{\epsilon}{3M}对\forall x \in(a,b)总有$
$k(0 \le k \le p)x \in[x_{k-1},x_k],中值定理$
$|f_n(x)-f_n(x_k)|=|f'_n(\zeta)|·|x-x_k|< M \frac{\epsilon}{3M} \le \frac{\epsilon}{3}$
$于是有|f_n(x)-f_m(x)| \le |f_n(x)-f_n(x_k)|+|f_n(x_k)-f_m(x_k)|+|f_m(x_k)-f_m(x)|$
$已知\{f_n(x_k)\}收敛,\exists N_k \in N$
$|f_m(x_k)-f_n(x_k)|<\frac{\epsilon}{3},\forall m,n>N_k$
$取N=max(N_k,...N_p),|f_n(x)-f_m(x)|< \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon. \forall m,n>N,\forall x$
$\nl$
$证法二:有限覆盖定理,\forall \epsilon > 0,\forall x \in [a,b],\exists N',-N'(\epsilon,x')$
$|f_m(x')-f_n(x')|<\frac{\epsilon}{2},\forall m,n>N',记|f_n'(x)|\le M,\forall n \in N$
$\forall x \in[a,b],取\delta'=\frac{\epsilon}{4M},则对\forall x \in \cup(x',\delta')有|f_m(x)-f_n(x)|$
$\le |f_m(x)-f_m(x')|+|f_m(x')-f_n(x')|+|f_n(x')-f_n(x)| \le$
$2m|x-x'|+|f_m(x')-f_m(x')|<2M\frac{\epsilon}{4M}+\frac{\epsilon}{2}=\epsilon$
$上式对m,n>N',\forall x \in \cup(x',\delta')均成立,记G=\{\cup(x',\delta')|\forall x' \in[a,b]\}$
$则G为[a,b]开覆盖$
$\nl$
$设\nsuminf u_n(x)在[a,b]上有和函数S(x),又u_n(x) \in C[a,b],且非负$
$(n\in N),证明S(x)在[a,b]上可达最小值$
$因为u_n(x)\ge 0,故S(x) \ge 0,于是m=inf\{S(x)|x \in(a,b)\}存在$
$若有x^* \in[a,b],S(x^*)=m命题成立,否则\exists \{x_i\} \subset$
$[a,b]设\itinf S(x_i)=m,由于\{x_i\}有界,必有收敛子列,$
$因为\nsuminf u_n(x_0)=S(x_0),\forall \epsilon >0,\exists N \in \bold N:|\nsum{1}{N}u_n(x_0)-S(x_0)|<\frac{\epsilon}{2}$
$\to \nsum{1}{N}u_n(x_0)>S(x_0)-\frac{\epsilon}{2},由\nsum{1}{N}u_n(x)在x_0连续,对上述\epsilon$
$>0,\exists \delta>0,对\forall x(|x-x_0|<\delta):|\nsum{1}{N}u_n(x)-\nsum{1}{N}u_n(x_0)|<\frac{\epsilon}{2}$
$也即有\nsum{1}{N}u_n(x)>\nsum{1}{N}u_n(x_0)-\frac{\epsilon}{2},因为x_i\to x_0(i \to \infty)$
$故\exists I_0,当i>I_0时有|x_i-x_0|<\delta,于是有$
$\nsum{1}{N}u_n(x_i)>\nsum{1}{N}u_n(x_0)-\frac{\epsilon_0}{2}>S(x_0)-\frac{\epsilon}{2}-\frac{\epsilon}{2}=S(x_0)-\epsilon$
$由于u_n(x) \ge 0(\forall n \in N)所以S(x_i) \ge \nsum{1}{N}u_n(x_i) > S(x_0)- \epsilon$
$取极限有\itinf S(x_i) \ge S(x_o)-\epsilon \to m>S(x_0)-\epsilon$
