-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsxfx15.tex
executable file
·469 lines (240 loc) · 17.3 KB
/
sxfx15.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
\documentclass[12pt,a4paper]{article}
\usepackage{fancyhdr}
\usepackage{fontspec}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{tikz}
\setmainfont{Microsoft YaHei}
\pagestyle{fancy}
\begin{document}
\input{macro.tex}
\begin{center} 第15章 隐函数 \end{center}
$15.1(P206)$
$F(xy,y+z,xz)=0,(F_2+xF_3 \ne 0)求\frac{\partial z}{\partial x},\frac{\partial ^2z}{\partial x \partial y}$
$\frac{\partial z}{\partial x}:yF_1+F_2 \frac{\partial z}{\partial x} + (z+\frac{\partial z}{\partial x} x)F_3=0 \to .....$
$\frac{\partial ^2z}{\partial x \partial y}:F_1+x\{yF_1+f_2 \frac{\partial z}{\partial x} +(z+\frac{\partial z}{\partial x} x)F_{31}\}$
$+\frac{\partial ^2z}{\partial x \partial y} F_2+(1+\frac{\partial z}{\partial y})\{yF_{12}+\frac{\partial z}{\partial x}F_{22}+(z+\frac{\partial z}{\partial x})F_{32}\}$
$+(\frac{\partial z}{\partial y}+x \frac{\partial ^2z}{\partial x \partial y})F_3+x\frac{\partial z}{\partial y}\{yF_{13}+\frac{\partial z}{\partial x}F_{23}+(z+\frac{\partial z}{\partial x})F_{33}\}=0$
$将\frac{\partial z}{\partial x},\frac{\partial z}{\partial y}代入,\frac{\partial ^2z}{\partial x \partial y}=...$
$\nl$
$例:x^2+y+sinxy=0(1)证明:在(0,0)领域内可唯一确定连续函数y=y(x),y(0)=0$
$(2)讨论y=y(x)在x=0附近可导性$
$(3)讨论y=y(x)在x=0附近单调性$
$(4)在(0,0)领域是否唯一确定x=x(y)$
$\nl$
$设F(x,y,u,v)=0,G(x,y,u,v)=0为定义在V \subset R^4的两个函数$
$若存在平面域D,使对\forall (x,y) \in D,有唯一(u,v) \subset J×K 使$
$满足F(x,y,u,v)=0,G=(x,y,u,v)=0称在D上定义了$
$u,v为x,y的隐函数组,记为u=f(x,y),v=g(x,y)定理1$
$(隐函数存在定理)设F(x,y,u,v)G(x,y,u,v)满足$
$(1)F(x_0,y_0,u_0,v_0)=0,G(x_0,y_0,u_0,v_0)=0$
$(2)在点(x_0,y_0,u_0,v_0)为中心某领域内F,G连续,且对各变元有连续偏导数$
$(3)在点(x_0,y_0,u_0,v_0)处Jacobi行列式\frac{\partial (F,G)}{\partial (u,v)}= \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix} \ne 0$
$则有1.在点(x_0,y_0,u_0,v_0)某领域,由F=0,G=0可得出隐函数被u=f(x,y)u=g(x,y)$
$2.隐函数组(2)在V(x_0,y_0)P' 内连续$
$3.隐函数组(2)有连续偏导数U_x,U_y,V_x,V_y$
$证明:不妨由1,设F_u \ne 0,则有u=\varnothing(x,y,z)代入G有\psi(x,y,v)=0$
