From c237a9cc2b5374f751914909113298118ff3c0bb Mon Sep 17 00:00:00 2001 From: fengjial Date: Fri, 15 Mar 2024 16:05:36 +0800 Subject: [PATCH] add baidu vdb as retriever (#183) --- .../core/components/retriever/README.md | 86 +--- .../components/retriever/baidu_vdb/README.md | 85 ++++ .../retriever/baidu_vdb/__init__.py | 0 .../retriever/baidu_vdb/baiduvdb_retriever.py | 403 ++++++++++++++++++ .../core/components/retriever/bes/README.md | 88 ++++ .../core/components/retriever/bes/__init__.py | 0 .../retriever/{ => bes}/bes_retriever.py | 0 requirements.txt | 1 + 8 files changed, 581 insertions(+), 82 deletions(-) create mode 100644 appbuilder/core/components/retriever/baidu_vdb/README.md create mode 100644 appbuilder/core/components/retriever/baidu_vdb/__init__.py create mode 100644 appbuilder/core/components/retriever/baidu_vdb/baiduvdb_retriever.py create mode 100644 appbuilder/core/components/retriever/bes/README.md create mode 100644 appbuilder/core/components/retriever/bes/__init__.py rename appbuilder/core/components/retriever/{ => bes}/bes_retriever.py (100%) diff --git a/appbuilder/core/components/retriever/README.md b/appbuilder/core/components/retriever/README.md index 73a4b494d..3374a721b 100644 --- a/appbuilder/core/components/retriever/README.md +++ b/appbuilder/core/components/retriever/README.md @@ -1,88 +1,10 @@ -# 向量检索(Baidu ElasticSearch Retriever) +# 向量检索 ## 简介 -向量检索组件(Baidu ElasticSearch Retriever)基于一款Baidu ElasticSearch的内容检索组件,支持根据文本的向量的相似度进行内容检索。 +Appbuilder提供多种向量数据库作为向量检索的底座,当前主要支持百度向量数据库、百度 ElasticSearch。 ### 功能介绍 -向量检索组件(Baidu ElasticSearch Retriever)用于在将文本内容输入到Baidu ElasticSearch,根据文本的向量相似度进行高效的内容检索。 +向量检索组件-VDB(Baidu VDB Retriever)以百度向量数据库作为向量存储和检索的底座。百度向量数据库是一个专注于多维向量数据的存储、检索和分析的企业级分布式数据库服务。基于百度自主研发的向量数据库内核,VectorDB在保证高性能和高可用性的同时,也特别注重易用性和可扩展性。它支持多种索引类型和相似度计算方法,能够满足各类复杂和多样化的数据应用需求。特别值得一提的是,VectorDB能够管理高达数十亿的向量规模,同时保持毫秒级的查询响应时间,非常适合进行大规模的向量检索和分析任务。 -### 特色优势 -- 高效准确:基于Baidu ElasticSearch的强大能力,提供高效且准确的内容检索功能。 +向量检索组件-BES(Baidu ElasticSearch Retriever)以百度 ElasticSearch作为向量存储和检索的底座。百度 ElasticSearch是一款专为企业级需求设计的分布式搜索和分析服务,它在全面兼容开源ElasticSearch的基础上,提供了更多增强功能。这款服务的核心优势在于其高性能和高可靠性,它为处理结构化和非结构化数据提供了一个低成本且高效的平台。对于关注数据安全的客户来说,百度ElasticSearch提供了先进的权限管理机制,使得您可以根据业务需求自由地配置集群权限。 -### 应用场景 -各种内容检索场景 - -## 准备工作 -在使用Baidu ElasticSearch Retriever进行内容检索之前,需要到Baidu ElasticSearch官网创建相应的集群,详情见[教程](https://cloud.baidu.com/doc/BES/s/gke3ocf89)。 - -注:创建集群时请选择7.10.2版本的ES,否则可能无法使用本组件。 - -## 基本用法 - -以下是有关如何开始使用BESRetriever的代码示例: - -```python -import os -import appbuilder - -# 请前往千帆AppBuilder官网创建密钥,流程详见:https://cloud.baidu.com/doc/AppBuilder/s/Olq6grrt6#1%E3%80%81%E5%88%9B%E5%BB%BA%E5%AF%86%E9%92%A5 -os.environ["APPBUILDER_TOKEN"] = '...' - -embedding = appbuilder.Embedding() -segments = appbuilder.Message(["文心一言大模型", "百度在线科技有限公司"]) -# 初始化构建索引 -vector_index = appbuilder.BESVectorStoreIndex.from_segments(segments=segments, cluster_id=es_cluster_id, user_name=es_username, - password=es_password, embedding=embedding) -# 获取当前索引中的全部内容 -all_content = vector_index.get_all_segments() -print(all_content) -# 转化为retriever -retriever = vector_index.as_retriever() -# 按照query进行检索 -query = appbuilder.Message("文心一言") -res = retriever(query=query, top_k=1) -print(res) -# 删除当前索引中的全部内容 -vector_index.delete_all_segments() -``` - -## 参数说明 - -### 鉴权说明 -使用组件之前,请首先申请并设置鉴权参数,可参考[组件使用流程](https://cloud.baidu.com/doc/AppBuilder/s/Olq6grrt6#1%E3%80%81%E5%88%9B%E5%BB%BA%E5%AF%86%E9%92%A5)。 -```python -# 设置环境中的TOKEN,以下示例略 -os.environ["APPBUILDER_TOKEN"] = "bce-YOURTOKEN" -``` - -### 初始化参数说明: - -- segments (Message[List[str]],必填):需要入库的文本段落 -- cluster_id (str,必填):ElacticSearch集群的id,创建集群时获取 -- user_name (str,必填):连接ES集群所需的用户名,创建集群时获取 -- password (str,必填):连接ES集群所需的密码,创建集群时获取 -- embedding (obj,非必填):用于将文本转为向量的模型,默认为Embedding - -### 调用参数: -| 参数名称 | 参数类型 |是否必须 | 描述 | 示例值 | -|---------|--------|--------|------------------|---------------| -| message | String |是 | 需要检索的内容 | "中国2023人均GDP" | -| top_k | int |否 | 返回相似度最高的top_k个内容 | 1 | - -### 响应参数 -| 参数名称 | 参数类型 | 描述 | 示例值 | -|------|--------|-----|--------------------| -| text | string | 检索结果 | "中国2023年人均GDP8.94万元" | -| score | float | 相似度 | 0.95 | -| meta | dict | 元信息 | "" | -### 响应示例 -```json -{"text": "中国2023年人均GDP8.94万元", "score": 0.95, "meta": ""} -``` - -## 高级用法: - -本组件根据向量的相似度进行检索,支持使用不同的embedding方法和索引方式来优化检索的效果。 - -## 更新记录和贡献 -* 向量检索能力 (2023-12) \ No newline at end of file diff --git a/appbuilder/core/components/retriever/baidu_vdb/README.md b/appbuilder/core/components/retriever/baidu_vdb/README.md new file mode 100644 index 000000000..f7a1c8b94 --- /dev/null +++ b/appbuilder/core/components/retriever/baidu_vdb/README.md @@ -0,0 +1,85 @@ +# 向量检索(Baidu VDB Retriever) + +## 简介 +向量检索组件(Baidu VDB Retriever)基于一款百度向量数据库的内容检索组件,支持根据文本的向量的相似度进行内容检索。 + +### 功能介绍 +向量检索组件(Baidu VDB Retriever)用于在将文本内容输入到百度向量数据库,根据文本的向量相似度进行高效的内容检索。 + +### 特色优势 +高效准确:基于百度向量数据库的强大能力,提供高效且准确的内容检索功能。 + +### 应用场景 +各种内容检索场景 + +## 准备工作 +在使用Baidu VDB Retriever进行内容检索之前,需要到百度向量数据库官网创建相应的实例,[教程](https://cloud.baidu.com/doc/VDB/s/hlrsoazuf)。 + +## 基本用法 + +以下是有关如何开始使用BaiduVDBRetriever的代码示例: + +```python +import os +import appbuilder + +# 请前往千帆AppBuilder官网创建密钥,流程详见:https://cloud.baidu.com/doc/AppBuilder/s/Olq6grrt6#1%E3%80%81%E5%88%9B%E5%BB%BA%E5%AF%86%E9%92%A5 +os.environ["APPBUILDER_TOKEN"] = '...' + +embedding = appbuilder.Embedding() +segments = appbuilder.Message(["文心一言大模型", "百度在线科技有限公司"]) +# 初始化构建索引 +vector_index = appbuilder.BaiduVDBVectorStoreIndex.from_params( + instance_id=your_instance_id, + api_key=your_api_key, + drop_exists=True, +) +vector_index.add_segments(segments) + +query = appbuilder.Message("文心一言") +retriever = vector_index.as_retriever() +res = retriever(query) +print(res) +``` + +## 参数说明 + +### 鉴权说明 +使用组件之前,请首先申请并设置鉴权参数,可参考[组件使用流程](https://cloud.baidu.com/doc/AppBuilder/s/Olq6grrt6#1%E3%80%81%E5%88%9B%E5%BB%BA%E5%AF%86%E9%92%A5)。 +```python +# 设置环境中的TOKEN,以下示例略 +os.environ["APPBUILDER_TOKEN"] = "bce-YOURTOKEN" +``` + +### 初始化参数说明: + +- segments (Message[List[str]],必填):需要入库的文本段落 +- instance_id(str,必填):百度向量数据库的实例id,创建实例时获取 +- api_key (str,必填):连接向量数据库所需的密码,创建实例时获取 +- account (str,非必填):连接向量数据库所需的用户名,默认root +- embedding (obj,非必填):用于将文本转为向量的模型,默认为Embedding +- drop_exists (bool, 非必填) :是否清空数据库历史记录,默认为False + +### 调用参数: +| 参数名称 | 参数类型 |是否必须 | 描述 | 示例值 | +|---------|--------|--------|------------------|---------------| +| message | String |是 | 需要检索的内容 | "中国2023人均GDP" | +| top_k | int |否 | 返回相似度最高的top_k个内容 | 1 | + +### 响应参数 +| 参数名称 | 参数类型 | 描述 | 示例值 | +|------|--------|-----|--------------------| +| text | string | 检索结果 | "中国2023年人均GDP8.94万元" | +| score | float | 相似度 | 0.95 | +| meta | dict | 元信息 | "" | +### 响应示例 +```json +{"text": "中国2023年人均GDP8.94万元", "score": 0.95, "meta": ""} +``` + +## 高级用法: + +本组件根据向量的相似度进行检索,支持使用不同的embedding方法和索引方式来优化检索的效果。 + +## 更新记录和贡献 +* 向量检索能力 (2024-03) diff --git a/appbuilder/core/components/retriever/baidu_vdb/__init__.py b/appbuilder/core/components/retriever/baidu_vdb/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/appbuilder/core/components/retriever/baidu_vdb/baiduvdb_retriever.py b/appbuilder/core/components/retriever/baidu_vdb/baiduvdb_retriever.py new file mode 100644 index 000000000..d716f05f1 --- /dev/null +++ b/appbuilder/core/components/retriever/baidu_vdb/baiduvdb_retriever.py @@ -0,0 +1,403 @@ +# Copyright (c) 2023 Baidu, Inc. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +# -*- coding: utf-8 -*- +""" +基于Baidu VDB的retriever +""" +import importlib +import os +import random +import string +import time +from typing import Dict, Any +from appbuilder.core.component import Component, Message +from appbuilder.core.components.embeddings.component import Embedding +from appbuilder.core.constants import GATEWAY_URL +from appbuilder.utils.logger_util import logger + +DEFAULT_ACCOUNT = "root" +DEFAULT_DATABASE_NAME = "AppBuilderDatabase" +DEFAULT_TABLE_NAME = "AppBuilderTable" +DEFAULT_TIMEOUT_IN_MILLS: int = 30 * 1000 + +DEFAULT_PARTITION = 1 +DEFAULT_REPLICA = 3 +DEFAULT_INDEX_TYPE = "HNSW" +DEFAULT_METRIC_TYPE = "L2" + +DEFAULT_HNSW_M = 16 +DEFAULT_HNSW_EF_CONSTRUCTION = 200 +DEFAULT_HNSW_EF = 10 + +DEFAULT_BATCH_SIZE = 1000 + +FIELD_ID: str = "id" +FIELD_TEXT: str = "text" +FIELD_VECTOR: str = "vector" +FIELD_METADATA: str = "metadata" +INDEX_VECTOR: str = "vector_idx" + +VALUE_NONE_ERROR = "Parameter `{}` can not be None." +NOT_SUPPORT_INDEX_TYPE_ERROR = ( + "Unsupported index type: `{}`, supported index types are {}" +) +NOT_SUPPORT_METRIC_TYPE_ERROR = ( + "Unsupported metric type: `{}`, supported metric types are {}" +) + +def _try_import() -> None: + try: + import pymochow + except ImportError: + raise ImportError( + "`pymochow` package not found, please run `pip install pymochow`" + ) + +class TableParams: + """Baidu VectorDB table params. + See the following documentation for details: + https://cloud.baidu.com/doc/VDB/s/mlrsob0p6 + Args: + dimension int: The dimension of vector. + replication int: The number of replicas in the table. + partition int: The number of partitions