$m \le S(x_0) \le m+\epsilon$
$S(x)在[a,b]上未必达到最大值$
$u_n(x)=(1-x)x^n,x \in[0,1]$
$可以u_n(x) \ge 0,m(x) \in C[0,1],\forall n \in N,S(x)=\begin{cases} x \\ 0 \end{cases}$
$\nl$
$定理1,设f(x)以2\pi 为周期,在[-\pi,\pi]上分段光滑,则f(x)的付氏级数$
$收敛,且有\frac{1}{2}(f(x+0)-f(x-0))=\frac{a}{2}+\sum(a_ncosnx+b_nsinnx)$
$\nl$
$f(x)=x^2(0<x<2\pi)展开付氏级数,由此计算\sum \frac{1}{n^2},\sum \frac{(-1)^{n+1}}{n^2},\nsuminf \frac{1}{(2n-1)^2}$
$余弦展开f(x)~\frac{\pi ^2}{2}+4\sum \frac{(-1)^n}{n^2}cosnx=x^2$
$令x=\pi,则有\sum \frac{1}{n^2}=\frac{\pi^2}{6}$
$正弦展开f(x)~\frac{4\pi^2}{3}+4\nsuminf \frac{cosnx}{n^2}-4\pi\nsuminf \frac{sinnx}{n}$
$令x=\pi,得\sum \frac{(-1)^{n+1}}{n^2}=\frac{\pi^2}{12}$
$以上两式相加2\nsuminf \frac{1}{(2n-1)^2}=\frac{\pi^2}{4}$
$\nl$
$广义的牛顿莱布尼兹公式,设f(x)\in C[a,b]且分段光滑,则有$
$\jf{a}{b}f'(x)dx = f(b)-f(a)$
$广义分部积分公式:\jf{a}{b}f'(x)sin \lambda x dx=f(x)sin \lambda x|_a^b \pm \lambda \jf{a}{b}f(x)cos \lambda xdx$
$\jf{a}{b}f'(x)cos \lambda x dx=f(x)cos \lambda x|_a^b \pm \lambda \jf{a}{b}f(x)sin \lambda xdx$
$\nl$
$设f(x) \in C \bold R,以2\pi 为周期,且在[-\pi,\pi]上分段光滑,则f(x)付氏系数在R上一致收敛$
$\nl$
$周期为2\pi,f(x)=\frac{1}{4}x(2\pi-x),x \in [0,2\pi]$
$f(x)~\frac{1}{6}\pi^2-\nsuminf \frac{1}{n^2}cosnx,令x=0,\sum \frac{1}{n^2}=\frac{\pi^2}{6}$
$对付氏系数逐项积分,\frac{1}{4}(\pi x^2-\frac{x^3}{3})=\frac{1}{6}\pi^2 x- \nsuminf \frac{1}{n^3}sinnx$
$令x=\frac{\pi}{2},\nsuminf \frac{(-1)^{n-1}}{(2n-1)^3}=\frac{1}{32}\pi^3$
$再积分\frac{1}{4}(\frac{\pi x^3}{3}-\frac{x^4}{12})=\frac{1}{12}\pi^2x^2+\nsuminf \frac{1}{n^4}(cosnx-1)$
$再积分\frac{1}{4}(\frac{\pi x^4}{12}-\frac{x^5}{60})=\frac{1}{36}\pi^2x^3+\nsuminf(\frac{sinnx}{n}-x)$
$令x=2\pi,\nsuminf \frac{1}{n^4}=\frac{\pi^4}{90}$
$\nl$
$Parseral等式,设可积函数f(x)的付氏系数在[-\pi,\pi]上的一致收敛,则有$
$\frac{1}{\pi} \jf{-\pi}{\pi}f(x)^2dx = \frac{a_0^2}{2}+\nsuminf (a_n^2+b_n^2)$
$f(x)=x(\pi-x),0<x<\pi,正弦展开,并计算\sum \frac{1}{n^6}$
$延拓f=\begin{cases}x(\pi-x),0\le x<\pi \\ x(\pi+x), -\pi<x\le0 \end{cases}$