$在(x_0,y_0,u_0),\psi_2=a_n \varnothing_v+G_v=\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix} / F_n \ne 0 故v=g(x,y)$
$\frac{\partial u}{\partial x}=-\frac{\begin{vmatrix} F_x & F_y \\ G_x & G_y \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} = - \frac{\frac{\partial(F,G)}{\partial(x,u)}}{\frac{\partial(F,G)}{\partial(u,v)}}$
$\frac{\partial v}{\partial x}= - \frac{\frac{\partial(F,G)}{\partial(u,x)}}{\frac{\partial(F,G)}{\partial(u,v)}}$
$定理2.(反函数组存在定理)设u=u(x,y)v=v(x,y)连续并对$
$各变元在(x_0,y_0)某领域内连续,且u_0=u(x_0,y_0)v_0=v(x_0,y_0)$
$以及\frac{\partial(u,v)}{\partial(x,y)}|_{(x_0,y_0)} \ne 0,则在点(u_0,v_0)某领域内存在有连续偏导$
$的反函数组x=x(u,v),y=y(u,v)且有$
$\frac{\partial x}{\partial u} = \frac{\frac{\partial v}{\partial y}}{\frac{\partial(u,v)}{\partial(x,y)}}; \frac{\partial x}{\partial v}=-\frac{\frac{\partial u}{\partial y}}{\frac{\partial(u,v)}{\partial(x,y)}}$
$\frac{\partial y}{\partial u} = -\frac{\frac{\partial v}{\partial x}}{\frac{\partial(u,v)}{\partial(x,y)}}; \frac{\partial u}{\partial v}=\frac{\frac{\partial u}{\partial x}}{\frac{\partial(u,v)}{\partial(x,y)}}$
$\nl$
$例:设\begin{cases} x+y+z+u+v=1 \\ x^2+y^2+z^2+u^2+v^2=2 \end{cases}求u_x,v_x,u_{x^2},v_{x^2}$
$分析:改写为F(x,y,z,u,v)=x+y+z+u+v-1=0$
$G=x^2+y^2+z^2+u^2+v^2-2=0$
$\frac{\partial(F,G)}{\partial(u,v)}=\begin{vmatrix} 1 & 1 \\ 2u & 2v \end{vmatrix}=2(v-u)$
$当u-v \ne 0时,可确定u=u(x,y,z),v=v(x,y,z)$
$(1)对x求偏导,1+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}=0$
$2x+2u \frac{\partial u}{\partial x}+ \frac{\partial v}{\partial x} 2v =0$
$解得\frac{\partial v}{\partial x}=\frac{u-x}{v-u};\frac{\partial u}{\partial x}=\frac{x-v}{v-u}$
$(2)再对x偏导,\frac{\partial ^2u}{\partial x^2}+\frac{\partial ^2v}{\partial x^2}=0$
$1+(\frac{\partial u}{\partial x})^2+u \frac{\partial ^2u}{\partial ^2x}+(\frac{\partial v}{\partial x})^2+u \frac{\partial ^2v}{\partial ^2x}=0$
$解出关于\frac{\partial u}{\partial x}的关系式,无须代入$
$\nl$
$例:x=cos \phi cos \psi, y=cos \varphi cos \psi, z=sin \varphi,求z_{x^2}$
$对x偏导,1=-sin \varphi cos \psi \frac{\partial \phi}{\partial x}-cos \varphi sin \psi \frac{\partial \psi}{\partial x}$
$0=-sin \varphi sin \psi \frac{\partial \phi}{\partial x}+cos \varphi cos \psi \frac{\partial \psi}{\partial x}$
