-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsxfx2.tex
403 lines (235 loc) · 11.1 KB
/
sxfx2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
\documentclass[12pt,a4paper]{article}
\usepackage{fontspec}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{tikz}
\setmainfont{Adobe Kaiti Std}
\thispagestyle{empty}
\pagestyle{empty}
\begin{document}
\newcommand{\ntinf}{\lim\limits_{n \to \infty}}
\newcommand{\ntx}[1]{\lim\limits_{n \to #1}}
\newcommand{\xtx}[1]{\lim\limits_{x \to #1}}
第二章 极限与连续初论
2.1.数列极限
一。概念
1)定义p.29.
$\exists a \in R , \forall \varepsilon > 0, \exists N \in \bm{N}:|x_n-a|<\varepsilon, \forall n>N $
ex.1.
$$\lim_{n \to 0} \frac{1}{(1+\frac{1}{\sqrt{n}})^n}=0$$
因为$(1+a)^n \ge 1+na$
故$\frac{1}{(1+\frac{1}{\sqrt{n}})^n} \le \frac{1}{1+\frac{n}{\sqrt n}} = \frac {1}{1+\sqrt n}< \frac{1}{\sqrt n}$
对于$\forall \varepsilon >0 要使n> \frac{1}{\varepsilon ^ 2},取N=[\frac {1}{\varepsilon ^ 2}]+1$
ex.2.
$$\lim_{n \to \infty} q^n = 0 (0<q<1)$$
$设\frac{1}{q}= 1+\alpha (\alpha > 0)$
$|q^n-0|= \frac{1}{(1+\alpha)^n} \le \frac{1}{1+n\alpha} < \frac{1}{n\alpha}$
对于$\forall \varepsilon > 0, 取n>\frac{1}{\alpha \varepsilon} .......$
$$\lim_{n \to \infty}n^{\frac{1}{n}}=1,当n\ge 2,令n^{\frac{1}{n}}-1=h_n>0即证\lim_{n \to \infty}h_n=0$$
$n=(1+h_n)^n=1+n\cdot h_n+\frac{n(n-1)}{2!}{h_n}^2+......+{h_n}^n>\frac{n(n-1)}{2}{h_n}^2$
$所以0<h_n<\sqrt{\frac{2}{n-1}} (n \ge 2)$
$对\forall \varepsilon > 0 由\sqrt{\frac{2}{n-1}} < \varepsilon 得 n>\frac{2}{\varepsilon ^2}+1$
$取N=max[1,[\frac{2}{\varepsilon ^ 2}]+1]$
(2)极限$$\lim_{n \to \infty}x_n=a等价命题$$
1’ $\forall \varepsilon>0 ,\exists N \in \bm{N}:|x_n-a|<\varepsilon,\forall n>N$
2’ $\forall \varepsilon(0<\varepsilon<1) ,\exists N \in \bm{N}:|x_n-a|<\varepsilon,\forall n>N$
3’ $\forall \varepsilon>0 ,\exists N \in \bm{N}:|x_n-a|<m\varepsilon,\forall n>N(m>0为常数)$
4’ $\forall \varepsilon>0 ,只有有限个x_n满足|x_n-a|\ge\varepsilon$
$\\$
二.收敛数列定理
唯一性,若{$x_n$}收敛,则极限值必唯一
设$$\lim_{x \to \infty}x_n=a, \lim_{x \to \infty}x_n=b$$
令$\varepsilon_0=\frac{1}{2}(b-a),则a-\varepsilon_0<x_n<a+\varepsilon_0,\forall n>N_1$
$b-\varepsilon_0<x_n<b+\varepsilon_0,\forall n>N_2$
$取N=max(N_1,N_2)$
$x_n>b-\varepsilon_0=\frac{a+b}{2}=a+\varepsilon_0>x_n$,矛盾
定义2,若
$\exists M>0:|x_n|\le M,\forall n \in \bm{N}称{x_n}有界$
定理2,收敛数列必有界
定理3,(保号性)若
$$\lim_{n \to \infty}x_n=a>0,必\exists N \in \bm{N}:x_n>0,\forall n > N$$
推论1。若
$$\lim_{n \to \infty}x_n=a>b,必存在N\in \bm{N}:x_n>b,\forall n>N$$
推论2。若
$$\lim_{n \to \infty}x_n=a,\lim_{n \to \infty}y_n=b,a>b,必存在N\in \bm{N}:x_n>y_n,\forall n>N$$
定理4,四则运算法则,前提(极限存在,有限次运算)
若$$\lim_{n \to \infty}x_n=a,\forall \left\{ x_{nk} \right\} \subset \left\{ x_n \right\},\lim_{n \to \infty}x_{nk}=a$$
命题,数列收敛充要条件:奇偶子列均收敛于同一极限
五。数列收敛的条件
(1)迫敛性定理
定理6.设$$\lim_{n \to \infty}y_n=\lim_{n \to \infty}z_n=a,且对\forall n \in N,y_n \le x_n \le z_n,则有$$