in the table. + index_type (Optional[str]): HNSW, FLAT... Default value is "HNSW" + metric_type (Optional[str]): L2, COSINE, IP. Default value is "L2" + drop_exists (Optional[bool]): Delete the existing Table. Default value is False. + vector_params (Optional[Dict]): + if HNSW set parameters: `M` and `efConstruction`, for example `{'M': 16, efConstruction: 200}` + default is HNSW + """ + + def __init__( + self, + dimension: int, + table_name: str = DEFAULT_TABLE_NAME, + replication: int = DEFAULT_REPLICA, + partition: int = DEFAULT_PARTITION, + index_type: str = DEFAULT_INDEX_TYPE, + metric_type: str = DEFAULT_METRIC_TYPE, + drop_exists: bool = False, + vector_params: Dict = None, + ): + self.dimension = dimension + self.table_name = table_name + self.replication = replication + self.partition = partition + self.index_type = index_type + self.metric_type = metric_type + self.drop_exists = drop_exists + self.vector_params = vector_params + +class BaiduVDBVectorStoreIndex: + """ + Baidu VDB向量存储检索工具 + """ + vdb_uri_prefix = b"/api/v1/bce/vdb/instance/" + + def __init__( + self, + instance_id, + api_key: str, + account: str = DEFAULT_ACCOUNT, + database_name: str = DEFAULT_DATABASE_NAME, + table_params: TableParams = TableParams(dimension=384), + embedding=None, + ): + + if embedding is None: + embedding = Embedding() + + self.embedding = embedding + + self._init_client(instance_id, account, api_key) + self._create_database_if_not_exists(database_name) + self._create_table(table_params) + + def _init_client(self, instance_id, account, api_key): + """ + 创建一个vdb的client + """ + import pymochow + from pymochow.configuration import Configuration + from pymochow.auth.bce_credentials import AppBuilderCredentials + + gateway = os.getenv("GATEWAY_URL") if os.getenv("GATEWAY_URL") else GATEWAY_URL + + config = Configuration( + credentials=AppBuilderCredentials(account, api_key, appbuilder_token), + endpoint=gateway, + uri_perfix=self.vdb_uri_prefix, + connection_timeout_in_mills=DEFAULT_TIMEOUT_IN_MILLS, + ) + self.vdb_client = pymochow.MochowClient(config) + + def _create_database_if_not_exists(self, database_name: str) -> None: + db_list = self.vdb_client.list_databases() + + if database_name in [db.database_name for db in db_list]: + self.database = self.vdb_client.database(database_name) + else: + self.database = self.vdb_client.create_database(database_name) + + def _create_table(self, table_params: TableParams) -> None: + import pymochow + + if table_params is None: + raise ValueError(VALUE_NONE_ERROR.format("table_params")) + + try: + self.table = self.database.describe_table(table_params.table_name) + if table_params.drop_exists: + self.database.drop_table(table_params.table_name) + # wait db release resource + time.sleep(5) + self._create_table_in_db(table_params) + except pymochow.exception.ServerError: + self._create_table_in_db(table_params) + + def _create_table_in_db( + self, + table_params: TableParams, + ) -> None: + from