-
Notifications
You must be signed in to change notification settings - Fork 14
/
formImageMTI.m
144 lines (115 loc) · 5.42 KB
/
formImageMTI.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
clear all; clc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This script produces images using the SAR-based GMTI urban dataset. %
% It uses the imaging function bpBasic for image formation. This %
% script assumes a regular imaging grid with z = 0. %
% %
% Written by LeRoy Gorham, Air Force Research Laboratory, WPAFB, OH %
% Email: [email protected] %
% Date Released: 8 Apr 2010 %
% %
% Gorham, L.A. and Moore, L.J., "SAR image formation toolbox for %
% MATLAB," Algorithms for Synthetic Aperture Radar Imagery XVII %
% 7669, SPIE (2010). %
% %
% Scarborough, S.M., et al, "A challenge problem for SAR-based GMTI in %
% urban environments," Algorithms for Synthetic Aperture Radar %
% Imagery, XVI 7337, SPIE (2009). %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% INPUT PARAMETERS START HERE %
% Define the path to the base directory of the dataset
dvdPath = '/ssip1/GOTCHA/PublicReleaseGMTI';
% Define input data parameters here
channel = 1; % Which channel to image (1-3)
misrefFlag = 1; % 1 for Mission Image, 0 for Reference Image
taper_flag = 0; % Add a hamming taper for sidelobe control
prm.startPulse = 1; % Starting pulse
prm.numPulses = 8000; % Number of pulses to image
% Define image parameters here
data.Wx = 200; % Scene extent x (m)
data.Wy = 200; % Scene extent y (m)
data.Nfft = 4096; % Number of samples in FFT
data.Nx = 1001; % Number of samples in x direction
data.Ny = 1001; % Number of samples in y direction
data.x0 = -25; % Center of image scene in x direction (m)
data.y0 = -50; % Center of image scene in y direction (m)
dyn_range = 70; % dB of dynamic range to display
% INPUT PARAMETERS END HERE %
% Data specific parameters
Korig = 5400; % The number of valid samples in the original data
% Set path to the code to read in data
codePath = sprintf('%s%sMatlab Codes',dvdPath,filesep);
addpath(codePath);
% Set path to the data
datadir = sprintf('%s%sSPIEchallengeData',dvdPath,filesep);
% Define speed of light (m/s)
c = 299792458;
% Setup File Names
if misrefFlag
ph_fname = sprintf('%s%sdurangoChallenge_chan%d_mis2_PH',datadir,filesep,channel);
aux_fname = sprintf('%s_auxSaveData.mat',ph_fname);
paux_fname = sprintf('%s%sdurangoChallenge_mis2_PAUX',datadir,filesep);
else
ph_fname = sprintf('%s%sdurangoChallenge_chan%d_ref4_PH',datadir,filesep,channel);
aux_fname = sprintf('%s_auxSaveData.mat',ph_fname);
paux_fname = sprintf('%s%sdurangoChallenge_ref4_PAUX',datadir,filesep);
end
GPS_fname = sprintf('%s%sdurangoChallenge_GPStruth.mat',datadir,filesep);
% Load in Phase History
PH = readChallengePH(ph_fname,prm);
% Load in Aux Information
load(aux_fname);
% Load PAUX Information
paux = readPAUXData(paux_fname);
% Load GPS Information
load(GPS_fname);
% Setup imaging grid
data.x_vec = linspace(data.x0 - data.Wx/2, data.x0 + data.Wx/2, data.Nx);
data.y_vec = linspace(data.y0 - data.Wy/2, data.y0 + data.Wy/2, data.Ny);
[data.x_mat,data.y_mat] = meshgrid(data.x_vec,data.y_vec);
data.z_mat = zeros(size(data.x_mat));
% Add a hamming taper to the data if desired
if taper_flag
data.phdata = PH .* (hamming(data.K)*hamming(data.Np)');
else
data.phdata = PH;
end
% Set the number of samples per pulse
data.K = size(PH,1);
% Set the number of pulses
data.Np = prm.numPulses;
% Determine the index to the pulses that are going to be imaged
I = prm.startPulse:(prm.startPulse+data.Np-1);
% Set the (x,y,z) values of the antenna for the given pulses (m)
data.AntX = paux.APCpos(1,I);
data.AntY = paux.APCpos(2,I);
data.AntZ = paux.APCpos(3,I);
% Set the range to scene center for each pulse (m)
data.R0 = paux.APCMag(I);
% Calculate the frequency step size for the ORIGINAL data (Hz)
deltaF = paux.Gamma(1)/aux_SPIE.readPrm.Fsamp;
% Calculate the frequency step size in this dataset (Hz)
data.deltaF = deltaF * Korig / data.K;
% Calculate the minimum frequency for each pulse in the dataset (Hz)
startFreqSamp = -aux_SPIE.circshiftFloorPHradius(I) + ...
aux_SPIE.PHradius_sampleError + 1;
data.minF = paux.PHradius(I) + startFreqSamp * deltaF;
% Calculate the step size in the range profile (m)
deltaR = c/(2*Korig*deltaF);
% Calculate the new R0 based on the range bin offset (m)
data.R0 = data.R0 + aux_SPIE.readPrm.deltaRbin(I) * deltaR;
% Call the backprojection function with the appropriate inputs
data = bpBasic(data);
% Display the image
figure
imagesc(data.x_vec,data.y_vec,20*log10(abs(data.im_final)./...
max(max(abs(data.im_final)))),[-dyn_range 0])
colormap gray
axis xy image;
h = xlabel('x (m)');
set(h,'FontSize',14,'FontWeight','Bold');
h = ylabel('y (m)');
set(h,'FontSize',14,'FontWeight','Bold');
colorbar
set(gca,'FontSize',14,'FontWeight','Bold');
print -deps2 /ssip2/lgorham/SPIE10/fig/mtiBPA.eps