$$\lim_{n \to \infty}x_n=a$$
例$(n+1)^\alpha - n^\alpha (0<\alpha<1)=n^\alpha (1+\frac{1}{n})^\alpha - n^\alpha<n^\alpha(1+\frac{1}{n}-1)=\frac{1}{n^{1-\alpha}}$
(2)确界原理(P96确界)
该问题证明应利用定义
ex1. $inf(x_n)+inf(y_n)\le inf(x_n+y_n) \le
\begin{Bmatrix} inf(x_n) & sup(y_n) \\ sup(x_n) & inf(y_n) \end{Bmatrix} \le sup(x_n+y_n) \le sup(x_n)+sup(y_n)
$
(3)单调有界定理 p43 p100
$$x_{n+1}=1+\frac{x_n}{1+x_n},\lim_{n \to \infty}x_{n+1}=1+\frac{\lim\limits_{n \to \infty}x_n}{1+\lim\limits_{n \to \infty}x_n}=\lim_{n \to \infty}x_n$$
$$\lim_{n \to \infty}x_n=\frac{1+\sqrt 5}{2}$$
例题:$设a>0, x_1=a^{\frac{1}{p}} (p \in N), x_{n+1}=\frac{p-1}{p}x_n+\frac{a}{p}x_n^{1-p}$
$$设x_n \ge \sqrt[p]{a} \to x_{n+1} \le x_n \to \lim_{n \to \infty}x_n = \sqrt[p]{a}$$
柯西收敛原理 p104,等价命题,
$\forall \varepsilon>0, \exists N \in \bm N: |x_{n+p}-x_n|< \varepsilon , \forall n>N, \forall p \in \bm N$
结果须与p无关
$\\$
习题课(数列极限)
一。概念
(1)与$\lim\limits_{n \to \infty}x_n=a等价$
$\exists N \in \bm N, \forall \varepsilon >0:|x_n-a|<\varepsilon, \forall n > N,必有极限$
$但当n>N时,|x_n-a|<\varepsilon,x_n必须为a(从第n+1项起)$
故$\lim\limits_{n \to \infty}x_n=a \nRightarrow 此命题$
$\{x_n\}中有无穷多个子列,趋向于无穷多个极限$
例:
\begin{tikzpicture}
\draw[->] (0.5,-0.5) -- (0.5,-1.5);
\draw[->] (0.5,-2.5) -- (0.5,-3.5);
\draw[->] (1.5,-0.5) -- (2.5,-0.5);
\draw[->] (3.5,-0.5) -- (4.5,-0.5);
\draw[->] (0.5,-1.5) -- (1.5,-0.5);
\draw[->] (2.5,-0.5) -- (1.5,-1.5);
\draw[->] (1.5,-1.5) -- (0.5,-2.5);
\draw[->] (0.5,-3.5) -- (1.5,-2.5);
\draw[->] (1.5,-2.5) -- (2.5,-1.5);
\draw[->] (2.5,-1.5) -- (3.5,-0.5);
\draw[->] (4.5,-0.5) -- (3.5,-1.5);
\draw[->] (3.5,-1.5) -- (2.5,-2.5);
\draw[->] (2.5,-2.5) -- (1.5,-3.5);
\draw[->] (1.5,-3.5) -- (0.5,-4.5);
\node [left] at (0.5,-0.5) {1};
\node [left] at (0.5,-1.5) {1};
\node [left] at (0.5,-2.5) {1};
\node [left] at (0.5,-3.5) {1};
\node [left] at (0.5,-4.5) {1};
\node [left] at (1.5,-0.5) {2};
\node [left] at (1.5,-1.5) {2};
\node [left] at (1.5,-2.5) {2};
\node [left] at (1.5,-3.5) {2};
\node [left] at (1.5,-4.5) {2};
\node [left] at (2.5,-0.5) {3};
\node [left] at (2.5,-1.5) {3};
\node [left] at (2.5,-2.5) {3};
\node [left] at (2.5,-3.5) {3};
\node [left] at (2.5,-4.5) {3};
\node [left] at (3.5,-0.5) {4};
\node [left] at (3.5,-1.5) {4};
\node [left] at (3.5,-2.5) {4};
\node [left] at (3.5,-3.5) {4};
\node [left] at (3.5,-4.5) {4};
\node [left] at (4.5,-0.5) {5};
\node [left] at (4.5,-1.5) {5};
\node [left] at (4.5,-2.5) {5};
\node [left] at (4.5,-3.5) {5};
\node [left] at (4.5,-4.5) {5};
\end{tikzpicture}
趋向于极限1,2,3,。。。。
例2
$\begin{matrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & ... \\
\frac{1}{2} & \frac{2}{2} & \frac{3}{2} & \frac{4}{2} & ... \\
\frac{1}{3} & \frac{2}{3} & \frac{3}{3} & \frac{4}{3} & ... \\
\frac{1}{4} & \frac{2}{4} & \frac{3}{4} & \frac{4}{4} & ... \\
...
