forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
116 lines (112 loc) · 3.28 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
Collections:
- Name: SCNet
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- FPN
- ResNet
- SCNet
Paper:
URL: https://arxiv.org/abs/2012.10150
Title: 'SCNet: Training Inference Sample Consistency for Instance Segmentation'
README: configs/scnet/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.9.0/mmdet/models/detectors/scnet.py#L6
Version: v2.9.0
Models:
- Name: scnet_r50_fpn_1x_coco
In Collection: SCNet
Config: configs/scnet/scnet_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 7.0
inference time (ms/im):
- value: 161.29
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 43.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_1x_coco/scnet_r50_fpn_1x_coco-c3f09857.pth
- Name: scnet_r50_fpn_20e_coco
In Collection: SCNet
Config: configs/scnet/scnet_r50_fpn_20e_coco.py
Metadata:
Training Memory (GB): 7.0
inference time (ms/im):
- value: 161.29
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 40.0
Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_20e_coco/scnet_r50_fpn_20e_coco-a569f645.pth
- Name: scnet_r101_fpn_20e_coco
In Collection: SCNet
Config: configs/scnet/scnet_r101_fpn_20e_coco.py
Metadata:
Training Memory (GB): 8.9
inference time (ms/im):
- value: 172.41
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 45.8
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 40.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r101_fpn_20e_coco/scnet_r101_fpn_20e_coco-294e312c.pth
- Name: scnet_x101-64x4d_fpn_20e_coco
In Collection: SCNet
Config: configs/scnet/scnet_x101-64x4d_fpn_20e_coco.py
Metadata:
Training Memory (GB): 13.2
inference time (ms/im):
- value: 204.08
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 20
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 47.5
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 42.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_x101_64x4d_fpn_20e_coco/scnet_x101_64x4d_fpn_20e_coco-fb09dec9.pth