pymochow.model.enum import FieldType + from pymochow.model.schema import Field, Schema, SecondaryIndex, VectorIndex + from pymochow.model.table import Partition + + index_type = self._get_index_type(table_params.index_type) + metric_type = self._get_metric_type(table_params.metric_type) + vector_params = self._get_index_params(index_type, table_params) + fields = [] + fields.append( + Field( + FIELD_ID, + FieldType.UINT64, + primary_key=True, + partition_key=True, + auto_increment=True, + not_null=True, + ) + ) + fields.append(Field(FIELD_METADATA, FieldType.STRING)) + fields.append(Field(FIELD_TEXT, FieldType.STRING)) + fields.append( + Field( + FIELD_VECTOR, FieldType.FLOAT_VECTOR, dimension=table_params.dimension + ) + ) + + indexes = [] + indexes.append( + VectorIndex( + index_name=INDEX_VECTOR, + index_type=index_type, + field=FIELD_VECTOR, + metric_type=metric_type, + params=vector_params, + ) + ) + + schema = Schema(fields=fields, indexes=indexes) + self.table = self.database.create_table( + table_name=table_params.table_name, + replication=table_params.replication, + partition=Partition(partition_num=table_params.partition), + schema=Schema(fields=fields, indexes=indexes), + enable_dynamic_field=True, + ) + # need wait 10s to wait proxy sync meta + time.sleep(10) + + @staticmethod + def _get_index_params(index_type: Any, table_params: TableParams) -> None: + from pymochow.model.enum import IndexType + from pymochow.model.schema import HNSWParams + + vector_params = ( + {} if table_params.vector_params is None else table_params.vector_params + ) + + if index_type == IndexType.HNSW: + return HNSWParams( + m=vector_params.get("M", DEFAULT_HNSW_M), + efconstruction=vector_params.get( + "efConstruction", DEFAULT_HNSW_EF_CONSTRUCTION + ), + ) + return None + + @staticmethod + def _get_index_type(index_type_value: str) -> Any: + from pymochow.model.enum import IndexType + + index_type_value = index_type_value or IndexType.HNSW + try: + return IndexType(index_type_value) + except ValueError: + support_index_types = [d.value for d in IndexType.__members__.values()] + raise ValueError( + NOT_SUPPORT_INDEX_TYPE_ERROR.format( + index_type_value, support_index_types + ) + ) + + @staticmethod + def _get_metric_type(metric_type_value: str) -> Any: + from pymochow.model.enum import MetricType + + metric_type_value = metric_type_value or MetricType.L2 + try: + return MetricType(metric_type_value.upper()) + except ValueError: + support_metric_types = [d.value for d in MetricType.__members__.values()] + raise ValueError( + NOT_SUPPORT_METRIC_TYPE_ERROR.format( + metric_type_value, support_metric_types + ) + ) + + @property + def client(self) -> Any: + """Get client.""" + return self.vdb_client + + def as_retriever(self): + """ + 转化为retriever + """ + return BaiduVDBRetriever( + embedding=self.embedding, + table=self.table, + ) + + def add_segments(self, segments: Message, metadata=""): + """ + 向bes中插入数据 + 参数: + query (Message[str]): 需要插入的内容 + 返回: + """ + from