\end{matrix}$
任意数列存在单调子列$\{x_{nk}\}$
1`$若\{x_n\}中无最大项,任取x_{n1},x_{n2},x_{n3},......构造法易知$
2`$若\{x_n\}中有最大项,记为x_{n1},后面取max\{x_{i>n1}\},记为x_{n2},易知构造法,若后续无最大项,则到情况1$
3`以上,已构造粗一个单调子列,由单调有界定理可知,若有界则有收敛子列
例,设$$\{x_n\}有界,\sup_{n \in \bm N}\{x_n\}=\beta \notin \{x_n\}$$
求证$\{x_n\}$中有严格递增子列,$$\lim_{n \to \infty}x_{nk}=\beta$$
$$
证明:先令\varepsilon_1=1,由确界定义可知\exists x_{n1} \in \{x_n\}:\beta -1 < x_{n1} < \beta
$$
$考虑集合S_1=\{x_n|n>n_1\}仍有sup S_1 = \beta$
$再令\varepsilon_2=min(\frac{1}{2},\beta-x_{n1})$
$必\exists x_{n2} \in S_1 \subset \{x_n\}: \beta- \varepsilon_2<x_{n2}<\beta (n_2>n_1)且x_{n2}>x_{n1}$
$一般的,记S_{k-1}=\{x_n|n>n_{k-1}\},令\varepsilon_k=min(\frac{1}{k},\beta-x_{nk-1}),必$
$\exists x_{nk} \in S_{k-1} \subset \{x_n\},\beta - \varepsilon_k < x_{nk} < \beta, n_k > n_{k-1},且x_{nk} > x_{nk-1} \forall k \in \bm N$
$$因为0<\varepsilon_k \le \frac{1}{k} 故\lim_{n \to \infty}\varepsilon = 0. 令k \to \infty 由迫敛性定理可得 \lim_{n \to \infty}x_{nk}=\beta$$
$且\{x_{nk}\}严格递增$
Ex:
$x_1=\frac{a}{2}, x_n=\frac{a}{2}-\frac{x_{n-1}^2}{2} (0<a<1)$
解:$x_{2n-1}>x_{2n+1} x_{2n}<x_{2n+2}$
$x_{2n-1}>x_{2n} \ge x_2, x_{2n}<x_{2n+1}<x_1$
故奇偶子列分别收敛
$$\ntinf x_n = \ntinf (\frac{a}{2}-\frac{x_{n-1}^2}{2}),\ntinf x_{n+1} = \ntinf (\frac{a}{2}-\frac{x_{n}^2}{2})$$
$(\beta = \frac{a}{2}-\frac{\alpha ^2}{2}, \alpha = \frac{a}{2}-\frac{\beta ^2}{2}) \Rightarrow \alpha = \beta$
柯西定理见书P52-P53
柯西第二定理
Ex:$\ntinf \frac {n}{\sqrt[n]{n!}}=\ntinf \frac{x_{n+1}}{x_n}=\ntinf (1+\frac{1}{n})^n=e$
$x_n = \frac{n^n}{n!}$
Ex:$x_n=\sqrt[n]{\begin{matrix}\underbrace{ [a[a...[a]]] } \\ n \end{matrix}},n \in N$
证明$\{x_n\}$收敛
$\\$
函数的极限
一。函数极限概念
(1)过程与极限
一.离散型
二.连续型
1.$x \to + \infty $
2.$x \to - \infty $
3.$x \to \infty $
4.$x \to x_0^- ,x<x_0$
5.$x \to x_0^+ ,x>x_0 $
6.$x \to x_0 $
P64.P65 1`~3`
P63,P55 4`~6`
$当x \to x_0时,f(x)极限不存在$
$\forall A \in R, \exists \varepsilon_0>0, \forall \delta>0:|f(x_a)-A| \ge \varepsilon_0,\exists x_a \in U_0(x_0,\delta)$
$\forall A \in R, \exists \varepsilon_0>0, 及|x_n| (x_n \to x_0,x_n \ne x_0,n \in N),|f(x_n)-A| \ge \varepsilon_0,\forall n \in N$
