-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsxfx6.tex
150 lines (80 loc) · 3.47 KB
/
sxfx6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
\documentclass[12pt,a4paper]{article}
\usepackage{fontspec}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{tikz}
\setmainfont{Adobe Kaiti Std}
\thispagestyle{empty}
\pagestyle{empty}
\begin{document}
\input{macro.tex}
第6章 不定积分
$一、原函数$
$证明
f(x) = \begin{cases} 0, & x \ne 1 \\ 1, & x=0 \end{cases}
在R无原函数,但可积
$
$反证法:设F'(x)=f(x),则F(x) \in C(R)$
$故
F(x) = \begin{cases} C_1, & x>0 \\ C_2, & x<0 \end{cases}
且C_1=C_2,故F(0)=C_1,矛盾
$
导函数无首类间断点(导数介值定理)
定理1
$f(x) \in C(x)则必有原函数F(x) 充分条件$
$\int_{}^{} (2x+1)^{100}\, dx = \frac{1}{2} \frac{(2x+1)^{101}}{101}+c$
$法则1:\sum 法$
$法则2:凑法,例:$
$\int \frac{1}{a^2+x^2}\,dx=\frac{1}{a} arctg\frac{x}{a}+c$
$\int \frac{dx}{x^2+2x+3}\,dx=\frac{1}{\sqrt 2}arctg \frac{x+1}{\sqrt 2}+c$
$\int \frac{x}{x^2+2x+3}\,dx =\frac{1}{2} \int \frac{2x+2}{x^2+2x+3}\,dx-\int \frac{1}{x^2+2x+3}\,dx$
$=\frac{1}{2}ln(x^2+2x+3)-...$
$法则3,‘换元’法$
$例:\int \frac{e^x(1+e^x)}{\sqrt{1-e^{2x}}}令e^x=sint$
$倒变换x=\frac{1}{t}$
若分母次数高于分子时,利用综合除法
$遇形如1+x^2的情况可以令x=tgt等,若在分母中可令其=t^2$
$法则4:‘分部’法,反对幂指三,越在后越先积$
$反例:\int \frac{xe^x}{(1+x)^2}\,dx = \int xe^x d(\frac{-1}{1+x})=\frac{-x}{1+x}e^x+\int \frac{1}{1+x}d(xe^x)$
$递推公式Z_n=\int sec^nxdx=\int sec^{n-2}d(tgx)$
$=sec^{n-2}tgx-(n-2)\int sec^{n-2}xtg^2xdx$
$=sec^{n-2}tgx-(n-2)(Z_n-Z_{n-2})$
$\nl$
$I_n=\int \frac{dx}{x^n \sqrt{1+x^2}}$
$=\int \frac{(1+x^2)-x^2}{x^n \sqrt{1+x^2}}dx$
$=\int \frac{\sqrt{1+x^2}}{x^n}dx-\int \frac{1}{x^{n-2} \sqrt{1+x^2}}dx$
$=\frac{1}{1-n} \sqrt{x^2+1}d(x^{1-n})-I_{n-2}$
$=\frac{1}{1-n}x^{1-n}\sqrt{x^2+1}-\frac{1}{1-n}\int x^{1-n}\frac{x}{\sqrt{1+x^2}}dx-I_{n-2}$
$=\frac{1}{1-n}x^{1-n}\sqrt{x^2+1}-\frac{1}{1-n}I_{n-2}-I_2$
$=\frac{1}{1-n}x^{1-n}\sqrt{x^2+1}-\frac{2-n}{1-n}I_{n-2}$
$\nl$
$I_n=\int \frac{dx}{(x^2+a^2)^m}=\frac{x}{(x^2+a^2)^m}+2mH_m-2ma^2H_{m+1}$
$I_n=\int \frac{dx}{(x^2+px+q)^m}=\int \frac{d(x+\frac{p}{2})}{((x+\frac{p}{2})^2+..)^m}$
$I_m=\int \frac {Ax+B}{(x^2+px+q)^m}dx=\frac{A}{2}\int \frac{2x+pdx}{...}+\int \frac{B-\frac{Ap}{2}}{...}$
$\int \frac{a_1sinx+b_1cosx}{asinx+bcosx}dx=Ax-Bln|asinx+bcosx|+C$
$A=\frac{aa_1+bb_1}{a^2+b^2},B=\frac{a_1b-b_1a}{a^2+b^2}$
积分计算中常用到sgnx,但最好用讨论消去,灵活观察,选择合适
$Eular变换$
$(1)a>0,令\sqrt {ax^2+bx+c}=\pm \sqrt a x+t(或\sqrt a x \pm t)$
$bx+x=\pm 2 \sqrt a tx+t^2 \to x=\frac{t^2-c}{b \pm 2\sqrt a t}$
$\nl$
$设G=\{(\alpha_x,\beta_x)|x \in (a,b)\}为(a,b)的开覆盖$
$证明:\exists l>0,使得对\forall x \in [a,b] \cup (x,l)均被G中某区间覆盖$
$(2)若c>0,可令\sqrt{ax^2+bx+c}=xt\pm \sqrt c$
$有ax+b=xt^2 \pm 2\sqrt c t \to x=\frac{b \pm 2 \sqrt c t}{t^2-a}$
$(3)若\sqrt{ax^2+bx+c}有实根,即原式=\sqrt{a(x-\alpha)(x-\beta)}$
$令\sqrt{ax^2+bx+c}=t(x-\alpha)或t(x-\beta)$
$a(x-\beta)=t^2(x-\alpha)即x=\frac{\alpha t^2-\alpha \beta}{t^2-\alpha}$
$\nl$
$\int \frac{dx}{x\sqrt {4-x^2}}一题多解$
$(1)x=2sint$
$(2)x^2=t$
$(3)\sqrt{4-x^2}=t$
$(4)x=\frac{1}{t}$
$(5)\sqrt{\frac{2+x}{2-x}}=t$
$(6)x^2=\frac{1}{t}$
$(7)令\sqrt{4-x^2}=tx \to ...=\frac{1}{2}\int \frac{dt}{\sqrt{1+t^2}}$
$(8)\sqrt{4-x^2}=tx+2 \to ....=\frac{1}{2} \int \frac{1}{t}dt$
$(9)令\sqrt{4-x^2}=t(2-x) \to ...=\frac{1}{2}\int \frac{dt}{t^2}$
\end{document}