$f(x)=\frac{8}{\pi}\nsuminf \frac{sin(2n-1)x}{(2n-1)^3},-\pi \le x \le \pi,b_{n-1}=\frac{8}{\pi}\frac{1}{(2n-1)^3}$
$由Parscal等式,\frac{1}{15}\pi^4=\frac{1}{\pi}\jf{-\pi}{\pi}f^2(x)dx=\nsuminf b_n^2=\frac{64}{\pi}\nsuminf \frac{1}{(2n-1)^6}$
$从而\nsuminf \frac{1}{(2n-1)^6}=\frac{\pi^6}{64·15}故有\sum \frac{1}{n^6}=\frac{\pi^6}{945}$
$\nl$
$设f(x) \in C(R),以2\pi 为周期,在[-\pi,\pi]上分段光滑,g(x)\in R[-\pi,\pi]$
$则有\frac{1}{\pi}\jf{-\pi}{\pi}f(x)g(x)dx=\frac{a_0\alpha_0}{2}+\nsuminf(a_n\alpha_n+b_n\beta_n)$
$证明:f(x)在R上连续周期为2\pi ,分段光滑$
$\frac{1}{2}a_0+\nsuminf(a_ncosnx+b_nsinnx) \to ^{[-\pi,\pi]} f(x)$
$g(x)可积,|g(x)|\le M,\forall x \in [-\pi,\pi]$
$|\frac{1}{\pi}\jf{-\pi}{\pi}f(x)g(x)-\frac{1}{\pi}\jf{-\pi}{\pi}g(x)(\frac{1}{2}a_0+\sum a_k coskx+b_k sinx dx)|$
$\le \frac{1}{2} \jf{-\pi}{\pi} |g(x)||f(x)|-|\frac{1}{2}a_0+\sum |a_k coskx+b_k sinkx|dx$
$证法2:f·g= \frac{a_0}{2}g+\sum(a_k coskx+b_k sinkx)g$
$逐项积分,即有.......$
$证法三:f(x)\pm g(x)的减弱的Pasacal等式....消去平方项$
$\nl$
$函数逼近论$
$定理1,设f(x) \in C[a,b],则\forall \epsilon > 0,存在分段光滑函数L(x)使得$
$|f(x)-L(x)| < \epsilon, \forall x \in [a,b]$
$\nl$
$第一逼近定理,设f(x) \in CR,以2\pi 为周期,则\forall \epsilon >0,存在三角多项式$
$T_n(x)=\frac{a_0}{2}+\ksuminf (a_k coskx+b_k sinkx)$
$使得当n充分大时候有 |f(x)-T_n(x)|< \epsilon, \forall x \in R$
$\nl$
$第二逼近定理f(x) \in C[a,b] \forall \epsilon >0,存在多项式P_n(x),|f-P_n|< \epsilon,\forall x$
$例:f(x)的k次矩定义为\jf{a}{b}f(x)x^kdx,k=0,1,2,.....若f(x) \in C[a,b]$
$且f(x)的一切k次矩为0,则f(x)=0$
$\forall \epsilon >0,\exists P_n(x):|f-P_n|< \epsilon$
$\jf{a}{b}fP_ndx=\jf{a}{b}f(x)(a_0+a_1x+...a_nx^n)dx=0$
$于是\jf{a}{b}f^2(x)dx = \jf{a}{b}f(x)[f(x)-P_n(x)]dx+\jf{a}{b}f(x)P_n(x)dx(=0)$
$=\jf{a}{b}f(x)|f(x)-P_n(x)|dx \le |f(x)-P_n(x)|\jf{a}{b}f(x)dx$
$\epsilon \jf{a}{b}f(x)dx \triangleq M\epsilon$
$\nl$
$n!=\sqrt{2\pi n}n^n e^{-n+\frac{\theta_n}{12n}}(0<\theta_n<1)$
$\nl$
$设f(x) \in C[0,1]令P_n(x)=\frac{1}{I_n}\jf{0}{1}f(v)[1-(v-x)^2]^ndv为2n次多项式$
$I_n=\jf{-}{1}(1-n^2)^ndn,P_n(x) \to f(x)$
\end{document}