-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeatures.py
177 lines (141 loc) · 4.83 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#import gzip
#from glob import glob
import numpy as np
from scipy import misc
import pywt
from string import strip
from os.path import basename
from bottle import route
from bottle import run
from bottle import request
from bottle import static_file
#from caffe_feature_extractor import get_imagenet_features as _get_imagenet_features
import logging
logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s',
datefmt='%m/%d/%Y %I:%M:%S',
level=logging.DEBUG)
def extract(names, output_filename, feature_type):
#names = glob(basedir + '/**/*.jpg') + glob(basedir + '/*.jpg')
extractor = {
'haar': _get_haar_features,
#'imagenet': _get_imagenet_features
}[feature_type]
# print(names)
features = extractor(names)
return features
def knn(X):
#num_test = X.shape[0]
#num_train = self.X_train.shape[0]
#dists = np.zeros((num_test, num_train))
inner = X.dot(X.T)
#Xte = np.square(X).sum(axis=1)
#Xtr = np.square(X).sum(axis=1)
XS = np.square(X).sum(axis=1)
#dists = np.sqrt(-2*inner + XS + np.matrix(XS, dtype=np.float32).T)
dists = np.sqrt(-2*inner + XS + XS)
return dists
def similar(dists, i, n):
neighbors = np.argsort(dists[i])[1:n+1]
return neighbors
#def save():
# with gzip.open(output_filename, 'w') as file_object:
# for name, feature in zip(names, features):
# file_object.write('{0}\t{1}\n'.format(name, list(feature)))
def _get_haar_features(names):
return map(_get_haar_feature, names)
def _get_haar_feature(filename):
data = misc.imread(filename)
data = misc.imresize(data, (64, 64))
#data.resize(64, 64)
feature_layers = np.zeros((32, 32, 3), dtype=np.float32)
additional = np.empty(4)
for index in range(3):
layer = data[:, :, index]
layer = np.float32(layer)
additional[index] = layer.mean()
#layer /= 255.0
#print(layer.min(), layer.max(), layer.mean())
#print(layer[:1])
haar = pywt.wavedec2(data=layer, wavelet='haar', level=1)
cA = haar[0]
feature_layers[:, :, index] = cA
height, width, _ = data.shape
aspect = float(width)/(width+height)
additional[-1] = aspect
features = np.concatenate((feature_layers.reshape(32*32*3), additional))
return features
SIMILAR_HTML = """
<html>
<body>
{original}
<br>
<hr>
{similar}
</body>
</html>
"""
IMAGE_ROOT = '/mnt/big_ntfs/doc/pic/dropbox/insave/2016-01/'
def img(id):
href = '/similar/{0}'.format(id)
return '''
<a href="{href}">
<img src="/image/{src}" width="128" height="128">
</a>'''.format(href=href, src=basename(names[id]))
@route('/similar/<id>')
def http_similar(id):
id = int(id)
neighbors = similar(dists, id, 10)
img_original = img(id)
img_similar = ''.join(map(img, neighbors))
return SIMILAR_HTML.format(original=img_original,
similar=img_similar)
#return 'Hello there, %s' % id
@route('/image/<filename>')
def http_image(filename):
return static_file(filename, root=IMAGE_ROOT, mimetype='image/jpeg')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--filelist", type=str, help="Input list of file names")
parser.add_argument("--output", type=str, help="Output filename")
parser.add_argument("--extractor", type=str, help="Feature extractor")
parser.add_argument("--id", type=int, help="Requested image id")
parser.add_argument("-n", type=int, help="Number of similar items")
args = parser.parse_args()
#logging.info('Reading file %s', args.output)
names = map(strip, open(args.filelist).readlines())
dists = np.load(args.output)
run(host='0.0.0.0', port=8030, debug=True)
# logging.info('Requested %d items for image %d', args.n, args.id)
# neighbors = similar(dists, args.id, args.n)
#
# logging.info('Neighbors %s', neighbors)
# logging.info('Original %s', names[args.id])
# for i, neighbor in enumerate(neighbors):
# logging.info('Neighbor %d %s', i, names[neighbor])
#
# exit(0)
#
# logging.info('args: %s', args)
#
# # Read file names
# logging.info('Reading filenames from %s', args.filelist)
# names = map(strip, open(args.filelist).readlines())
# logging.info('%s input files', str(len(names)))
#
# # Extract features
# logging.info('Extracting features')
# extractor = {
# 'haar': _get_haar_features,
# #'imagenet': _get_imagenet_features
# }[args.extractor]
# features = extractor(names)
#
# # Compute KNearestNeighbor
# logging.info('Computing KNN')
# dists = knn(np.array(features, dtype=np.float32))
# print('dists', dists.dtype)
#
# # Save result
# logging.info('Saving dists to %s', args.output)
# np.save(args.output, dists)