$得出\frac{\partial \varphi}{\partial x}=-\frac{cos \psi}{sin \varphi} ,\frac{\partial \psi}{\partial x}=-\frac{sin \psi}{cos \varphi}$
$\frac{\partial z}{\partial x}=cos \varphi \frac{\partial \varphi}{\partial x} = -ctg\varphi cos \psi$
$\frac{\partial ^2z}{\partial x^2}=\frac{\partial}{\partial \varphi}(\frac{\partial z}{\partial x})\frac{\partial \varphi}{\partial x}+\frac{\partial}{\partial \psi}(\frac{\partial z}{\partial x})\frac{\partial \psi}{\partial x}$
$另解:(x^2+y^2+z^2=1 \to ....)$
$\nl$
$例:设u+v=x+y,\frac{sinu}{sinv}=\frac{x}{y},求du,dv,d^2u,d^2v$
$微分,du+dv=dx+dy(*),sinudy+cosu y du =dx sinv+cosv xdv(**)$
$解出dv,du;再对(*)微分,d^2u+d^2v=0(dx,dy作为常数)$
$(**)微分,ycosud^2u+2cosudydu-ysiudu^2$
$=xcosvd^2v+2cosvdxdv-xsinvdv^2$
$\nl$
$\nl$
$函数行列式及其应用$
$Jacobi矩阵(P211)(P216) \frac{dy}{dt}=\frac{dy}{dx} \frac{dx}{dt}$
$球坐标交换的Jacobi行列式$
$x=rsin\varphi cos \theta,y=rsin\varphi sin\theta ,z=rcos\varphi$
$\frac{\partial (x,y,z)}{\partial (r,\varphi,\theta)}=r^2 sin \varphi$
$命题:设有定义在D \subset R^n上的函数组,且对每个f_k(1 \sim m)对各变元有连续偏导$
$其Jacobi矩阵为D(x)=\begin{vmatrix} \frac{\partial f_1}{\partial x_1} & ... & \frac{\partial f_1}{\partial x_n} \\ ... & ... & .... \\ \frac{\partial f_m}{\partial x_1} & ... & \frac{\partial f_m}{\partial x_n} \end{vmatrix}_{m*n}(m \le n)$
$则矩阵r(J)<m,函数相关(P222)$
$当m=n r(J)=n,函数线性无关$
$\nl$
$例:设x,y \ge 0,证明 \frac{x^n+y^n}{2} \ge (\frac{x+y}{2})^n$
$设x+y=a,则L=\frac{1}{2}(x^n+y^n)+\lambda (x+y-a)$
$由L_x=0,L_y=0,x+y=a解出x=y=\frac{a}{2}与边界(0,a)(a,0)比较$
$条件极值的充分条件,H矩阵判定法$
$H=\bigl( \begin{smallmatrix} L_{x^2}&L_{xy}&L_{xz}\\ L_{yx}&L_{y^2}&L_{yz} \\ L_{zx}&L_{zy}&L_{z^2} \end{smallmatrix} \bigr) $
$正定极小,负定极大,不定$
$\nl$
$二阶微分判别法(极值性)$
$求f=x+y+z+t在xyzt=c^4下极值(见P201)$
$解:L=f+\lambda(xyzt-c^4)得x=y=z=t=c,\lambda = -\frac{1}{c^3}$
$dL=-\frac{1}{c^3}(yztdx+xztdy+xytdz+xyzdt)$
$d^2L|_{P_0}=-\frac{2}{c}(dxdy+dydz+dxdz+dt(dx+dy+dz))$
$对xyzt=c^4求微分$
$dx+dy+dz+dt=0 \to dt=-(dx+dy+dz)$
$解方程组$
$\begin{cases} 2x+2\lambda x+2u=0 \\ 2y+2\lambda y-u =0 \\ 2z-2\lambda z -u=0 \\ x^2+y^2-z^2=1 \\ 2x-y-z=1 \end{cases}$
$\lambda = \pm 1 代入解方程,当\lambda \ne \pm 1时,前三式行列式系数不为0$
