-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaffe_feature_extractor.py
116 lines (91 loc) · 3.73 KB
/
caffe_feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import numpy as np
import os
import sys
import getopt
from glob import glob
# Main path to your caffe installation
caffe_root = '/opt/caffe/'
# Model prototxt file
model_prototxt = caffe_root + 'models/bvlc_googlenet/deploy.prototxt'
# Model caffemodel file
model_trained = caffe_root + 'models/bvlc_googlenet/bvlc_googlenet.caffemodel'
# File containing the class labels
imagenet_labels = caffe_root + 'data/ilsvrc12/synset_words.txt'
# Path to the mean image (used for input processing)
mean_path = caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy'
# Name of the layer we want to extract
layer_name = 'pool5/7x7_s1'
sys.path.insert(0, caffe_root + 'python')
import caffe
def get_imagenet_features(names):
caffe.set_mode_gpu()
net = caffe.Classifier(model_prototxt, model_trained,
mean=np.load(mean_path).mean(1).mean(1),
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
features = []
for name in names:
input_image = caffe.io.load_image(name.strip())
net.predict([input_image], oversample=False)
#feature = net.blobs[layer_name].data[0].reshape(1,-1)
feature = net.blobs[layer_name].data[0].reshape(-1).copy()
features.append(feature)
return features
def main(argv):
inputfile = ''
outputfile = ''
try:
opts, args = getopt.getopt(argv,"hi:o:",["ifile=","ofile="])
except getopt.GetoptError:
print 'caffe_feature_extractor.py -i <inputfile> -o <outputfile>'
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print 'caffe_feature_extractor.py -i <inputfile> -o <outputfile>'
sys.exit()
elif opt in ("-i"):
inputfile = arg
elif opt in ("-o"):
outputfile = arg
print 'Reading images from "', inputfile
print 'Writing vectors to "', outputfile
# Setting this to CPU, but feel free to use GPU if you have CUDA installed
#caffe.set_mode_cpu()
caffe.set_mode_gpu()
# Loading the Caffe model, setting preprocessing parameters
net = caffe.Classifier(model_prototxt, model_trained,
mean=np.load(mean_path).mean(1).mean(1),
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
# Loading class labels
with open(imagenet_labels) as f:
labels = f.readlines()
# This prints information about the network layers (names and sizes)
# You can uncomment this, to have a look inside the network and choose which layer to print
#print [(k, v.data.shape) for k, v in net.blobs.items()]
#exit()
# Processing one image at a time, printint predictions and writing the vector to a file
with open(inputfile, 'r') as reader:
with open(outputfile, 'w') as writer:
writer.truncate()
for image_path in reader:
image_path = image_path.strip()
input_image = caffe.io.load_image(image_path)
prediction = net.predict([input_image], oversample=False)
print os.path.basename(image_path), ' : ', labels[prediction[0].argmax()].strip(), ' (', prediction[0][prediction[0].argmax()], ')'
#feature = net.blobs[layer_name].data[0].reshape(-1)
feature = net.blobs[layer_name].data[0].reshape(1,-1)
#print(feature)
np.savetxt(writer, feature, fmt='%.8g')
def test():
names = glob('./data/**/*.jpg')[:3]
features = get_imagenet_features(names)
print(names)
for x in features:
print(x)
print(len(features))
if __name__ == "__main__":
#test()
main(sys.argv[1:])