pymochow.model.table import Row + + segment_vectors = self.embedding.batch(segments) + segment_vectors = segment_vectors.content + vector_dims = len(segment_vectors[0]) + segments = segments.content + + rows = [] + for segment, vector in zip(segments, segment_vectors): + row = Row(text=segment, vector=vector, metadata=metadata) + rows.append(row) + if len(rows) >= DEFAULT_BATCH_SIZE: + self.collection.upsert(rows=rows) + rows = [] + + if len(rows) > 0: + self.table.upsert(rows=rows) + + @classmethod + def from_params( + cls, + instance_id: str, + api_key: str, + account: str = DEFAULT_ACCOUNT, + database_name: str = DEFAULT_DATABASE_NAME, + table_name: str = DEFAULT_TABLE_NAME, + drop_exists: bool = False, + **kwargs, + ): + _try_import() + dimension = kwargs.get("dimension", 384) + table_params = TableParams( + dimension=dimension, + table_name=table_name, + drop_exists=drop_exists, + ) + return cls( + instance_id=instance_id, + account=account, + api_key=api_key, + database_name=database_name, + table_params=table_params, + ) + + +class BaiduVDBRetriever(Component): + """ + 向量检索组件,用于检索和query相匹配的内容 + + Examples: + + .. code-block:: python + + import appbuilder + os.environ["APPBUILDER_TOKEN"] = '...' + + segments = appbuilder.Message(["文心一言大模型", "百度在线科技有限公司"]) + vector_index = appbuilder.BaiduVDBVectorStoreIndex.from_params( + self.instance_id, + self.api_key, + ) + vector_index.add_segments(segments) + + query = appbuilder.Message("文心一言") + time.sleep(5) + retriever = vector_index.as_retriever() + res = retriever(query) + + """ + name: str = "BaiduVectorDBRetriever" + tool_desc: Dict[str, Any] = {"description": "a retriever based on Baidu VectorDB"} + + def __init__(self, embedding, table): + super().__init__() + + self.embedding = embedding + self.table = table + + def run(self, query: Message, top_k: int = 1): + """ + 根据query进行查询 + 参数: + query (Message[str]): 需要查询的内容, + top_k (bool): 查询结果中匹配度最高的top_k个结果 + 返回: + obj (Message[Dict]): 查询到的结果,包含文本和匹配得分。 + """ + from pymochow.model.table import AnnSearch, HNSWSearchParams + from pymochow.model.enum import ReadConsistency + + query_embedding = self.embedding(query) + anns = AnnSearch( + vector_field=FIELD_VECTOR, + vector_floats=query_embedding.content, + params=HNSWSearchParams(ef=10, limit=top_k), + ) + res = self.table.search(anns=anns, read_consistency=ReadConsistency.STRONG) + rows = res.rows + docs = [] + if rows is None or len(rows) == 0: + return Message(docs) + + for row in rows: + row_data = row.get("row", {}) + docs.append({ + "text": row_data.get(FIELD_TEXT), + "meta": row_data.get(FIELD_METADATA), + "score": row.get("score") + }) + + return Message(docs) diff --git a/appbuilder/core/components/retriever/bes/README.md b/appbuilder/core/components/retriever/bes/README.md new file mode 100644 index 000000000..73a4b494d --- /dev/null +++ b/appbuilder/core/components/retriever/bes/README.md @@ -0,0 +1,88 @@ +# 向量检索(Baidu ElasticSearch Retriever) + +## 简介 +向量检索组件(Baidu ElasticSearch Retriever)基于一款Baidu ElasticSearch的内容检索组件,支持根据文本的向量的相似度进行内容检索。 + +### 功能介绍 +向量检索组件(Baidu ElasticSearch Retriever)用于在将文本内容输入到Baidu ElasticSearch,根据文本的向量相似度进行高效的内容检索。 + +### 特色优势 +- 高效准确:基于Baidu ElasticSearch的强大能力,提供高效且准确的内容检索功能。 + +### 应用场景 +各种内容检索场景 + +## 准备工作 +在使用Baidu ElasticSearch Retriever进行内容检索之前,需要到Baidu ElasticSearch官网创建相应的集群,详情见[教程](https://cloud.baidu.com/doc/BES/s/gke3ocf89)。 + +注:创建集群时请选择7.10.2版本的ES,否则可能无法使用本组件。 + +## 基本用法 + +以下是有关如何开始使用BESRetriever的代码示例: + +```python +import os +import appbuilder + +# 请前往千帆AppBuilder官网创建密钥,流程详见:https://cloud.baidu.com/doc/AppBuilder/s/Olq6grrt6#1%E3%80%81%E5%88%9B%E5%BB%BA%E5%AF%86%E9%92%A5 +os.environ["APPBUILDER_TOKEN"] = '...' + +embedding = appbuilder.Embedding() +segments = appbuilder.Message(["文心一言大模型", "百度在线科技有限公司"]) +# 初始化构建索引 +vector_index = appbuilder.BESVectorStoreIndex.from_segments(segments=segments, cluster_id=es_cluster_id, user_name=es_username, + password=es_password, embedding=embedding) +# 获取当前索引中的全部内容 +all_content = vector_index.get_all_segments() +print(all_content) +# 转化为retriever +retriever = vector_index.as_retriever() +# 按照query进行检索 +query = appbuilder.Message("文心一言") +res = retriever(query=query, top_k=1) +print(res) +# 删除当前索引中的全部内容 +vector_index.delete_all_segments() +``` + +## 参数说明 + +### 鉴权说明 +使用组件之前,请首先申请并设置鉴权参数,可参考[组件使用流程](https://cloud.baidu.com/doc/AppBuilder/s/Olq6grrt6#1%E3%80%81%E5%88%9B%E5%BB%BA%E5%AF%86%E9%92%A5)。 +```python +# 设置环境中的TOKEN,以下示例略 +os.environ["APPBUILDER_TOKEN"] = "bce-YOURTOKEN" +``` + +### 初始化参数说明: + +- segments (Message[List[str]],必填):需要入库的文本段落 +- cluster_id (str,必填):ElacticSearch集群的id,创建集群时获取 +- user_name (str,必填):连接ES集群所需的用户名,创建集群时获取 +- password (str,必填):连接ES集群所需的密码,创建集群时获取 +- embedding (obj,非必填):用于将文本转为向量的模型,默认为Embedding + +### 调用参数: +| 参数名称 | 参数类型 |是否必须 | 描述 | 示例值 | +|---------|--------|--------|------------------|---------------| +| message | String |是 | 需要检索的内容 | "中国2023人均GDP" | +| top_k | int |否 | 返回相似度最高的top_k个内容 | 1 | + +### 响应参数 +| 参数名称 | 参数类型 | 描述 | 示例值 | +|------|--------|-----|--------------------| +| text | string | 检索结果 | "中国2023年人均GDP8.94万元" | +| score | float | 相似度 | 0.95 | +| meta | dict | 元信息 | "" | +### 响应示例 +```json +{"text": "中国2023年人均GDP8.94万元", "score": 0.95, "meta": ""} +``` + +## 高级用法: + +本组件根据向量的相似度进行检索,支持使用不同的embedding方法和索引方式来优化检索的效果。 + +## 更新记录和贡献 +* 向量检索能力 (2023-12) \ No newline at end of file diff --git a/appbuilder/core/components/retriever/bes/__init__.py b/appbuilder/core/components/retriever/bes/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/appbuilder/core/components/retriever/bes_retriever.py b/appbuilder/core/components/retriever/bes/bes_retriever.py similarity index 100% rename from appbuilder/core/components/retriever/bes_retriever.py rename to appbuilder/core/components/retriever/bes/bes_retriever.py diff --git a/requirements.txt b/requirements.txt index a2aafbfe1..19f0f9622 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,3 +7,4 @@ urllib3<2.0.0 tenacity pandas openpyxl +pymochow>=1.1.2