$解出x=\frac{-u}{1+\lambda},y=\frac{u}{2(1+\lambda)},z=\frac{u}{2(1-\lambda)}代入后两式$
$3\lambda ^2 -9 \lambda + 8 =0$
$\nl$
$例:x^2+y+sin(xy)=0$
$证明在(0,0)某邻域内唯一连续函数y=y(x)使y(0)=0(F_y(0,0)=1)$
$y(x)在x=0附近可导(F_x为连续函数)$
$y(x)在x=0附近单调性y'=- \frac{2x+ycos(xy)}{1+xcos(xy)}$
$y'(0)=0故有\xtinf \frac{y}{x}=0,y=o(x)$
$\xtx{0}=\frac{-\frac{2x+ycosxy}{1+xcosxy}}{-2x}=\xtx{0}\frac{1+o(1)\frac{cosxy}{2}}{1+xcosxy}=1$
$故不能确定x=x(y)$
$\nl$
$p.s. 平面既是开区域也是闭区域(唯一特例)$
$偏导存在 \nleftarrow 方向导数存在,z=\sqrt{x^2+y^2}$
$偏导存在 \nrightarrow 方向导数存在,f=\begin{cases} \frac{xy}{\sqrt{x^2+y^2}}sin\frac{1}{x^2+y^2}, & x^2+y^2 \ne 0 \\ 0, & x^2+y^2=0 \end{cases}$
$若f(y,x)=-f(x,y),f''_{yx}=-f''_{xy}$
$若f(x,y)=A(x)B(y)则麦克劳林公式展开可用M(x,y)=M(x)M(y)略去高阶无穷小$
$\\$
$\nl$
含参数积分
$(P242)I=\jf{0}{+\infty} \frac{sinx}{x}dx,引进e^{-\alpha x},I(\alpha)=\jf{0}{+\infty}e^{-\alpha x}\frac{sinx}{x}dx(\alpha \ge 0)$
$计算\aatx{o^+}I(\alpha),I'(\alpha)=-\jf{0}{+\infty}e^{-\alpha x}sinxdx$
$故I(\alpha)=-arctg \alpha +C=\frac{e^{-\alpha x}(\alpha sinx+cosx)}{1+\alpha^2}|_0^{+\infty}=-\frac{1}{1+\alpha^2}$
$|I(\alpha)| \le \jf{0}{+\infty}e^{-\alpha x}dx=\frac{1}{\alpha},故\aatx{\infty}I(\alpha)=0$
$故C=\frac{\pi}{2},故I=I(0)=\frac{\pi}{2}$
$\nl$
$\jf{0}{\frac{\pi}{2}}lnsintdt=-\frac{\pi}{2}ln2$
$\nl$
$积分式:\frac{arctgx}{x}=\jf{0}{1}\frac{dy}{1+x^2y^2};\frac{e^{-ax}-e^{-bx}}{x}=\jf{a}{b}e^{-xy}dy$
$\frac{x^b-x^a}{lnx}=\jf{a}{b}x^ydy;\frac{ln(1+ab)}{a}=\jf{0}{b}\frac{dx}{1+ax}$
$\nl$
$称\jf{\alpha}{+\infty}f(x,y)dy关于x在I上不一致收敛,是指\exists \epsilon_0 >0以及一递$
$增无界数列\{A_n\}(A_n \ge \alpha)及\{x_n\}\subset I:|\jf{A_n}{+\infty}f(x_n,y)dy| \ge \epsilon_0$
$证明:\jf{0}{+\infty}ye^{-xy}dx在(y_0,+\infty)一致收敛,在(0,+\infty)不一致收敛$
$1,|\jf{A_0}{+\infty}ye^{-xy}dx|=|(-e^{xy})|_{x=A_0}^{x=+\infty}|=e^{-yA_0} \le e^{-y_0A_0}$
$故\forall \epsilon > 0 (0<\epsilon <1)取A_0= A_0(\epsilon)=\frac{ln \frac{1}{\epsilon}}{y_0},则对\forall y \in (y,+\infty)$
$|\jf{A}{+\infty}ye^{-xy}dx|<e^{-yA}<e^{k\epsilon}=\epsilon,\forall A>A_0$
$2,A_k=k,y_k=\frac{1}{k}\in (0,+\infty)则有\jf{k}{+\infty}\frac{e^{-\frac{x}{k}}}{k}dx=\frac{1}{e},\forall k \in N$
$取\epsilon_0 > \frac{1}{e},则有....或者说,当y充分小时,I>\epsilon_0=...$
$\nl$
