forked from Guruprasad93/FlexibleMachineLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoveSparseHyper_GPU.py
140 lines (121 loc) · 5.57 KB
/
moveSparseHyper_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import numpy as np
from torch.optim.optimizer import Optimizer, required
from scipy import linalg
import numpy.linalg as LA
class NGD(Optimizer):
r"""Implements stochastic gradient descent (optionally with momentum).
Nesterov momentum is based on the formula from
`On the importance of initialization and momentum in deep learning`__.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float): learning rate
momentum (float, optional): momentum factor (default: 0)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
dampening (float, optional): dampening for momentum (default: 0)
nesterov (bool, optional): enables Nesterov momentum (default: False)
Example:
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
>>> optimizer.zero_grad()
>>> loss_fn(model(input), target).backward()
>>> optimizer.step()
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
.. note::
The implementation of SGD with Momentum/Nesterov subtly differs from
Sutskever et. al. and implementations in some other frameworks.
Considering the specific case of Momentum, the update can be written as
.. math::
\begin{aligned}
v_{t+1} & = \mu * v_{t} + g_{t+1}, \\
p_{t+1} & = p_{t} - \text{lr} * v_{t+1},
\end{aligned}
where :math:`p`, :math:`g`, :math:`v` and :math:`\mu` denote the
parameters, gradient, velocity, and momentum respectively.
This is in contrast to Sutskever et. al. and
other frameworks which employ an update of the form
.. math::
\begin{aligned}
v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\
p_{t+1} & = p_{t} - v_{t+1}.
\end{aligned}
The Nesterov version is analogously modified.
"""
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(NGD, self).__init__(params, defaults)
def __setstate__(self, state):
super(NGD, self).__setstate__(state)
#print(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
@torch.no_grad()
def step(self, wts_sparse, lambda1, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
#lambda1 = 1;
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
# Find the gradient vector
gradVec = np.array([])
wtsVec = np.array([])
for p in group['params']:
gVec = p.grad.view(-1,1);
wVec = p.view(-1,1);
gVec = gVec.detach().cpu().numpy()
wVec = wVec.detach().cpu().numpy()
gradVec = np.append(gradVec, gVec);
wtsVec = np.append(wtsVec, wVec);
#print('gradVec', gradVec);
#print('gradVecLen', len(gradVec), len(wts_sparse), len(wtsVec))
gradVec = gradVec + lambda1*(wtsVec-wts_sparse);
tempVec = gradVec;
#gradVec = gradVec/LA.norm(gradVec,2);
#tempVec = gradVec - (lambda1*vec_hyperplane);
#print(LA.norm(tempVec,2))
update = tempVec;
update = update/LA.norm(update,2);
update = torch.Tensor(update);
del gradVec
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ctr = 0;
for p in group['params']:
temp = len(p.view(-1,1));
d_p = update[ctr:ctr+temp];
d_p = d_p.view(p.shape).to(device);
if weight_decay != 0:
d_p = d_p.add(p, alpha=weight_decay)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
d_p = d_p.add(buf, alpha=momentum)
else:
d_p = buf
p.add_(d_p, alpha=-group['lr'])
ctr = ctr + temp;
return loss