-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcifar10_model.py
236 lines (204 loc) · 9.4 KB
/
cifar10_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import pickle, gzip, random, os.path
from functools import reduce
import tensorflow as tf
NUM_CLASSES = 10
IMAGE_SIZE = 32
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE
FC_SIZE_1 = 384
FC_SIZE_2 = 192
WEIGHT_DECAY = 0.004
AGREE_PEN = 1.0
LAMBDA = 1
def confidence_sums(logits):
confs = [confidences(l) for l in logits]
return tf.reduce_sum(confs, axis=0)
def _variable_on_cpu(name, shape, initializer):
dtype = tf.float32
var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
return var
def _variable_with_weight_decay(name, shape, stddev, wd):
dtype = tf.float32
var = tf.get_variable(
name, shape,
initializer=tf.truncated_normal_initializer(stddev=stddev, dtype=dtype),
dtype=dtype)
if wd is not None:
weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
tf.add_to_collection('losses', weight_decay)
return var
def inference(images, name='m0', reuse=None):
batch_size = int(images.shape[0])
# conv1
with tf.variable_scope(name + '_conv1', reuse=reuse) as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 3, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64],
tf.constant_initializer(0.0))
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name=scope.name)
# pool1
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
# norm1
norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm1')
# conv2
with tf.variable_scope(name + '_conv2', reuse=reuse) as scope:
kernel = _variable_with_weight_decay('weights',
shape=[5, 5, 64, 64],
stddev=5e-2,
wd=0.0)
conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name=scope.name)
# norm2
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
# pool2
pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1], padding='SAME',
name='pool2')
# local3
with tf.variable_scope(name + '_local3', reuse=reuse) as scope:
# Move everything into depth so we can perform a single matrix multiply.
reshape = tf.reshape(pool2, [batch_size, -1])
dim = reshape.get_shape()[1].value
weights = _variable_with_weight_decay('weights', shape=[dim, FC_SIZE_1],
stddev=0.04, wd=WEIGHT_DECAY)
biases = _variable_on_cpu('biases', [FC_SIZE_1],
tf.constant_initializer(0.1))
local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases,
name=scope.name)
# local4
with tf.variable_scope(name + '_local4', reuse=reuse) as scope:
weights = _variable_with_weight_decay('weights',
shape=[FC_SIZE_1, FC_SIZE_2],
stddev=0.04, wd=WEIGHT_DECAY)
biases = _variable_on_cpu('biases', [FC_SIZE_2],
tf.constant_initializer(0.1))
local4 = tf.nn.relu(tf.matmul(local3, weights) + biases,
name=scope.name)
# linear layer(WX + b),
# We don't apply softmax here because
# tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
# and performs the softmax internally for efficiency.
with tf.variable_scope(name + '_softmax_linear', reuse=reuse) as scope:
weights = _variable_with_weight_decay('weights',
[FC_SIZE_2, NUM_CLASSES],
stddev=1.0/FC_SIZE_2, wd=0.0)
biases = _variable_on_cpu('biases', [NUM_CLASSES],
tf.constant_initializer(0.0))
softmax_linear = tf.add(tf.matmul(local4, weights), biases,
name=scope.name)
return softmax_linear
def loss(logits, y, n):
logits_train = [l[:n,:] for l in logits]
logits_adv = [l[n:,:] for l in logits]
y_train = y[:n]
labels = tf.cast(y_train, tf.int64)
cross_entropy = [tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=l, name='cross_entropy_per_example')
for l in logits_train]
cross_entropy_mean = tf.reduce_mean(cross_entropy)
weight_reg = tf.add_n(tf.get_collection('losses')) / len(logits)
# The loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
loss = cross_entropy_mean + weight_reg
# Agree penalty term
agree_penalties = []
confs = [confidences(l) for l in logits_adv]
for i in range(len(confs)):
for j in range(len(confs)):
if j <= i: continue
pen = tf.reduce_mean(tf.square(tf.reduce_sum(
tf.multiply(confs[i], confs[j]), axis=1)))
agree_penalties.append(pen)
m = len(agree_penalties)
agree_penalty = (LAMBDA / m if m > 0 else 1.0) * sum(agree_penalties)
return loss + agree_penalty
# Used to generate adv examples against our ensembles
def adv_loss(logits, y, lam=LAMBDA):
labels = tf.cast(y, tf.int64)
cross_entropy = [tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=l, name='cross_entropy_per_example')
for l in logits]
cross_entropy_mean = tf.reduce_mean(cross_entropy)
weight_reg = tf.add_n(tf.get_collection('losses')) / len(logits)