$Cauchy准则,\jf{\alpha}{+\infty}f(x,y)dx一致收敛 \Leftrightarrow \forall \epsilon>0,\exists A \ge \alpha, \forall A',A'' \ge A 有$
$|\jf{A'}{A''}fdy|<\epsilon ,\forall x \in I$
$\nl$
$Abel推论,设\jf{\alpha}{+\infty}fdy关于x一致收敛,h(y)在(\alpha,+\infty)上单调有界,则\jf{\alpha}{+\infty}fhdy一致收敛$
$设\jf{\alpha}{+\infty}f(y)dy收敛,g(x,y)对y单调,且对x一致有界,则\jf{\alpha}{+\infty}f(y)g(x,y)dy一致收敛$
$\nl$
$例:\jf{0}{+\infty}\frac{sinx^2}{1+x^n}dx,解:0<\frac{1}{1+x^n} \le 1单调递减,且\jf{0}{+\infty}sin(x^2)dx一致收敛$
$\nl$
$例:已知\jf{-\infty}{+\infty}e^{-x^2}dx=\sqrt{\pi},判别\jf{-\infty}{+\infty}e^{-(x-y)^2}dx在\begin{cases}
a<y<b \\
y\in R
\end{cases}$
$\jf{A}{+\infty}e^{-(x-y)^2}dx=\jf{A-y}{+\infty}e^{-x^2}dx < \jf{A-b}{+\infty}e^{-x^2}dx$
$故\forall \epsilon > 0,\exists A, \forall y<b,有...类似 \forall y>a有....取公共区间$
$再求y\in R,\forall A>0,充分大\infty,有y充分大 \jf{A}{+\infty}e^{-(x-y)^2}dx=\jf{A-y}{+\infty}e^{-x^2}dx \to \sqrt \pi$
$\nl$
$例:\jf{0}{+\infty} \frac{cos(xy^2)}{x^ \alpha}dx,y \ge y_0 > 0,(0< \alpha <1)的一致收敛性$
$\forall A>1 有|\jf{1}{A}cos(xy^2)dx|=\frac{1}{y^2},|sinAy^2-siny^2| \le \frac{2}{y^2} \le \frac{2}{y_0^2}$
$又因为\frac{1}{x^ \alpha}对x单调,一致趋0,由狄尼克莱I_2=\jf{1}{+\infty}...一致收敛$
$由|\frac{cos(xy^2)}{x^ \alpha}|\le \frac{1}{x ^ \alpha},\forall x \forall y ...而\jf{0}{1}\frac{1}{x^ \alpha}dx一致收敛$
$f(x,y) \in C[a,b] \times [c,+\infty),\jf{c}{+\infty}f(x,y)dy在(a,b)收敛,在a发散$
$则\jf{c}{\infty}f(x,y)dy在(a,b)不一致收敛$
$\nl$
$f(x,y)在D非负连续,若\jf{\alpha}{+\infty}fdy,\jf{a}{+\infty}fdx 分别为xy连续函数,且$
$\jf{a}{+\infty}dx\jf{\alpha}{+\infty}fdy或\jf{\alpha}{+\infty}dy\jf{a}{+\infty}fdx至少有一项存在,则积分可换序$
$\jf{0}{+\infty}\frac{e^{-xa}-e^{-xb}}{x}dx(a,b>0),1.f(x,y)=e^{-xy} \in c,2. \jf{0}{+\infty}e^{-yx}一致收敛$
$故有原式=\jf{a}{b}dy(\jf{0}{+\infty}e^{-xy}dx)=\jf{a}{b}\frac{1}{y}dy$
$\nl$
$计算I=\jf{0}{+\infty}e^{-x^2}dx$
$令x=ut(u>0),I=u\jf{0}{+\infty}e^{-u^2t^2}dt,同乘e^{-u^2}再对u积分$
$I^2=I\jf{0}{+\infty}e^{-u^2}du=\jf{0}{+\infty}e^{-u^2}udu\jf{0}{+\infty}e^{-u^2t^2}dt(先t后u)$
$验证(i)ue^{-u^2(1+t^2)}对tu非负连续(u>0)$
$(ii)\jf{0}{+\infty}ue^{-u^2(1+t^2)}dt=e^{-u^2}\jf{0}{+\infty}e^{-(ut)^2}dut=e^{-u^2}I在u\ge0时连续$
$\jf{0}{+\infty}ue^{-u^2(1+t^2)}du=\frac{1}{2} \frac{1}{1+t^2}在t \ge 0 时连续$
$(iii)\jf{0}{+\infty}dt\jf{0}{+\infty}ue^{-u^2(1+t^2)}du存在$