$例:证明 \ntx{x_0}f(x)=A$
$|f(x)-A| \le ... < c·|x-x_0|,可令|x-x_0|<\delta ,利用。。。。,取\delta =g(\varepsilon)或\delta = min(g(\varepsilon),c`)c`为常数。$
则有$|f(x)-A|<\varepsilon,\forall x \in U_0(x_0,\delta)$
(1)P64
(2)$\ntinf f(x) = A \Leftrightarrow \ntx{+\infty,-\infty} f(x) = A $
(3)Heine定理 P59
$\xtx{x_0}f(x)=A的充要条件是$
$\forall \{x_n\} (x_n \to x_0,x_n \ne x_0) \ntinf f(x_n)=A (可改为\{f(x_n)\}都存在)$
利用:充分性,判断函数极限之性质,必要性,函数极限存在
柯西收敛准则,见P104
$\xtx{x_0}f(x)存在充要条件\forall \varepsilon>0,\exists \delta>0,\forall x',x'' \in U_0(x_0,\delta)有|f(x')-f(x'')|<\varepsilon$
c<b<a,|b|<|a|+|c|
例:
$\xtx{0}(sinx+cosx)^{\frac{1}{x}}= \xtx{0}(1+sinx+cosx-1)^{\frac{1}{sinx+cosx-1}·\frac{sinx+cosx-1}{x}}$
$=e^{\xtx{0} \frac{sinx+cosx-1}{x}}=e^1=e$
$\xtx{0}\frac{ln(1+ax)}{x}=a$
$\xtx{0}\frac{e^{ax}-1}{x}=a$
$\xtx{0}\frac{a^x-1}{x}=lna$
三。数量级及其应用
1)无穷小与无穷大
定义:
$若\xtx{\Delta} f(x)=0,称f(x)为 x \to \Delta 时无穷小 P30$
$\Delta :(x_0,x_0^{+-},\infty,+- \infty)$
性质,在$x \to \Delta 的同一过程中$
(i)有限个无穷小之和在该过程中仍然无穷小
(ii)有界函数与无穷小乘积仍为无穷小
(iii)有限个无穷小乘积仍为无穷小
P46 无穷大
性质P49,P67,P68
Ex:f(x)=x·sinx, $x \to + \infty 无界,但未必f(x) \to \infty$
高阶,P92
Ex:证明 $o(x_n)+o(x_m)=o(x_n) (m \ge n)$
只需证
$\xtx{0} \frac{o(x_n)+o(x_m)}{x^n}=0$
$\xtx{0} \frac {o(x^n)}{x^n}=0$
$\xtx{0} \frac {o(x^m)}{x^m} \frac{x^m}{x^n} = 0·1 = 0$
无穷小之等价代换(P93)
$x \to 0 可作 \varphi(x) \to 0代换\varphi(x)=x$
sinx~x~tgx ~~~ arcsinx~arctgx~x
$1-cosx ~ \frac{1}{2}x^2,\sqrt[n]{1+x}-1~\frac{x}{n}$
$ln(1+x)~x,e^x-1~x,a^x-1~xlna$
Ex.$f(x)在(0,+\infty)上有f(x^2)=f(x)$
且$\xtx{0+}f(x)=\xtx{+\infty}f(x)=f(1)$
则f(x)=f(1) $\forall x \in (0,+ \infty),当\forall x \in (0,1) f(x)=f(x^2)=....f(x^{2^n})$
$\ntx{\infty}x^{2^n}=0,用归结原理可知f(x)=\ntx{\infty}f(x^{2^n})=...=f(1)$
$x \to \infty,(1-\frac{1}{x^2})^{x^2}=\frac{1}{(1+\frac{1}{-x^2})^{-x^2}}=\frac{1}{e}$
$x \to 0,\frac{a^{x^2}-b^{x^2}}{(a^x-b^x)^2}=\frac{1}{lna-lnb}$
f(x)为三次多项式,且$\xtx{2a}\frac{f(x)}{x-2a}=\xtx{4a}\frac{f(x)}{x-4a}=1,求\xtx{3a}\frac{f(x)}{x-3a}$
设f(x)=b(x-2a)(x-4a)(x-c),代入上式可得
-2ab(2a-c)=1
2ab(4a-c)=1
故有$a^2b=\frac{1}{2},c=3a$
$\xtx{3a}\frac{f(x)}{x-3a}=-\frac{1}{2}$
\end{document}