# The loss is defined as the cross entropy loss plus all of the weight
# decay terms (L2 loss).
loss = cross_entropy_mean + weight_reg
# Agree penalty term
agree_penalties = []
confs = [confidences(l) for l in logits]
for i in range(len(confs)):
for j in range(len(confs)):
if j <= i: continue
pen = tf.reduce_mean(tf.square(tf.reduce_sum(
tf.multiply(confs[i], confs[j]), axis=1)))
agree_penalties.append(pen)
m = len(agree_penalties)
agree_penalty = (AGREE_PEN / m if m > 0 else 1.0) * sum(agree_penalties)
return loss + lam * agree_penalty
def training(loss, x, learning_rate, decay_step, decay_factor):
global_step = tf.Variable(0, name='global_step', trainable=False)
lr = tf.train.exponential_decay(learning_rate, global_step, decay_step,
decay_factor, staircase=True)
optimizer = tf.train.GradientDescentOptimizer(lr)
grads = optimizer.compute_gradients(loss)
train_op = optimizer.apply_gradients(grads)
return train_op
def evaluation(logits, labels):
return tf.reduce_sum(tf.cast(tf.nn.in_top_k(logits, labels, 1), tf.int32))
def predictions(logits):
return tf.cast(tf.argmax(logits, axis=1), tf.int32)
def ranks(logits):
return tf.nn.top_k(logits, NUM_CLASSES, sorted=True).indices
def confidences(logits):
return tf.nn.softmax(logits)
def predictions_confidences(logits):
predictions = tf.cast(tf.argmax(logits, axis=1), tf.int32)
confs = confidences(logits)
confs = tf.reduce_sum(confs * tf.one_hot(predictions, NUM_CLASSES), axis=1)
return predictions, confs
def save_weights(sess, dir = 'models'):
os.makedirs(dir, exist_ok=True)
all_vars = tf.trainable_variables()
with gzip.open(dir + "/cifar10_params.pkl.gz", "w") as f:
pickle.dump(tuple(map(lambda x: x.eval(sess), all_vars)), f)
def load_weights(sess, model_names, dir):
i = 0
filename = dir + '/cifar10_params.pkl.gz' if dir else 'cifar10_params.pkl.gz'
with gzip.open(filename, 'rb') as f:
weights = pickle.load(f, encoding='latin1')
for name in model_names:
c1w, c1b, c2w, c2b, l3w, l3b, l4w, l4b, smw, smb = tuple(weights[i:i+10])
i += 10
with tf.variable_scope(name + '_conv1', reuse=True):
w_var = tf.get_variable('weights', [5, 5, 3, 64])
b_var = tf.get_variable("biases", [64])
sess.run(w_var.assign(c1w))
sess.run(b_var.assign(c1b))
with tf.variable_scope(name + '_conv2', reuse=True):
w_var = tf.get_variable('weights', [5, 5, 64, 64])
b_var = tf.get_variable("biases", [64])
sess.run(w_var.assign(c2w))
sess.run(b_var.assign(c2b))
with tf.variable_scope(name + '_local3', reuse=True):
w_var = tf.get_variable('weights', [4096, FC_SIZE_1])
b_var = tf.get_variable("biases", [FC_SIZE_1])
sess.run(w_var.assign(l3w))
sess.run(b_var.assign(l3b))
with tf.variable_scope(name + '_local4', reuse=True):
w_var = tf.get_variable('weights', [FC_SIZE_1, FC_SIZE_2])
b_var = tf.get_variable("biases", [FC_SIZE_2])
sess.run(w_var.assign(l4w))
sess.run(b_var.assign(l4b))
with tf.variable_scope(name + '_softmax_linear', reuse=True):
w_var = tf.get_variable('weights', [FC_SIZE_2, 10])
b_var = tf.get_variable("biases", [10])
sess.run(w_var.assign(smw))
sess.run(b_var.assign(smb))