$故I^2=\frac{\pi}{4},I=\frac{\sqrt \pi}{2}$
$\jf{0}{+\infty}\frac{e^{-ax}-e^{-bx}}{x}dx,令I(a)=\jf{0}{+\infty}\frac{e^{-ax}-e^{-bx}}{x}dx \triangleq \jf{0}{+\infty}f(x,a)dx$
$f(0,a)=b-a,1.f与f_a \in D,2.\jf{0}{+\infty}\frac{e^{-ax}-e^{-bx}}{x}dx 收敛(Dirichlet)$
$\jf{0}{+\infty}-e^{-ax}dx在(a,+\infty)关于a一致收敛I'(a)=-\frac{1}{a}$
$\to I(a)=-lna+c令a=b \to c=lnb,I(a)=ln\frac{b}{a}$
$\nl$
$其他积分法①B(p,q)=2\jf{0}{\frac{\pi}{2}}cos^{2p-1}\varphi sin^{2q-1}\varphi d\varphi$
$B(\frac{1}{2},\frac{1}{2})=\pi(x=cos^2 \varphi)$
$②B(p,q)=\jf{0}{+\infty}\frac{t^{q-1}}{(1+t)^{p+q}}dt(x=\frac{1}{1+t})$
$③定义\Gamma(s)=\frac{\Gamma(S+1)}{s},-1<s<0,类似地,。。。。-a-1<s<-a,除去整数点$
$④\Gamma(s)=a^s \jf{0}{+\infty}t^{s-1}e^{-at}dt(x=at)$
$⑤\Gamma(s)=2\jf{0}{+\infty}t^{2s-1}e^{-t^2}dt,x=t^2$
$\Gamma(\frac{1}{2})=\sqrt \pi , \Gamma(\frac{1}{2}+n)=\frac{(2n-1)!!}{2^n} \sqrt \pi$
应该避免形式运算
$(2)倍量公式s>0,\Gamma(2s)=\frac{2^{2s-1}}{\sqrt \pi}\Gamma(s)\Gamma(s+\frac{1}{2})$
$(3)余元公式(0<s<1)$
$\Gamma(s)\Gamma(1-s)=\frac{\pi}{sin\pi s}$
$B(s,1-s)=\frac{\pi}{sin\pi s}$
$n! = (\frac{n}{e})^n \sqrt {2\pi}n e^{\sqrt 2^\theta n}$
$=(\frac{n}{e})^n \sqrt {2\pi}n(1+o(1)) (n \to \infty)$
$\nl$
$例:(1)\jf{0}{+\infty}x^me^{-ax^n}(m>-1,n>0,a>0)$
$令y=ax^n,则=\jf{0}{+\infty}(\frac{y}{a})^{\frac{m}{n}}e^{-y}\frac{1}{na}(\frac{y}{a})^{\frac{1}{n}-1}dy$
$=\frac{\Gamma(\frac{m+1}{n})}{na^{\frac{m+1}{n}}}$
$特别的,\jf{0}{+\infty}x^{2m}e^{-x^2}dx=\frac{(2n-1)!!}{2^{n+1}} \sqrt n$
$jf{0}{+\infty}e^{-x^n}dx=\frac{1}{n}\Gamma(\frac{1}{n})$
$\jf{0}{+\infty}e^{-y^4}dy \jf{0}{+\infty}x^2 e^{-x^4}dx=\frac{1}{16}\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})= \frac{1}{16} \frac{\pi}{sin \frac{\pi}{4}}$
$(2)\jf{0}{1}x^{p-1}(1-x^m)^{q-1}dx(p,q,m>0)$
$令t=x^m即有=\frac{1}{m}B(\frac{p}{m},q)$
$\jf{0}{1}\sqrt {x^3(1-\sqrt x)}dx = \jf{0}{1}x^{\frac{3}{2}}(1-x^{\frac{1}{2}})^{\frac{1}{2}}dx=2\frac{\Gamma(5)\Gamma(\frac{3}{2})}{\Gamma(5+\frac{3}{2})}$
$\nl$
$习题课$
$Dirichelet积分 I=\jf{0}{+\infty}\frac{sinx}{x}dx=\frac{\pi}{2}$
$\jf{-\infty}{+\infty}\frac{sinx}{x}cos \lambda x dx=(偶函数,积化和差)=\begin{cases} 0, & |\lambda|>1 \\ \frac{1}{2}, & |\lambda|=1 \\ 1,& |\lambda|<1 \end{cases}$
$(2)Fresnel积分,I=\jf{0}{+\infty}sin(x^2)dx$
$分析:令x^2=t,则化为\frac{1}{2}\jf{0}{+\infty}\frac{sint}{\sqrt t}dt=\frac{1}{2} \frac{2}{\sqrt \pi}\jf{0}{+\infty}sint dt \jf{0}{+\infty}e^{-tu^2}du$
$=\frac{1}{\sqrt \pi}\jf{0}{+\infty}du \jf{0}{+\infty}e^{-tu^2}sintdt= \frac{1}{\sqrt \pi}\jf{0}{+\infty}\frac{du}{1+u^4}=\frac{\pi}{2\sqrt 2}$
$引进e^{-\alpha t}(\alpha > 0),I(\alpha)=\frac{1}{2}\jf{0}{+\infty}\frac{sint}{\sqrt t}e^{-\alpha t}dt = \frac{1}{\sqrt \pi}\jf{0}{+\infty}du\jf{0}{+\infty}e^{-(\alpha+u^2)t}sintdt$
$\frac{1}{\sqrt \pi}\jf{0}{+\infty}\frac{du}{1+(\alpha+u^2)^u}$
$验证换序条件:1.对u取e^{-\alpha t}为优函数$
$对t取e^{-t_0 u^2}$
$2.绝对值积分:\frac{1}{\sqrt \pi}\jf{0}{+\infty}e^{-\alpha t}|sint|dt \jf{0}{+\infty}e^{-tu^2}du$
$=\jf{0}{+\infty}e^{-\alpha t}\frac{|sint|}{\sqrt t}dt由P-判别法可知右端收敛$
$3.因为\jf{0}{+\infty}\frac{du}{1+(\alpha - u^2)^2}关于\alpha 一致收敛在(0,+\infty)上,I(\alpha) \in [0,+\infty)$
$常用积分变换式$
$1.\frac{e^{-af(x)}-e^{-bf(x)}}{f(x)}=\jf{a}{b}e^{-f(x)y}dy$
$2.\frac{1}{f(x)}=\jf{0}{+\infty}e^{-f(x)y}dy,f(x)>0$
$3.\frac{1}{\sqrt {f(x)}}=\frac{2}{\sqrt \pi}$
$4.\frac{sinbf(x)-sinaf(x)}{f(x)} = \jf{a}{b}cos(f(x)y)dy$
$5 \frac{arctgbf(x)-arctgaf(x)}{f(x)} = \jf{a}{b} \frac{dy}{1+(f(x)y)^2}$
$例:设f(x,y) \in C[a,b]×[\alpha,+\infty),而\jf{\alpha}{+\infty}f(b,y)dy发散$
$证明\jf{\alpha}{+\infty}f(x,y)dy在[a,b)不一致收敛(端点处发散,区间内必发散)$
$分析:反证法,\forall \epsilon >0:\exists A_0: \forall A',A'' \ge A_)$
$I(x) \triangleq |\jf{A'}{A''}f(x,y)dy| < \epsilon,\forall x \in [a,b)$
$由条件f(x,y) \in C.... 故常义含参积分\jf{A'}{A''}f(x,y)dy 为x的连续函数$
$令x \to b 有 |\jf{A'}{A''}f(b,y)dy| \le \epsilon,从而由Cauchy准则可知...$
$\nl$
$例:设f(t)=\jf{1}{+\infty}\frac{cosxt}{1+x^2}dx$
$证明:①\ttinf f(t)=0,|\jf{1}{A_0}\frac{cosxt}{1+x^2}dx|+|\jf{A_0}{+\infty}\frac{cosxt}{1+x^2}dx| < \epsilon + \epsilon$
$(黎曼引理,f(x)可积,\lbdtx{\infty} \jf{a}{b} f(x)sin \lambda x dx =0, \lbdtx{\infty} \jf{a}{b} f(x)cos \lambda x dx =0)$
$②f(t)在[0,\pi]上至少有一个零点$
$因为f(0)=\frac{\pi}{4},f(\pi) \le 0,可证\jf{0}{\pi}f(t)dt \le 0,或\jf{0}{\pi}sintf(t)dt \le 0$
$积分顺序:可化为\jf{1}{+\infty}dx \jf{0}{\pi} \frac{cosxtsint}{1+x^2}dx$
$=\jf{1}{+\infty}\frac{1+cos\pi x}{1+x^4}dx \le 0$
\end{document}